lguest_user.c revision 133890103b9de08904f909995973e4b5c08a780e
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest.  For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset.  A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include <linux/sched.h>
10#include <linux/eventfd.h>
11#include <linux/file.h>
12#include "lg.h"
13
14bool send_notify_to_eventfd(struct lg_cpu *cpu)
15{
16	unsigned int i;
17	struct lg_eventfd_map *map;
18
19	/* lg->eventfds is RCU-protected */
20	rcu_read_lock();
21	map = rcu_dereference(cpu->lg->eventfds);
22	for (i = 0; i < map->num; i++) {
23		if (map->map[i].addr == cpu->pending_notify) {
24			eventfd_signal(map->map[i].event, 1);
25			cpu->pending_notify = 0;
26			break;
27		}
28	}
29	rcu_read_unlock();
30	return cpu->pending_notify == 0;
31}
32
33static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
34{
35	struct lg_eventfd_map *new, *old = lg->eventfds;
36
37	if (!addr)
38		return -EINVAL;
39
40	/* Replace the old array with the new one, carefully: others can
41	 * be accessing it at the same time */
42	new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
43		      GFP_KERNEL);
44	if (!new)
45		return -ENOMEM;
46
47	/* First make identical copy. */
48	memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
49	new->num = old->num;
50
51	/* Now append new entry. */
52	new->map[new->num].addr = addr;
53	new->map[new->num].event = eventfd_ctx_fdget(fd);
54	if (IS_ERR(new->map[new->num].event)) {
55		kfree(new);
56		return PTR_ERR(new->map[new->num].event);
57	}
58	new->num++;
59
60	/* Now put new one in place. */
61	rcu_assign_pointer(lg->eventfds, new);
62
63	/* We're not in a big hurry.  Wait until noone's looking at old
64	 * version, then delete it. */
65	synchronize_rcu();
66	kfree(old);
67
68	return 0;
69}
70
71static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
72{
73	unsigned long addr, fd;
74	int err;
75
76	if (get_user(addr, input) != 0)
77		return -EFAULT;
78	input++;
79	if (get_user(fd, input) != 0)
80		return -EFAULT;
81
82	mutex_lock(&lguest_lock);
83	err = add_eventfd(lg, addr, fd);
84	mutex_unlock(&lguest_lock);
85
86	return 0;
87}
88
89/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
90 * number to /dev/lguest. */
91static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
92{
93	unsigned long irq;
94
95	if (get_user(irq, input) != 0)
96		return -EFAULT;
97	if (irq >= LGUEST_IRQS)
98		return -EINVAL;
99
100	set_interrupt(cpu, irq);
101	return 0;
102}
103
104/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
105 * from /dev/lguest. */
106static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
107{
108	struct lguest *lg = file->private_data;
109	struct lg_cpu *cpu;
110	unsigned int cpu_id = *o;
111
112	/* You must write LHREQ_INITIALIZE first! */
113	if (!lg)
114		return -EINVAL;
115
116	/* Watch out for arbitrary vcpu indexes! */
117	if (cpu_id >= lg->nr_cpus)
118		return -EINVAL;
119
120	cpu = &lg->cpus[cpu_id];
121
122	/* If you're not the task which owns the Guest, go away. */
123	if (current != cpu->tsk)
124		return -EPERM;
125
126	/* If the Guest is already dead, we indicate why */
127	if (lg->dead) {
128		size_t len;
129
130		/* lg->dead either contains an error code, or a string. */
131		if (IS_ERR(lg->dead))
132			return PTR_ERR(lg->dead);
133
134		/* We can only return as much as the buffer they read with. */
135		len = min(size, strlen(lg->dead)+1);
136		if (copy_to_user(user, lg->dead, len) != 0)
137			return -EFAULT;
138		return len;
139	}
140
141	/* If we returned from read() last time because the Guest sent I/O,
142	 * clear the flag. */
143	if (cpu->pending_notify)
144		cpu->pending_notify = 0;
145
146	/* Run the Guest until something interesting happens. */
147	return run_guest(cpu, (unsigned long __user *)user);
148}
149
150/*L:025 This actually initializes a CPU.  For the moment, a Guest is only
151 * uniprocessor, so "id" is always 0. */
152static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
153{
154	/* We have a limited number the number of CPUs in the lguest struct. */
155	if (id >= ARRAY_SIZE(cpu->lg->cpus))
