1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/bio.h>
16#include <linux/blkdev.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/crypto.h>
20#include <linux/workqueue.h>
21#include <linux/backing-dev.h>
22#include <linux/atomic.h>
23#include <linux/scatterlist.h>
24#include <asm/page.h>
25#include <asm/unaligned.h>
26#include <crypto/hash.h>
27#include <crypto/md5.h>
28#include <crypto/algapi.h>
29
30#include <linux/device-mapper.h>
31
32#define DM_MSG_PREFIX "crypt"
33
34/*
35 * context holding the current state of a multi-part conversion
36 */
37struct convert_context {
38	struct completion restart;
39	struct bio *bio_in;
40	struct bio *bio_out;
41	struct bvec_iter iter_in;
42	struct bvec_iter iter_out;
43	sector_t cc_sector;
44	atomic_t cc_pending;
45	struct ablkcipher_request *req;
46};
47
48/*
49 * per bio private data
50 */
51struct dm_crypt_io {
52	struct crypt_config *cc;
53	struct bio *base_bio;
54	struct work_struct work;
55
56	struct convert_context ctx;
57
58	atomic_t io_pending;
59	int error;
60	sector_t sector;
61	struct dm_crypt_io *base_io;
62} CRYPTO_MINALIGN_ATTR;
63
64struct dm_crypt_request {
65	struct convert_context *ctx;
66	struct scatterlist sg_in;
67	struct scatterlist sg_out;
68	sector_t iv_sector;
69};
70
71struct crypt_config;
72
73struct crypt_iv_operations {
74	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75		   const char *opts);
76	void (*dtr)(struct crypt_config *cc);
77	int (*init)(struct crypt_config *cc);
78	int (*wipe)(struct crypt_config *cc);
79	int (*generator)(struct crypt_config *cc, u8 *iv,
80			 struct dm_crypt_request *dmreq);
81	int (*post)(struct crypt_config *cc, u8 *iv,
82		    struct dm_crypt_request *dmreq);
83};
84
85struct iv_essiv_private {
86	struct crypto_hash *hash_tfm;
87	u8 *salt;
88};
89
90struct iv_benbi_private {
91	int shift;
92};
93
94#define LMK_SEED_SIZE 64 /* hash + 0 */
95struct iv_lmk_private {
96	struct crypto_shash *hash_tfm;
97	u8 *seed;
98};
99
100#define TCW_WHITENING_SIZE 16
101struct iv_tcw_private {
102	struct crypto_shash *crc32_tfm;
103	u8 *iv_seed;
104	u8 *whitening;
105};
106
107/*
108 * Crypt: maps a linear range of a block device
109 * and encrypts / decrypts at the same time.
110 */
111enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112
113/*
114 * The fields in here must be read only after initialization.
115 */
116struct crypt_config {
117	struct dm_dev *dev;
118	sector_t start;
119
120	/*
121	 * pool for per bio private data, crypto requests and
122	 * encryption requeusts/buffer pages
123	 */
124	mempool_t *io_pool;
125	mempool_t *req_pool;
126	mempool_t *page_pool;
127	struct bio_set *bs;
128
129	struct workqueue_struct *io_queue;
130	struct workqueue_struct *crypt_queue;
131
132	char *cipher;
133	char *cipher_string;
134
135	struct crypt_iv_operations *iv_gen_ops;
136	union {
137		struct iv_essiv_private essiv;
138		struct iv_benbi_private benbi;
139		struct iv_lmk_private lmk;
140		struct iv_tcw_private tcw;
141	} iv_gen_private;
142	sector_t iv_offset;
143	unsigned int iv_size;
144
145	/* ESSIV: struct crypto_cipher *essiv_tfm */
146	void *iv_private;
147	struct crypto_ablkcipher **tfms;
148	unsigned tfms_count;
149
150	/*
151	 * Layout of each crypto request:
152	 *
153	 *   struct ablkcipher_request
154	 *      context
155	 *      padding
156	 *   struct dm_crypt_request
157	 *      padding
158	 *   IV
159	 *
160	 * The padding is added so that dm_crypt_request and the IV are
161	 * correctly aligned.
162	 */
163	unsigned int dmreq_start;
164
165	unsigned int per_bio_data_size;
166
167	unsigned long flags;
168	unsigned int key_size;
169	unsigned int key_parts;      /* independent parts in key buffer */
170	unsigned int key_extra_size; /* additional keys length */
171	u8 key[0];
172};
173
174#define MIN_IOS        16
175#define MIN_POOL_PAGES 32
176
177static struct kmem_cache *_crypt_io_pool;
178
179static void clone_init(struct dm_crypt_io *, struct bio *);
180static void kcryptd_queue_crypt(struct dm_crypt_io *io);
181static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
182
183/*
184 * Use this to access cipher attributes that are the same for each CPU.
185 */
186static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
187{
188	return cc->tfms[0];
189}
190
191/*
192 * Different IV generation algorithms:
193 *
194 * plain: the initial vector is the 32-bit little-endian version of the sector
195 *        number, padded with zeros if necessary.
196 *
197 * plain64: the initial vector is the 64-bit little-endian version of the sector
198 *        number, padded with zeros if necessary.
199 *
200 * essiv: "encrypted sector|salt initial vector", the sector number is
201 *        encrypted with the bulk cipher using a salt as key. The salt
202 *        should be derived from the bulk cipher's key via hashing.
203 *
204 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
205 *        (needed for LRW-32-AES and possible other narrow block modes)
206 *
207 * null: the initial vector is always zero.  Provides compatibility with
208 *       obsolete loop_fish2 devices.  Do not use for new devices.
209 *
210 * lmk:  Compatible implementation of the block chaining mode used
211 *       by the Loop-AES block device encryption system
212 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
213 *       It operates on full 512 byte sectors and uses CBC
214 *       with an IV derived from the sector number, the data and
215 *       optionally extra IV seed.
216 *       This means that after decryption the first block
217 *       of sector must be tweaked according to decrypted data.
218 *       Loop-AES can use three encryption schemes:
219 *         version 1: is plain aes-cbc mode
220 *         version 2: uses 64 multikey scheme with lmk IV generator
221 *         version 3: the same as version 2 with additional IV seed
222 *                   (it uses 65 keys, last key is used as IV seed)
223 *
224 * tcw:  Compatible implementation of the block chaining mode used
225 *       by the TrueCrypt device encryption system (prior to version 4.1).
226 *       For more info see: http://www.truecrypt.org
227 *       It operates on full 512 byte sectors and uses CBC
228 *       with an IV derived from initial key and the sector number.
229 *       In addition, whitening value is applied on every sector, whitening
230 *       is calculated from initial key, sector number and mixed using CRC32.
231 *       Note that this encryption scheme is vulnerable to watermarking attacks
232 *       and should be used for old compatible containers access only.
