dm-btree-remove.c revision f046f89a99ccfd9408b94c653374ff3065c7edb3
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree.h"
8#include "dm-btree-internal.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12
13/*
14 * Removing an entry from a btree
15 * ==============================
16 *
17 * A very important constraint for our btree is that no node, except the
18 * root, may have fewer than a certain number of entries.
19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20 *
21 * Ensuring this is complicated by the way we want to only ever hold the
22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23 * fashion.
24 *
25 * Each node may have a left or right sibling.  When decending the spine,
26 * if a node contains only MIN_ENTRIES then we try and increase this to at
27 * least MIN_ENTRIES + 1.  We do this in the following ways:
28 *
29 * [A] No siblings => this can only happen if the node is the root, in which
30 *     case we copy the childs contents over the root.
31 *
32 * [B] No left sibling
33 *     ==> rebalance(node, right sibling)
34 *
35 * [C] No right sibling
36 *     ==> rebalance(left sibling, node)
37 *
38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39 *     ==> delete node adding it's contents to left and right
40 *
41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42 *     ==> rebalance(left, node, right)
43 *
44 * After these operations it's possible that the our original node no
45 * longer contains the desired sub tree.  For this reason this rebalancing
46 * is performed on the children of the current node.  This also avoids
47 * having a special case for the root.
48 *
49 * Once this rebalancing has occurred we can then step into the child node
50 * for internal nodes.  Or delete the entry for leaf nodes.
51 */
52
53/*
54 * Some little utilities for moving node data around.
55 */
56static void node_shift(struct btree_node *n, int shift)
57{
58	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59	uint32_t value_size = le32_to_cpu(n->header.value_size);
60
61	if (shift < 0) {
62		shift = -shift;
63		BUG_ON(shift > nr_entries);
64		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65		memmove(key_ptr(n, 0),
66			key_ptr(n, shift),
67			(nr_entries - shift) * sizeof(__le64));
68		memmove(value_ptr(n, 0),
69			value_ptr(n, shift),
70			(nr_entries - shift) * value_size);
71	} else {
72		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73		memmove(key_ptr(n, shift),
74			key_ptr(n, 0),
75			nr_entries * sizeof(__le64));
76		memmove(value_ptr(n, shift),
77			value_ptr(n, 0),
78			nr_entries * value_size);
79	}
80}
81
82static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83{
84	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85	uint32_t value_size = le32_to_cpu(left->header.value_size);
86	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87
88	if (shift < 0) {
89		shift = -shift;
90		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91		memcpy(key_ptr(left, nr_left),
92		       key_ptr(right, 0),
93		       shift * sizeof(__le64));
94		memcpy(value_ptr(left, nr_left),
95		       value_ptr(right, 0),
96		       shift * value_size);
97	} else {
98		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99		memcpy(key_ptr(right, 0),
100		       key_ptr(left, nr_left - shift),
101		       shift * sizeof(__le64));
102		memcpy(value_ptr(right, 0),
103		       value_ptr(left, nr_left - shift),
104		       shift * value_size);
105	}
106}
107
108/*
109 * Delete a specific entry from a leaf node.
110 */
111static void delete_at(struct btree_node *n, unsigned index)
112{
113	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114	unsigned nr_to_copy = nr_entries - (index + 1);
115	uint32_t value_size = le32_to_cpu(n->header.value_size);
116	BUG_ON(index >= nr_entries);
117
118	if (nr_to_copy) {
119		memmove(key_ptr(n, index),
120			key_ptr(n, index + 1),
121			nr_to_copy * sizeof(__le64));
122
123		memmove(value_ptr(n, index),
124			value_ptr(n, index + 1),
125			nr_to_copy * value_size);
126	}
127
128	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129}
130
131static unsigned merge_threshold(struct btree_node *n)
132{
133	return le32_to_cpu(n->header.max_entries) / 3;
134}
135
136struct child {
137	unsigned index;
138	struct dm_block *block;
139	struct btree_node *n;
140};
141
142static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143		      struct btree_node *parent,
144		      unsigned index, struct child *result)
145{
146	int r, inc;
147	dm_block_t root;
148
149	result->index = index;
150	root = value64(parent, index);
151
152	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153			       &result->block, &inc);
154	if (r)
155		return r;
156
157	result->n = dm_block_data(result->block);
158
159	if (inc)
160		inc_children(info->tm, result->n, vt);
161
162	*((__le64 *) value_ptr(parent, index)) =
163		cpu_to_le64(dm_block_location(result->block));
164
165	return 0;
166}
167
168static int exit_child(struct dm_btree_info *info, struct child *c)
169{
170	return dm_tm_unlock(info->tm, c->block);
171}
172
173static void shift(struct btree_node *left, struct btree_node *right, int count)
174{
175	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179
180	BUG_ON(max_entries != r_max_entries);
181	BUG_ON(nr_left - count > max_entries);
182	BUG_ON(nr_right + count > max_entries);
183
184	if (!count)
185		return;
186
187	if (count > 0) {
188		node_shift(right, count);
189		node_copy(left, right, count);
190	} else {
191		node_copy(left, right, count);
192		node_shift(right, count);
193	}
194
195	left->header.nr_entries = cpu_to_le32(nr_left - count);
196	right->header.nr_entries = cpu_to_le32(nr_right + count);
197}
198
199static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200			 struct child *l, struct child *r)
201{
202	struct btree_node *left = l->n;
203	struct btree_node *right = r->n;
204	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206	unsigned threshold = 2 * merge_threshold(left) + 1;
207
208	if (nr_left + nr_right < threshold) {
209		/*
210		 * Merge
211		 */
212		node_copy(left, right, -nr_right);
213		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
214		delete_at(parent, r->index);
215
216		/*
217		 * We need to decrement the right block, but not it's
218		 * children, since they're still referenced by left.