156		return -EINVAL;
157
158	/* Set up this CPU's id, and pointer back to the lguest struct. */
159	cpu->id = id;
160	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
161	cpu->lg->nr_cpus++;
162
163	/* Each CPU has a timer it can set. */
164	init_clockdev(cpu);
165
166	/* We need a complete page for the Guest registers: they are accessible
167	 * to the Guest and we can only grant it access to whole pages. */
168	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
169	if (!cpu->regs_page)
170		return -ENOMEM;
171
172	/* We actually put the registers at the bottom of the page. */
173	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
174
175	/* Now we initialize the Guest's registers, handing it the start
176	 * address. */
177	lguest_arch_setup_regs(cpu, start_ip);
178
179	/* We keep a pointer to the Launcher task (ie. current task) for when
180	 * other Guests want to wake this one (eg. console input). */
181	cpu->tsk = current;
182
183	/* We need to keep a pointer to the Launcher's memory map, because if
184	 * the Launcher dies we need to clean it up.  If we don't keep a
185	 * reference, it is destroyed before close() is called. */
186	cpu->mm = get_task_mm(cpu->tsk);
187
188	/* We remember which CPU's pages this Guest used last, for optimization
189	 * when the same Guest runs on the same CPU twice. */
190	cpu->last_pages = NULL;
191
192	/* No error == success. */
193	return 0;
194}
195
196/*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
197 * values (in addition to the LHREQ_INITIALIZE value).  These are:
198 *
199 * base: The start of the Guest-physical memory inside the Launcher memory.
200 *
201 * pfnlimit: The highest (Guest-physical) page number the Guest should be
202 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
203 * this to ensure the Guest can only reach its own memory.
204 *
205 * start: The first instruction to execute ("eip" in x86-speak).
206 */
207static int initialize(struct file *file, const unsigned long __user *input)
208{
209	/* "struct lguest" contains everything we (the Host) know about a
210	 * Guest. */
211	struct lguest *lg;
212	int err;
213	unsigned long args[3];
214
215	/* We grab the Big Lguest lock, which protects against multiple
216	 * simultaneous initializations. */
217	mutex_lock(&lguest_lock);
218	/* You can't initialize twice!  Close the device and start again... */
219	if (file->private_data) {
220		err = -EBUSY;
221		goto unlock;
222	}
223
224	if (copy_from_user(args, input, sizeof(args)) != 0) {
225		err = -EFAULT;
226		goto unlock;
227	}
228
229	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
230	if (!lg) {
231		err = -ENOMEM;
232		goto unlock;
233	}
234
235	lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
236	if (!lg->eventfds) {
237		err = -ENOMEM;
238		goto free_lg;
239	}
240	lg->eventfds->num = 0;
241
242	/* Populate the easy fields of our "struct lguest" */
243	lg->mem_base = (void __user *)args[0];
244	lg->pfn_limit = args[1];
245
246	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
247	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
248	if (err)
249		goto free_eventfds;
250
251	/* Initialize the Guest's shadow page tables, using the toplevel
252	 * address the Launcher gave us.  This allocates memory, so can fail. */
253	err = init_guest_pagetable(lg);
254	if (err)
255		goto free_regs;
256
257	/* We keep our "struct lguest" in the file's private_data. */
258	file->private_data = lg;
259
260	mutex_unlock(&lguest_lock);
261
262	/* And because this is a write() call, we return the length used. */
263	return sizeof(args);
264
265free_regs:
266	/* FIXME: This should be in free_vcpu */
267	free_page(lg->cpus[0].regs_page);
268free_eventfds:
269	kfree(lg->eventfds);
270free_lg:
271	kfree(lg);
272unlock:
273	mutex_unlock(&lguest_lock);
274	return err;
275}
276
277/*L:010 The first operation the Launcher does must be a write.  All writes
278 * start with an unsigned long number: for the first write this must be
279 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
280 * writes of other values to send interrupts.