233 *
234 * plumb: unimplemented, see:
235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 */
237
238static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239			      struct dm_crypt_request *dmreq)
240{
241	memset(iv, 0, cc->iv_size);
242	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243
244	return 0;
245}
246
247static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248				struct dm_crypt_request *dmreq)
249{
250	memset(iv, 0, cc->iv_size);
251	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
252
253	return 0;
254}
255
256/* Initialise ESSIV - compute salt but no local memory allocations */
257static int crypt_iv_essiv_init(struct crypt_config *cc)
258{
259	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260	struct hash_desc desc;
261	struct scatterlist sg;
262	struct crypto_cipher *essiv_tfm;
263	int err;
264
265	sg_init_one(&sg, cc->key, cc->key_size);
266	desc.tfm = essiv->hash_tfm;
267	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268
269	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270	if (err)
271		return err;
272
273	essiv_tfm = cc->iv_private;
274
275	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276			    crypto_hash_digestsize(essiv->hash_tfm));
277	if (err)
278		return err;
279
280	return 0;
281}
282
283/* Wipe salt and reset key derived from volume key */
284static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285{
286	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288	struct crypto_cipher *essiv_tfm;
289	int r, err = 0;
290
291	memset(essiv->salt, 0, salt_size);
292
293	essiv_tfm = cc->iv_private;
294	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
295	if (r)
296		err = r;
297
298	return err;
299}
300
301/* Set up per cpu cipher state */
302static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
303					     struct dm_target *ti,
304					     u8 *salt, unsigned saltsize)
305{
306	struct crypto_cipher *essiv_tfm;
307	int err;
308
309	/* Setup the essiv_tfm with the given salt */
310	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
311	if (IS_ERR(essiv_tfm)) {
312		ti->error = "Error allocating crypto tfm for ESSIV";
313		return essiv_tfm;
314	}
315
316	if (crypto_cipher_blocksize(essiv_tfm) !=
317	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
318		ti->error = "Block size of ESSIV cipher does "
319			    "not match IV size of block cipher";
320		crypto_free_cipher(essiv_tfm);
321		return ERR_PTR(-EINVAL);
322	}
323
324	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
325	if (err) {
326		ti->error = "Failed to set key for ESSIV cipher";
327		crypto_free_cipher(essiv_tfm);
328		return ERR_PTR(err);
329	}
330
331	return essiv_tfm;
332}
333
334static void crypt_iv_essiv_dtr(struct crypt_config *cc)
335{
336	struct crypto_cipher *essiv_tfm;
337	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338
339	crypto_free_hash(essiv->hash_tfm);
340	essiv->hash_tfm = NULL;
341
342	kzfree(essiv->salt);
343	essiv->salt = NULL;
344
345	essiv_tfm = cc->iv_private;
346
347	if (essiv_tfm)
348		crypto_free_cipher(essiv_tfm);
349
350	cc->iv_private = NULL;
351}
352
353static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
354			      const char *opts)
355{
356	struct crypto_cipher *essiv_tfm = NULL;
357	struct crypto_hash *hash_tfm = NULL;
358	u8 *salt = NULL;
359	int err;
360
361	if (!opts) {
362		ti->error = "Digest algorithm missing for ESSIV mode";
363		return -EINVAL;
364	}
365
366	/* Allocate hash algorithm */
367	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
368	if (IS_ERR(hash_tfm)) {
369		ti->error = "Error initializing ESSIV hash";
370		err = PTR_ERR(hash_tfm);
371		goto bad;
372	}
373
374	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
375	if (!salt) {
376		ti->error = "Error kmallocing salt storage in ESSIV";
377		err = -ENOMEM;
378		goto bad;
379	}
380
381	cc->iv_gen_private.essiv.salt = salt;
382	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
383
384	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
385				crypto_hash_digestsize(hash_tfm));
386	if (IS_ERR(essiv_tfm)) {
387		crypt_iv_essiv_dtr(cc);
388		return PTR_ERR(essiv_tfm);
389	}
390	cc->iv_private = essiv_tfm;
391
392	return 0;
393
394bad:
395	if (hash_tfm && !IS_ERR(hash_tfm))
396		crypto_free_hash(hash_tfm);
397	kfree(salt);
398	return err;
399}
400
401static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
402			      struct dm_crypt_request *dmreq)
403{
404	struct crypto_cipher *essiv_tfm = cc->iv_private;
405
406	memset(iv, 0, cc->iv_size);
407	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
408	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
409
410	return 0;
411}
412
413static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
414			      const char *opts)
415{
416	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
417	int log = ilog2(bs);
418
419	/* we need to calculate how far we must shift the sector count
420	 * to get the cipher block count, we use this shift in _gen */
421
422	if (1 << log != bs) {
423		ti->error = "cypher blocksize is not a power of 2";
424		return -EINVAL;
425	}
426
427	if (log > 9) {
428		ti->error = "cypher blocksize is > 512";
429		return -EINVAL;
430	}
431
432	cc->iv_gen_private.benbi.shift = 9 - log;
433
434	return 0;
435}
436
437static void crypt_iv_benbi_dtr(struct crypt_config *cc)
438{
439}
440
441static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
442			      struct dm_crypt_request *dmreq)
443{
444	__be64 val;
445
446	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
447
448	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
449	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
450
451	return 0;
452}
453
454static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
455			     struct dm_crypt_request *dmreq)
456{
457	memset(iv, 0, cc->iv_size);
458
459	return 0;
460}
461
462static void crypt_iv_lmk_dtr(struct crypt_config *cc)
463{
464	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
465
466	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
467		crypto_free_shash(lmk->hash_tfm);
468	lmk->hash_tfm = NULL;
469
470	kzfree(lmk->seed);
471	lmk->seed = NULL;
472}
473
474static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
475			    const char *opts)
476{
477	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
478
479	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
480	if (IS_ERR(lmk->hash_tfm)) {
481		ti->error = "Error initializing LMK hash";
482		return PTR_ERR(lmk->hash_tfm);
483	}
484
485	/* No seed in LMK version 2 */
486	if (cc->key_parts == cc->tfms_count) {
487		lmk->seed = NULL;
488		return 0;
489	}
490
491	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
492	if (!lmk->seed) {
493		crypt_iv_lmk_dtr(cc);
494		ti->error = "Error kmallocing seed storage in LMK";
495		return -ENOMEM;
496	}
497
498	return 0;
499}
500
501static int crypt_iv_lmk_init(struct crypt_config *cc)
502{
503	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
504	int subkey_size = cc->key_size / cc->key_parts;
505
506	/* LMK seed is on the position of LMK_KEYS + 1 key */
507	if (lmk->seed)
508		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
509		       crypto_shash_digestsize(lmk->hash_tfm));
510
511	return 0;
512}
513
514static int crypt_iv_lmk_wipe(struct crypt_config *cc)
515{
516	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
517
518	if (lmk->seed)
519		memset(lmk->seed, 0, LMK_SEED_SIZE);
520
521	return 0;
522}
523
524static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
525			    struct dm_crypt_request *dmreq,
526			    u8 *data)
527{
528	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
530	struct md5_state md5state;
531	__le32 buf[4];
532	int i, r;
533
534	desc->tfm = lmk->hash_tfm;
535	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
536
537	r = crypto_shash_init(desc);
538	if (r)
539		return r;
540
541	if (lmk->seed) {
542		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
543		if (r)
544			return r;
545	}
546
547	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
548	r = crypto_shash_update(desc, data + 16, 16 * 31);
549	if (r)
550		return r;
551
552	/* Sector is cropped to 56 bits here */
553	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
554	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
555	buf[2] = cpu_to_le32(4024);
556	buf[3] = 0;
557	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
558	if (r)
559		return r;
560
561	/* No MD5 padding here */
562	r = crypto_shash_export(desc, &md5state);
563	if (r)
564		return r;
565
566	for (i = 0; i < MD5_HASH_WORDS; i++)
567		__cpu_to_le32s(&md5state.hash[i]);
568	memcpy(iv, &md5state.hash, cc->iv_size);
569
570	return 0;
571}
572
573static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
574			    struct dm_crypt_request *dmreq)
575{
576	u8 *src;
577	int r = 0;
578
579	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
580		src = kmap_atomic(sg_page(&dmreq->sg_in));
581		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
582		kunmap_atomic(src);
583	} else
584		memset(iv, 0, cc->iv_size);
585
586	return r;
587}
588
589static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
590			     struct dm_crypt_request *dmreq)
591{
592	u8 *dst;
593	int r;
594
595	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
596		return 0;
597
598	dst = kmap_atomic(sg_page(&dmreq->sg_out));
599	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
600
601	/* Tweak the first block of plaintext sector */
602	if (!r)
603		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
604
605	kunmap_atomic(dst);
606	return r;
607}
608
609static void crypt_iv_tcw_dtr(struct crypt_config *cc)
610{
611	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
612
613	kzfree(tcw->iv_seed);
614	tcw->iv_seed = NULL;
615	kzfree(tcw->whitening);
616	tcw->whitening = NULL;
617
618	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
619		crypto_free_shash(tcw->crc32_tfm);
620	tcw->crc32_tfm = NULL;
621}
622
623static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
624			    const char *opts)
625{
626	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
627
628	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
629		ti->error = "Wrong key size for TCW";
630		return -EINVAL;
631	}
632
633	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
634	if (IS_ERR(tcw->crc32_tfm)) {
635		ti->error = "Error initializing CRC32 in TCW";
636		return PTR_ERR(tcw->crc32_tfm);
637	}
638
639	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
640	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
641	if (!tcw->iv_seed || !tcw->whitening) {
642		crypt_iv_tcw_dtr(cc);
643		ti->error = "Error allocating seed storage in TCW";
644		return -ENOMEM;
645	}
646
647	return 0;
648}
649
650static int crypt_iv_tcw_init(struct crypt_config *cc)
651{
652	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
653	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
654
655	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
656	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
657	       TCW_WHITENING_SIZE);
658
659	return 0;
660}
661
662static int crypt_iv_tcw_wipe(struct crypt_config *cc)
663{
664	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665
666	memset(tcw->iv_seed, 0, cc->iv_size);
667	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
668
669	return 0;
670}
671
672static int crypt_iv_tcw_whitening(struct crypt_config *cc,
673				  struct dm_crypt_request *dmreq,
674				  u8 *data)
675{
676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
678	u8 buf[TCW_WHITENING_SIZE];
679	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
680	int i, r;
681
682	/* xor whitening with sector number */
683	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
684	crypto_xor(buf, (u8 *)&sector, 8);
685	crypto_xor(&buf[8], (u8 *)&sector, 8);
686
687	/* calculate crc32 for every 32bit part and xor it */
688	desc->tfm = tcw->crc32_tfm;
689	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
690	for (i = 0; i < 4; i++) {
691		r = crypto_shash_init(desc);
692		if (r)
693			goto out;
694		r = crypto_shash_update(desc, &buf[i * 4], 4);
695		if (r)
696			goto out;
697		r = crypto_shash_final(desc, &buf[i * 4]);
698		if (r)
699			goto out;
700	}
701	crypto_xor(&buf[0], &buf[12], 4);
702	crypto_xor(&buf[4], &buf[8], 4);
703
704	/* apply whitening (8 bytes) to whole sector */
705	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
706		crypto_xor(data + i * 8, buf, 8);
707out:
708	memset(buf, 0, sizeof(buf));
709	return r;
710}
711
712static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
713			    struct dm_crypt_request *dmreq)
714{
715	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
716	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
717	u8 *src;
718	int r = 0;
719
720	/* Remove whitening from ciphertext */
721	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
722		src = kmap_atomic(sg_page(&dmreq->sg_in));
723		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
724		kunmap_atomic(src);
725	}
726
727	/* Calculate IV */
728	memcpy(iv, tcw->iv_seed, cc->iv_size);
729	crypto_xor(iv, (u8 *)&sector, 8);
730	if (cc->iv_size > 8)
731		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
732
733	return r;
734}
735
736static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
737			     struct dm_crypt_request *dmreq)
738{
739	u8 *dst;
740	int r;
741
742	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
743		return 0;
744
745	/* Apply whitening on ciphertext */
746	dst = kmap_atomic(sg_page(&dmreq->sg_out));
747	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
748	kunmap_atomic(dst);
749
750	return r;
751}
752
753static struct crypt_iv_operations crypt_iv_plain_ops = {
754	.generator = crypt_iv_plain_gen
755};
756
757static struct crypt_iv_operations crypt_iv_plain64_ops = {
758	.generator = crypt_iv_plain64_gen
759};
760
761static struct crypt_iv_operations crypt_iv_essiv_ops = {
762	.ctr       = crypt_iv_essiv_ctr,
763	.dtr       = crypt_iv_essiv_dtr,
764	.init      = crypt_iv_essiv_init,
765	.wipe      = crypt_iv_essiv_wipe,
766	.generator = crypt_iv_essiv_gen
767};
768
769static struct crypt_iv_operations crypt_iv_benbi_ops = {
770	.ctr	   = crypt_iv_benbi_ctr,
771	.dtr	   = crypt_iv_benbi_dtr,
772	.generator = crypt_iv_benbi_gen
773};
774