281 *
282 * Note that we overload the "offset" in the /dev/lguest file to indicate what
283 * CPU number we're dealing with.  Currently this is always 0, since we only
284 * support uniprocessor Guests, but you can see the beginnings of SMP support
285 * here. */
286static ssize_t write(struct file *file, const char __user *in,
287		     size_t size, loff_t *off)
288{
289	/* Once the Guest is initialized, we hold the "struct lguest" in the
290	 * file private data. */
291	struct lguest *lg = file->private_data;
292	const unsigned long __user *input = (const unsigned long __user *)in;
293	unsigned long req;
294	struct lg_cpu *uninitialized_var(cpu);
295	unsigned int cpu_id = *off;
296
297	/* The first value tells us what this request is. */
298	if (get_user(req, input) != 0)
299		return -EFAULT;
300	input++;
301
302	/* If you haven't initialized, you must do that first. */
303	if (req != LHREQ_INITIALIZE) {
304		if (!lg || (cpu_id >= lg->nr_cpus))
305			return -EINVAL;
306		cpu = &lg->cpus[cpu_id];
307
308		/* Once the Guest is dead, you can only read() why it died. */
309		if (lg->dead)
310			return -ENOENT;
311	}
312
313	switch (req) {
314	case LHREQ_INITIALIZE:
315		return initialize(file, input);
316	case LHREQ_IRQ:
317		return user_send_irq(cpu, input);
318	case LHREQ_EVENTFD:
319		return attach_eventfd(lg, input);
320	default:
321		return -EINVAL;
322	}
323}
324
325/*L:060 The final piece of interface code is the close() routine.  It reverses
326 * everything done in initialize().  This is usually called because the
327 * Launcher exited.
328 *
329 * Note that the close routine returns 0 or a negative error number: it can't
330 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
331 * letting them do it. :*/
332static int close(struct inode *inode, struct file *file)
333{
334	struct lguest *lg = file->private_data;
335	unsigned int i;
336
337	/* If we never successfully initialized, there's nothing to clean up */
338	if (!lg)
339		return 0;
340
341	/* We need the big lock, to protect from inter-guest I/O and other
342	 * Launchers initializing guests. */
343	mutex_lock(&lguest_lock);
344
345	/* Free up the shadow page tables for the Guest. */
346	free_guest_pagetable(lg);
347
348	for (i = 0; i < lg->nr_cpus; i++) {
349		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
350		hrtimer_cancel(&lg->cpus[i].hrt);
351		/* We can free up the register page we allocated. */
352		free_page(lg->cpus[i].regs_page);
353		/* Now all the memory cleanups are done, it's safe to release
354		 * the Launcher's memory management structure. */
355		mmput(lg->cpus[i].mm);
356	}
357
358	/* Release any eventfds they registered. */
359	for (i = 0; i < lg->eventfds->num; i++)
360		eventfd_ctx_put(lg->eventfds->map[i].event);
361	kfree(lg->eventfds);
362
363	/* If lg->dead doesn't contain an error code it will be NULL or a
364	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
365	if (!IS_ERR(lg->dead))
366		kfree(lg->dead);
367	/* Free the memory allocated to the lguest_struct */
368	kfree(lg);
369	/* Release lock and exit. */
370	mutex_unlock(&lguest_lock);
371
372	return 0;
373}
374
375/*L:000
376 * Welcome to our journey through the Launcher!
377 *
378 * The Launcher is the Host userspace program which sets up, runs and services
379 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
380 * doing things are inaccurate: the Launcher does all the device handling for
381 * the Guest, but the Guest can't know that.
382 *
383 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
384 * shall see more of that later.
385 *
386 * We begin our understanding with the Host kernel interface which the Launcher
387 * uses: reading and writing a character device called /dev/lguest.  All the
388 * work happens in the read(), write() and close() routines: */
389static struct file_operations lguest_fops = {
390	.owner	 = THIS_MODULE,
391	.release = close,
392	.write	 = write,
393	.read	 = read,
394};
395
396/* This is a textbook example of a "misc" character device.  Populate a "struct
397 * miscdevice" and register it with misc_register(). */
398static struct miscdevice lguest_dev = {
399	.minor	= MISC_DYNAMIC_MINOR,
400	.name	= "lguest",
401	.fops	= &lguest_fops,
402};
403
404int __init lguest_device_init(void)
405{
406	return misc_register(&lguest_dev);
407}
408
409void __exit lguest_device_remove(void)
410{
411	misc_deregister(&lguest_dev);
412}
413