775static struct crypt_iv_operations crypt_iv_null_ops = {
776	.generator = crypt_iv_null_gen
777};
778
779static struct crypt_iv_operations crypt_iv_lmk_ops = {
780	.ctr	   = crypt_iv_lmk_ctr,
781	.dtr	   = crypt_iv_lmk_dtr,
782	.init	   = crypt_iv_lmk_init,
783	.wipe	   = crypt_iv_lmk_wipe,
784	.generator = crypt_iv_lmk_gen,
785	.post	   = crypt_iv_lmk_post
786};
787
788static struct crypt_iv_operations crypt_iv_tcw_ops = {
789	.ctr	   = crypt_iv_tcw_ctr,
790	.dtr	   = crypt_iv_tcw_dtr,
791	.init	   = crypt_iv_tcw_init,
792	.wipe	   = crypt_iv_tcw_wipe,
793	.generator = crypt_iv_tcw_gen,
794	.post	   = crypt_iv_tcw_post
795};
796
797static void crypt_convert_init(struct crypt_config *cc,
798			       struct convert_context *ctx,
799			       struct bio *bio_out, struct bio *bio_in,
800			       sector_t sector)
801{
802	ctx->bio_in = bio_in;
803	ctx->bio_out = bio_out;
804	if (bio_in)
805		ctx->iter_in = bio_in->bi_iter;
806	if (bio_out)
807		ctx->iter_out = bio_out->bi_iter;
808	ctx->cc_sector = sector + cc->iv_offset;
809	init_completion(&ctx->restart);
810}
811
812static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
813					     struct ablkcipher_request *req)
814{
815	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
816}
817
818static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
819					       struct dm_crypt_request *dmreq)
820{
821	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
822}
823
824static u8 *iv_of_dmreq(struct crypt_config *cc,
825		       struct dm_crypt_request *dmreq)
826{
827	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
828		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
829}
830
831static int crypt_convert_block(struct crypt_config *cc,
832			       struct convert_context *ctx,
833			       struct ablkcipher_request *req)
834{
835	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
836	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
837	struct dm_crypt_request *dmreq;
838	u8 *iv;
839	int r;
840
841	dmreq = dmreq_of_req(cc, req);
842	iv = iv_of_dmreq(cc, dmreq);
843
844	dmreq->iv_sector = ctx->cc_sector;
845	dmreq->ctx = ctx;
846	sg_init_table(&dmreq->sg_in, 1);
847	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
848		    bv_in.bv_offset);
849
850	sg_init_table(&dmreq->sg_out, 1);
851	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
852		    bv_out.bv_offset);
853
854	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
855	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
856
857	if (cc->iv_gen_ops) {
858		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
859		if (r < 0)
860			return r;
861	}
862
863	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
864				     1 << SECTOR_SHIFT, iv);
865
866	if (bio_data_dir(ctx->bio_in) == WRITE)
867		r = crypto_ablkcipher_encrypt(req);
868	else
869		r = crypto_ablkcipher_decrypt(req);
870
871	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
872		r = cc->iv_gen_ops->post(cc, iv, dmreq);
873
874	return r;
875}
876
877static void kcryptd_async_done(struct crypto_async_request *async_req,
878			       int error);
879
880static void crypt_alloc_req(struct crypt_config *cc,
881			    struct convert_context *ctx)
882{
883	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
884
885	if (!ctx->req)
886		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
887
888	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
889	ablkcipher_request_set_callback(ctx->req,
890	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
891	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
892}
893
894static void crypt_free_req(struct crypt_config *cc,
895			   struct ablkcipher_request *req, struct bio *base_bio)
896{
897	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
898
899	if ((struct ablkcipher_request *)(io + 1) != req)
900		mempool_free(req, cc->req_pool);
901}
902
903/*
904 * Encrypt / decrypt data from one bio to another one (can be the same one)
905 */
906static int crypt_convert(struct crypt_config *cc,
907			 struct convert_context *ctx)
908{
909	int r;
910
911	atomic_set(&ctx->cc_pending, 1);
912
913	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
914
915		crypt_alloc_req(cc, ctx);
916
917		atomic_inc(&ctx->cc_pending);
918
919		r = crypt_convert_block(cc, ctx, ctx->req);
920
921		switch (r) {
922		/* async */
923		case -EBUSY:
924			wait_for_completion(&ctx->restart);
925			reinit_completion(&ctx->restart);
926			/* fall through*/
927		case -EINPROGRESS:
928			ctx->req = NULL;
929			ctx->cc_sector++;
930			continue;
931
932		/* sync */
933		case 0:
934			atomic_dec(&ctx->cc_pending);
935			ctx->cc_sector++;
936			cond_resched();
937			continue;
938
939		/* error */
940		default:
941			atomic_dec(&ctx->cc_pending);
942			return r;
943		}
944	}
945
946	return 0;
947}
948
949/*
950 * Generate a new unfragmented bio with the given size
951 * This should never violate the device limitations
952 * May return a smaller bio when running out of pages, indicated by
953 * *out_of_pages set to 1.
954 */
955static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
956				      unsigned *out_of_pages)
957{
958	struct crypt_config *cc = io->cc;
959	struct bio *clone;
960	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
961	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
962	unsigned i, len;
963	struct page *page;
964
965	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
966	if (!clone)
967		return NULL;
968
969	clone_init(io, clone);
970	*out_of_pages = 0;
971
972	for (i = 0; i < nr_iovecs; i++) {
973		page = mempool_alloc(cc->page_pool, gfp_mask);
974		if (!page) {
975			*out_of_pages = 1;
976			break;
977		}
978
979		/*
980		 * If additional pages cannot be allocated without waiting,
981		 * return a partially-allocated bio.  The caller will then try
982		 * to allocate more bios while submitting this partial bio.
983		 */
984		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
985
986		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
987
988		if (!bio_add_page(clone, page, len, 0)) {
989			mempool_free(page, cc->page_pool);
990			break;
991		}
992
993		size -= len;
994	}
995
996	if (!clone->bi_iter.bi_size) {
997		bio_put(clone);
998		return NULL;
999	}
1000
1001	return clone;
1002}
1003
1004static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1005{
1006	unsigned int i;
1007	struct bio_vec *bv;
1008
1009	bio_for_each_segment_all(bv, clone, i) {
1010		BUG_ON(!bv->bv_page);
1011		mempool_free(bv->bv_page, cc->page_pool);
1012		bv->bv_page = NULL;
1013	}
1014}
1015
1016static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1017			  struct bio *bio, sector_t sector)
1018{
1019	io->cc = cc;
1020	io->base_bio = bio;
1021	io->sector = sector;
1022	io->error = 0;
1023	io->base_io = NULL;
1024	io->ctx.req = NULL;
1025	atomic_set(&io->io_pending, 0);
1026}
1027
1028static void crypt_inc_pending(struct dm_crypt_io *io)
1029{
1030	atomic_inc(&io->io_pending);
1031}
1032
1033/*
1034 * One of the bios was finished. Check for completion of
1035 * the whole request and correctly clean up the buffer.
1036 * If base_io is set, wait for the last fragment to complete.
1037 */
1038static void crypt_dec_pending(struct dm_crypt_io *io)
1039{
1040	struct crypt_config *cc = io->cc;
1041	struct bio *base_bio = io->base_bio;
1042	struct dm_crypt_io *base_io = io->base_io;
1043	int error = io->error;
1044
1045	if (!atomic_dec_and_test(&io->io_pending))
1046		return;
1047
1048	if (io->ctx.req)
1049		crypt_free_req(cc, io->ctx.req, base_bio);
1050	if (io != dm_per_bio_data(base_bio, cc->per_bio_data_size))
1051		mempool_free(io, cc->io_pool);
1052
1053	if (likely(!base_io))
1054		bio_endio(base_bio, error);
1055	else {
1056		if (error && !base_io->error)
1057			base_io->error = error;
1058		crypt_dec_pending(base_io);
1059	}
1060}
1061
1062/*
1063 * kcryptd/kcryptd_io:
1064 *
1065 * Needed because it would be very unwise to do decryption in an
1066 * interrupt context.
1067 *
1068 * kcryptd performs the actual encryption or decryption.
1069 *
1070 * kcryptd_io performs the IO submission.
1071 *
1072 * They must be separated as otherwise the final stages could be
1073 * starved by new requests which can block in the first stages due
1074 * to memory allocation.
1075 *
1076 * The work is done per CPU global for all dm-crypt instances.
1077 * They should not depend on each other and do not block.
1078 */
1079static void crypt_endio(struct bio *clone, int error)
1080{
1081	struct dm_crypt_io *io = clone->bi_private;
1082	struct crypt_config *cc = io->cc;
1083	unsigned rw = bio_data_dir(clone);
1084
1085	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1086		error = -EIO;
1087
1088	/*
1089	 * free the processed pages
1090	 */
1091	if (rw == WRITE)
1092		crypt_free_buffer_pages(cc, clone);
1093
1094	bio_put(clone);
1095
1096	if (rw == READ && !error) {
1097		kcryptd_queue_crypt(io);
1098		return;
1099	}
1100
1101	if (unlikely(error))
1102		io->error = error;
1103
1104	crypt_dec_pending(io);
1105}
1106
1107static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1108{
1109	struct crypt_config *cc = io->cc;
1110
1111	clone->bi_private = io;
1112	clone->bi_end_io  = crypt_endio;
1113	clone->bi_bdev    = cc->dev->bdev;
1114	clone->bi_rw      = io->base_bio->bi_rw;
1115}
1116
1117static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1118{
1119	struct crypt_config *cc = io->cc;
1120	struct bio *base_bio = io->base_bio;
1121	struct bio *clone;
1122
1123	/*
1124	 * The block layer might modify the bvec array, so always
1125	 * copy the required bvecs because we need the original
1126	 * one in order to decrypt the whole bio data *afterwards*.
1127	 */
1128	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1129	if (!clone)
1130		return 1;
1131
1132	crypt_inc_pending(io);
1133
1134	clone_init(io, clone);
1135	clone->bi_iter.bi_sector = cc->start + io->sector;
1136
1137	generic_make_request(clone);
1138	return 0;
1139}
1140
1141static void kcryptd_io_write(struct dm_crypt_io *io)
1142{
1143	struct bio *clone = io->ctx.bio_out;
1144	generic_make_request(clone);
1145}
1146
1147static void kcryptd_io(struct work_struct *work)
1148{
1149	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1150
1151	if (bio_data_dir(io->base_bio) == READ) {
1152		crypt_inc_pending(io);
1153		if (kcryptd_io_read(io, GFP_NOIO))
1154			io->error = -ENOMEM;
1155		crypt_dec_pending(io);
1156	} else
1157		kcryptd_io_write(io);
1158}
1159
1160static void kcryptd_queue_io(struct dm_crypt_io *io)
1161{
1162	struct crypt_config *cc = io->cc;
1163
1164	INIT_WORK(&io->work, kcryptd_io);
1165	queue_work(cc->io_queue, &io->work);
1166}
1167
1168static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1169{
1170	struct bio *clone = io->ctx.bio_out;
1171	struct crypt_config *cc = io->cc;
1172
1173	if (unlikely(io->error < 0)) {
1174		crypt_free_buffer_pages(cc, clone);
1175		bio_put(clone);
1176		crypt_dec_pending(io);
1177		return;
1178	}
1179
1180	/* crypt_convert should have filled the clone bio */
1181	BUG_ON(io->ctx.iter_out.bi_size);
1182
1183	clone->bi_iter.bi_sector = cc->start + io->sector;
1184
1185	if (async)
1186		kcryptd_queue_io(io);
1187	else
1188		generic_make_request(clone);
1189}
1190
1191static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1192{
1193	struct crypt_config *cc = io->cc;
1194	struct bio *clone;
1195	struct dm_crypt_io *new_io;
1196	int crypt_finished;
1197	unsigned out_of_pages = 0;
1198	unsigned remaining = io->base_bio->bi_iter.bi_size;
1199	sector_t sector = io->sector;
1200	int r;
1201
1202	/*
1203	 * Prevent io from disappearing until this function completes.
1204	 */
1205	crypt_inc_pending(io);
1206	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1207
1208	/*
1209	 * The allocated buffers can be smaller than the whole bio,
1210	 * so repeat the whole process until all the data can be handled.
1211	 */
1212	while (remaining) {
1213		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1214		if (unlikely(!clone)) {
1215			io->error = -ENOMEM;
1216			break;
1217		}
1218
1219		io->ctx.bio_out = clone;
1220		io->ctx.iter_out = clone->bi_iter;
1221
1222		remaining -= clone->bi_iter.bi_size;
1223		sector += bio_sectors(clone);
1224
1225		crypt_inc_pending(io);
1226
1227		r = crypt_convert(cc, &io->ctx);
1228		if (r < 0)
1229			io->error = -EIO;
1230
1231		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1232
1233		/* Encryption was already finished, submit io now */
1234		if (crypt_finished) {
1235			kcryptd_crypt_write_io_submit(io, 0);
1236
1237			/*
1238			 * If there was an error, do not try next fragments.
1239			 * For async, error is processed in async handler.
1240			 */
1241			if (unlikely(r < 0))
1242				break;
1243
1244			io->sector = sector;
1245		}
1246
1247		/*
1248		 * Out of memory -> run queues
1249		 * But don't wait if split was due to the io size restriction
1250		 */
1251		if (unlikely(out_of_pages))
1252			congestion_wait(BLK_RW_ASYNC, HZ/100);
1253
1254		/*
1255		 * With async crypto it is unsafe to share the crypto context
1256		 * between fragments, so switch to a new dm_crypt_io structure.
1257		 */
1258		if (unlikely(!crypt_finished && remaining)) {
1259			new_io = mempool_alloc(cc->io_pool, GFP_NOIO);
1260			crypt_io_init(new_io, io->cc, io->base_bio, sector);
1261			crypt_inc_pending(new_io);
1262			crypt_convert_init(cc, &new_io->ctx, NULL,
1263					   io->base_bio, sector);
1264			new_io->ctx.iter_in = io->ctx.iter_in;
1265
1266			/*
1267			 * Fragments after the first use the base_io
1268			 * pending count.
1269			 */
1270			if (!io->base_io)
1271				new_io->base_io = io;
1272			else {
1273				new_io->base_io = io->base_io;
1274				crypt_inc_pending(io->base_io);
1275				crypt_dec_pending(io);
1276			}
1277
1278			io = new_io;
1279		}
1280	}
1281
1282	crypt_dec_pending(io);
1283}
1284
1285static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1286{
1287	crypt_dec_pending(io);
1288}
1289
1290static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1291{
1292	struct crypt_config *cc = io->cc;
1293	int r = 0;
1294
1295	crypt_inc_pending(io);
1296
1297	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1298			   io->sector);
1299
1300	r = crypt_convert(cc, &io->ctx);
1301	if (r < 0)
1302		io->error = -EIO;
1303
1304	if (atomic_dec_and_test(&io->ctx.cc_pending))
1305		kcryptd_crypt_read_done(io);
1306
1307	crypt_dec_pending(io);
1308}
1309
1310static void kcryptd_async_done(struct crypto_async_request *async_req,
1311			       int error)
1312{
1313	struct dm_crypt_request *dmreq = async_req->data;
1314	struct convert_context *ctx = dmreq->ctx;
1315	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1316	struct crypt_config *cc = io->cc;
1317
1318	if (error == -EINPROGRESS) {
1319		complete(&ctx->restart);
1320		return;
1321	}
1322
1323	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1324		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1325
1326	if (error < 0)
1327		io->error = -EIO;
1328
1329	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1330
1331	if (!atomic_dec_and_test(&ctx->cc_pending))
1332		return;
1333
1334	if (bio_data_dir(io->base_bio) == READ)
1335		kcryptd_crypt_read_done(io);
1336	else
1337		kcryptd_crypt_write_io_submit(io, 1);
1338}
1339
1340static void kcryptd_crypt(struct work_struct *work)
1341{
1342	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1343
1344	if (bio_data_dir(io->base_bio) == READ)
1345		kcryptd_crypt_read_convert(io);
1346	else
1347		kcryptd_crypt_write_convert(io);
1348}
1349
1350static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1351{
1352	struct crypt_config *cc = io->cc;
1353
1354	INIT_WORK(&io->work, kcryptd_crypt);
1355	queue_work(cc->crypt_queue, &io->work);
1356}
1357
1358/*
1359 * Decode key from its hex representation
1360 */
1361static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1362{
1363	char buffer[3];
1364	unsigned int i;
1365
1366	buffer[2] = '\0';
1367
1368	for (i = 0; i < size; i++) {
1369		buffer[0] = *hex++;
1370		buffer[1] = *hex++;
1371
1372		if (kstrtou8(buffer, 16, &key[i]))
1373			return -EINVAL;
1374	}
1375
1376	if (*hex != '\0')
1377		return -EINVAL;
1378
1379	return 0;
1380}
1381
1382static void crypt_free_tfms(struct crypt_config *cc)
1383{
1384	unsigned i;
1385
1386	if (!cc->tfms)
1387		return;
1388
1389	for (i = 0; i < cc->tfms_count; i++)
1390		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1391			crypto_free_ablkcipher(cc->tfms[i]);
1392			cc->tfms[i] = NULL;
1393		}
1394
1395	kfree(cc->tfms);
1396	cc->tfms = NULL;
1397}
1398
1399static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1400{
1401	unsigned i;
1402	int err;
1403
1404	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1405			   GFP_KERNEL);
1406	if (!cc->tfms)
1407		return -ENOMEM;
1408
1409	for (i = 0; i < cc->tfms_count; i++) {
1410		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1411		if (IS_ERR(cc->tfms[i])) {
1412			err = PTR_ERR(cc->tfms[i]);
1413			crypt_free_tfms(cc);
1414			return err;
1415		}
1416	}
1417
1418	return 0;
1419}
1420
1421static int crypt_setkey_allcpus(struct crypt_config *cc)
1422{
1423	unsigned subkey_size;
1424	int err = 0, i, r;
1425
1426	/* Ignore extra keys (which are used for IV etc) */
1427	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1428
1429	for (i = 0; i < cc->tfms_count; i++) {
1430		r = crypto_ablkcipher_setkey(cc->tfms[i],
1431					     cc->key + (i * subkey_size),
1432					     subkey_size);
1433		if (r)
1434			err = r;
1435	}
1436
1437	return err;
1438}
1439
1440static int crypt_set_key(struct crypt_config *cc, char *key)
1441{
1442	int r = -EINVAL;
1443	int key_string_len = strlen(key);
1444
1445	/* The key size may not be changed. */
1446	if (cc->key_size != (key_string_len >> 1))
1447		goto out;
1448
1449	/* Hyphen (which gives a key_size of zero) means there is no key. */
1450	if (!cc->key_size && strcmp(key, "-"))
1451		goto out;
1452
1453	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1454		goto out;
1455
1456	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1457
1458	r = crypt_setkey_allcpus(cc);
1459
1460out:
1461	/* Hex key string not needed after here, so wipe it. */
1462	memset(key, '0', key_string_len);
1463
1464	return r;
1465}
1466
1467static int crypt_wipe_key(struct crypt_config *cc)
1468{
1469	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1470	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1471
1472	return crypt_setkey_allcpus(cc);
1473}
1474
1475static void crypt_dtr(struct dm_target *ti)
1476{
1477	struct crypt_config *cc = ti->private;
1478
1479	ti->private = NULL;
1480
1481	if (!cc)
1482		return;
1483
1484	if (cc->io_queue)
1485		destroy_workqueue(cc->io_queue);
1486	if (cc->crypt_queue)
1487		destroy_workqueue(cc->crypt_queue);
1488
1489	crypt_free_tfms(cc);
1490
1491	if (cc->bs)
1492		bioset_free(cc->bs);
1493
1494	if (cc->page_pool)
1495		mempool_destroy(cc->page_pool);
1496	if (cc->req_pool)
1497		mempool_destroy(cc->req_pool);
1498	if (cc->io_pool)
1499		mempool_destroy(cc->io_pool);
1500
1501	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1502		cc->iv_gen_ops->dtr(cc);
1503
1504	if (cc->dev)
1505		dm_put_device(ti, cc->dev);
1506
1507	kzfree(cc->cipher);
1508	kzfree(cc->cipher_string);
1509
1510	/* Must zero key material before freeing */
1511	kzfree(cc);
1512}
1513
1514static int crypt_ctr_cipher(struct dm_target *ti,
1515			    char *cipher_in, char *key)
1516{
1517	struct crypt_config *cc = ti->private;
1518	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1519	char *cipher_api = NULL;
1520	int ret = -EINVAL;
1521	char dummy;
1522
1523	/* Convert to crypto api definition? */
1524	if (strchr(cipher_in, '(')) {
1525		ti->error = "Bad cipher specification";
1526		return -EINVAL;
1527	}
1528
1529	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1530	if (!cc->cipher_string)
1531		goto bad_mem;
1532
1533	/*
1534	 * Legacy dm-crypt cipher specification
1535	 * cipher[:keycount]-mode-iv:ivopts
1536	 */
1537	tmp = cipher_in;
1538	keycount = strsep(&tmp, "-");
1539	cipher = strsep(&keycount, ":");
1540
1541	if (!keycount)
1542		cc->tfms_count = 1;
1543	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1544		 !is_power_of_2(cc->tfms_count)) {
1545		ti->error = "Bad cipher key count specification";
1546		return -EINVAL;
1547	}
1548	cc->key_parts = cc->tfms_count;
1549	cc->key_extra_size = 0;
1550
1551	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1552	if (!cc->cipher)
1553		goto bad_mem;
1554
1555	chainmode = strsep(&tmp, "-");
1556	ivopts = strsep(&tmp, "-");
1557	ivmode = strsep(&ivopts, ":");
1558
1559	if (tmp)
1560		DMWARN("Ignoring unexpected additional cipher options");
1561
1562	/*
1563	 * For compatibility with the original dm-crypt mapping format, if
1564	 * only the cipher name is supplied, use cbc-plain.
1565	 */
1566	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1567		chainmode = "cbc";
1568		ivmode = "plain";
1569	}
1570
1571	if (strcmp(chainmode, "ecb") && !ivmode) {
1572		ti->error = "IV mechanism required";
1573		return -EINVAL;
1574	}
1575
1576	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1577	if (!cipher_api)
1578		goto bad_mem;
1579
1580	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1581		       "%s(%s)", chainmode, cipher);
1582	if (ret < 0) {
1583		kfree(cipher_api);
1584		goto bad_mem;
1585	}
1586
1587	/* Allocate cipher */
1588	ret = crypt_alloc_tfms(cc, cipher_api);
1589	if (ret < 0) {
1590		ti->error = "Error allocating crypto tfm";
1591		goto bad;
1592	}
1593
1594	/* Initialize IV */
1595	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1596	if (cc->iv_size)
1597		/* at least a 64 bit sector number should fit in our buffer */
1598		cc->iv_size = max(cc->iv_size,
1599				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1600	else if (ivmode) {
1601		DMWARN("Selected cipher does not support IVs");
1602		ivmode = NULL;
1603	}
1604
1605	/* Choose ivmode, see comments at iv code. */
1606	if (ivmode == NULL)
1607		cc->iv_gen_ops = NULL;
1608	else if (strcmp(ivmode, "plain") == 0)
1609		cc->iv_gen_ops = &crypt_iv_plain_ops;
1610	else if (strcmp(ivmode, "plain64") == 0)
1611		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1612	else if (strcmp(ivmode, "essiv") == 0)
1613		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1614	else if (strcmp(ivmode, "benbi") == 0)
1615		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1616	else if (strcmp(ivmode, "null") == 0)
1617		cc->iv_gen_ops = &crypt_iv_null_ops;
1618	else if (strcmp(ivmode, "lmk") == 0) {
1619		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1620		/*
1621		 * Version 2 and 3 is recognised according
1622		 * to length of provided multi-key string.
1623		 * If present (version 3), last key is used as IV seed.
1624		 * All keys (including IV seed) are always the same size.
1625		 */
1626		if (cc->key_size % cc->key_parts) {
1627			cc->key_parts++;
1628			cc->key_extra_size = cc->key_size / cc->key_parts;
1629		}
1630	} else if (strcmp(ivmode, "tcw") == 0) {
1631		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1632		cc->key_parts += 2; /* IV + whitening */
1633		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1634	} else {
1635		ret = -EINVAL;
1636		ti->error = "Invalid IV mode";
1637		goto bad;
1638	}
1639
1640	/* Initialize and set key */
1641	ret = crypt_set_key(cc, key);
1642	if (ret < 0) {
1643		ti->error = "Error decoding and setting key";
1644		goto bad;
1645	}
1646
1647	/* Allocate IV */
1648	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1649		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1650		if (ret < 0) {
1651			ti->error = "Error creating IV";
1652			goto bad;
1653		}
1654	}
1655
1656	/* Initialize IV (set keys for ESSIV etc) */
1657	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1658		ret = cc->iv_gen_ops->init(cc);
1659		if (ret < 0) {
1660			ti->error = "Error initialising IV";
1661			goto bad;
1662		}
1663	}
1664
1665	ret = 0;
1666bad:
1667	kfree(cipher_api);
1668	return ret;
1669
1670bad_mem:
1671	ti->error = "Cannot allocate cipher strings";
1672	return -ENOMEM;
1673}
1674
1675/*
1676 * Construct an encryption mapping:
1677 * <cipher> <key> <iv_offset> <dev_path> <start>
1678 */
1679static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1680{
1681	struct crypt_config *cc;
1682	unsigned int key_size, opt_params;
1683	unsigned long long tmpll;
1684	int ret;
1685	size_t iv_size_padding;
1686	struct dm_arg_set as;
1687	const char *opt_string;
1688	char dummy;
1689
1690	static struct dm_arg _args[] = {
1691		{0, 1, "Invalid number of feature args"},
1692	};
1693
1694	if (argc < 5) {
1695		ti->error = "Not enough arguments";
1696		return -EINVAL;
1697	}
1698
1699	key_size = strlen(argv[1]) >> 1;
1700
1701	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1702	if (!cc) {
1703		ti->error = "Cannot allocate encryption context";
1704		return -ENOMEM;
1705	}
1706	cc->key_size = key_size;
1707
1708	ti->private = cc;
1709	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1710	if (ret < 0)
1711		goto bad;
1712
1713	ret = -ENOMEM;
1714	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1715	if (!cc->io_pool) {
1716		ti->error = "Cannot allocate crypt io mempool";
1717		goto bad;
1718	}
1719
1720	cc->dmreq_start = sizeof(struct ablkcipher_request);
1721	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1722	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1723
1724	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1725		/* Allocate the padding exactly */
1726		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1727				& crypto_ablkcipher_alignmask(any_tfm(cc));
1728	} else {
1729		/*
1730		 * If the cipher requires greater alignment than kmalloc
1731		 * alignment, we don't know the exact position of the
1732		 * initialization vector. We must assume worst case.
1733		 */
1734		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1735	}
1736
1737	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1738			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1739	if (!cc->req_pool) {
1740		ti->error = "Cannot allocate crypt request mempool";
1741		goto bad;
1742	}
1743
1744	cc->per_bio_data_size = ti->per_bio_data_size =
1745		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1746		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1747		      ARCH_KMALLOC_MINALIGN);
1748
1749	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1750	if (!cc->page_pool) {
1751		ti->error = "Cannot allocate page mempool";
1752		goto bad;
1753	}
1754
1755	cc->bs = bioset_create(MIN_IOS, 0);
1756	if (!cc->bs) {
1757		ti->error = "Cannot allocate crypt bioset";
1758		goto bad;
1759	}
1760
1761	ret = -EINVAL;
1762	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1763		ti->error = "Invalid iv_offset sector";
1764		goto bad;
1765	}
1766	cc->iv_offset = tmpll;
1767
1768	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1769		ti->error = "Device lookup failed";
1770		goto bad;
1771	}
1772
1773	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1774		ti->error = "Invalid device sector";
1775		goto bad;
1776	}
1777	cc->start = tmpll;
1778
1779	argv += 5;
1780	argc -= 5;
1781
1782	/* Optional parameters */
1783	if (argc) {
1784		as.argc = argc;
1785		as.argv = argv;
1786
1787		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1788		if (ret)
1789			goto bad;
1790
1791		opt_string = dm_shift_arg(&as);
1792
1793		if (opt_params == 1 && opt_string &&
1794		    !strcasecmp(opt_string, "allow_discards"))
1795			ti->num_discard_bios = 1;
1796		else if (opt_params) {
1797			ret = -EINVAL;
1798			ti->error = "Invalid feature arguments";
1799			goto bad;
1800		}
1801	}
1802
1803	ret = -ENOMEM;
1804	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1805	if (!cc->io_queue) {
1806		ti->error = "Couldn't create kcryptd io queue";
1807		goto bad;
1808	}
1809
1810	cc->crypt_queue = alloc_workqueue("kcryptd",
1811					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1812	if (!cc->crypt_queue) {
1813		ti->error = "Couldn't create kcryptd queue";
1814		goto bad;
1815	}
1816
1817	ti->num_flush_bios = 1;
1818	ti->discard_zeroes_data_unsupported = true;
1819
1820	return 0;
1821
1822bad:
1823	crypt_dtr(ti);
1824	return ret;
1825}
1826
1827static int crypt_map(struct dm_target *ti, struct bio *bio)
1828{
1829	struct dm_crypt_io *io;
1830	struct crypt_config *cc = ti->private;
1831
1832	/*
1833	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1834	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1835	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1836	 */
1837	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1838		bio->bi_bdev = cc->dev->bdev;
1839		if (bio_sectors(bio))
1840			bio->bi_iter.bi_sector = cc->start +
1841				dm_target_offset(ti, bio->bi_iter.bi_sector);
1842		return DM_MAPIO_REMAPPED;
1843	}
1844
1845	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1846	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1847	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1848
1849	if (bio_data_dir(io->base_bio) == READ) {
1850		if (kcryptd_io_read(io, GFP_NOWAIT))
1851			kcryptd_queue_io(io);
1852	} else
1853		kcryptd_queue_crypt(io);
1854
1855	return DM_MAPIO_SUBMITTED;
1856}
1857
1858static void crypt_status(struct dm_target *ti, status_type_t type,
1859			 unsigned status_flags, char *result, unsigned maxlen)
1860{
1861	struct crypt_config *cc = ti->private;
1862	unsigned i, sz = 0;
1863
1864	switch (type) {
1865	case STATUSTYPE_INFO:
1866		result[0] = '\0';
1867		break;
1868
1869	case STATUSTYPE_TABLE:
1870		DMEMIT("%s ", cc->cipher_string);
1871
1872		if (cc->key_size > 0)
1873			for (i = 0; i < cc->key_size; i++)
1874				DMEMIT("%02x", cc->key[i]);
1875		else
1876			DMEMIT("-");
1877
1878		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1879				cc->dev->name, (unsigned long long)cc->start);
1880
1881		if (ti->num_discard_bios)
1882			DMEMIT(" 1 allow_discards");
1883
1884		break;
1885	}
1886}
1887
1888static void crypt_postsuspend(struct dm_target *ti)
1889{
1890	struct crypt_config *cc = ti->private;
1891
1892	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1893}
1894
1895static int crypt_preresume(struct dm_target *ti)
1896{
1897	struct crypt_config *cc = ti->private;
1898
1899	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1900		DMERR("aborting resume - crypt key is not set.");
1901		return -EAGAIN;
1902	}
1903
1904	return 0;
1905}
1906
1907static void crypt_resume(struct dm_target *ti)
1908{
1909	struct crypt_config *cc = ti->private;
1910
1911	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1912}
1913
1914/* Message interface
1915 *	key set <key>
1916 *	key wipe
1917 */
1918static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1919{
1920	struct crypt_config *cc = ti->private;
1921	int ret = -EINVAL;
1922
1923	if (argc < 2)
1924		goto error;
1925
1926	if (!strcasecmp(argv[0], "key")) {
1927		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1928			DMWARN("not suspended during key manipulation.");
1929			return -EINVAL;
1930		}
1931		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1932			ret = crypt_set_key(cc, argv[2]);
1933			if (ret)
1934				return ret;
1935			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1936				ret = cc->iv_gen_ops->init(cc);
1937			return ret;
1938		}
1939		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1940			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1941				ret = cc->iv_gen_ops->wipe(cc);
1942				if (ret)
1943					return ret;
1944			}
1945			return crypt_wipe_key(cc);
1946		}
1947	}
1948
1949error:
1950	DMWARN("unrecognised message received.");
1951	return -EINVAL;
1952}
1953
1954static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1955		       struct bio_vec *biovec, int max_size)
1956{
1957	struct crypt_config *cc = ti->private;
1958	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1959
1960	if (!q->merge_bvec_fn)
1961		return max_size;
1962
1963	bvm->bi_bdev = cc->dev->bdev;
1964	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1965
1966	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1967}
1968
1969static int crypt_iterate_devices(struct dm_target *ti,
1970				 iterate_devices_callout_fn fn, void *data)
1971{
1972	struct crypt_config *cc = ti->private;
1973
1974	return fn(ti, cc->dev, cc->start, ti->len, data);
1975}
1976
1977static struct target_type crypt_target = {
1978	.name   = "crypt",
1979	.version = {1, 13, 0},
1980	.module = THIS_MODULE,
1981	.ctr    = crypt_ctr,
1982	.dtr    = crypt_dtr,
1983	.map    = crypt_map,
1984	.status = crypt_status,
1985	.postsuspend = crypt_postsuspend,
1986	.preresume = crypt_preresume,
1987	.resume = crypt_resume,
1988	.message = crypt_message,
1989	.merge  = crypt_merge,
1990	.iterate_devices = crypt_iterate_devices,
1991};
1992
1993static int __init dm_crypt_init(void)
1994{
1995	int r;
1996
1997	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1998	if (!_crypt_io_pool)
1999		return -ENOMEM;
2000
2001	r = dm_register_target(&crypt_target);
2002	if (r < 0) {
2003		DMERR("register failed %d", r);
2004		kmem_cache_destroy(_crypt_io_pool);
2005	}
2006
2007	return r;
2008}
2009
2010static void __exit dm_crypt_exit(void)
2011{
2012	dm_unregister_target(&crypt_target);
2013	kmem_cache_destroy(_crypt_io_pool);
2014}
2015
2016module_init(dm_crypt_init);
2017module_exit(dm_crypt_exit);
2018
2019MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2020MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2021MODULE_LICENSE("GPL");
2022