219		 */
220		dm_tm_dec(info->tm, dm_block_location(r->block));
221	} else {
222		/*
223		 * Rebalance.
224		 */
225		unsigned target_left = (nr_left + nr_right) / 2;
226		shift(left, right, nr_left - target_left);
227		*key_ptr(parent, r->index) = right->keys[0];
228	}
229}
230
231static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232		      struct dm_btree_value_type *vt, unsigned left_index)
233{
234	int r;
235	struct btree_node *parent;
236	struct child left, right;
237
238	parent = dm_block_data(shadow_current(s));
239
240	r = init_child(info, vt, parent, left_index, &left);
241	if (r)
242		return r;
243
244	r = init_child(info, vt, parent, left_index + 1, &right);
245	if (r) {
246		exit_child(info, &left);
247		return r;
248	}
249
250	__rebalance2(info, parent, &left, &right);
251
252	r = exit_child(info, &left);
253	if (r) {
254		exit_child(info, &right);
255		return r;
256	}
257
258	return exit_child(info, &right);
259}
260
261/*
262 * We dump as many entries from center as possible into left, then the rest
263 * in right, then rebalance2.  This wastes some cpu, but I want something
264 * simple atm.
265 */
266static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
267			       struct child *l, struct child *c, struct child *r,
268			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
269			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
270{
271	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
272	unsigned shift = min(max_entries - nr_left, nr_center);
273
274	BUG_ON(nr_left + shift > max_entries);
275	node_copy(left, center, -shift);
276	left->header.nr_entries = cpu_to_le32(nr_left + shift);
277
278	if (shift != nr_center) {
279		shift = nr_center - shift;
280		BUG_ON((nr_right + shift) > max_entries);
281		node_shift(right, shift);
282		node_copy(center, right, shift);
283		right->header.nr_entries = cpu_to_le32(nr_right + shift);
284	}
285	*key_ptr(parent, r->index) = right->keys[0];
286
287	delete_at(parent, c->index);
288	r->index--;
289
290	dm_tm_dec(info->tm, dm_block_location(c->block));
291	__rebalance2(info, parent, l, r);
292}
293
294/*
295 * Redistributes entries among 3 sibling nodes.
296 */
297static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
298			  struct child *l, struct child *c, struct child *r,
299			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
300			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
301{
302	int s;
303	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
304	unsigned target = (nr_left + nr_center + nr_right) / 3;
305	BUG_ON(target > max_entries);
306
307	if (nr_left < nr_right) {
308		s = nr_left - target;
309
310		if (s < 0 && nr_center < -s) {
311			/* not enough in central node */
312			shift(left, center, nr_center);
313			s = nr_center - target;
314			shift(left, right, s);
315			nr_right += s;
316		} else
317			shift(left, center, s);
318
319		shift(center, right, target - nr_right);
320
321	} else {
322		s = target - nr_right;
323		if (s > 0 && nr_center < s) {
324			/* not enough in central node */
325			shift(center, right, nr_center);
326			s = target - nr_center;
327			shift(left, right, s);
328			nr_left -= s;
329		} else
330			shift(center, right, s);
331
332		shift(left, center, nr_left - target);
333	}
334
335	*key_ptr(parent, c->index) = center->keys[0];
336	*key_ptr(parent, r->index) = right->keys[0];
337}
338
339static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
340			 struct child *l, struct child *c, struct child *r)
341{
342	struct btree_node *left = l->n;
343	struct btree_node *center = c->n;
344	struct btree_node *right = r->n;
345
346	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
347	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
348	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
349
350	unsigned threshold = merge_threshold(left) * 4 + 1;
351
352	BUG_ON(left->header.max_entries != center->header.max_entries);
353	BUG_ON(center->header.max_entries != right->header.max_entries);
354
355	if ((nr_left + nr_center + nr_right) < threshold)
356		delete_center_node(info, parent, l, c, r, left, center, right,
357				   nr_left, nr_center, nr_right);
358	else
359		redistribute3(info, parent, l, c, r, left, center, right,
360			      nr_left, nr_center, nr_right);
361}
362
363static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
364		      struct dm_btree_value_type *vt, unsigned left_index)
365{
366	int r;
367	struct btree_node *parent = dm_block_data(shadow_current(s));
368	struct child left, center, right;
369
370	/*
371	 * FIXME: fill out an array?
372	 */
373	r = init_child(info, vt, parent, left_index, &left);
374	if (r)
375		return r;
376
377	r = init_child(info, vt, parent, left_index + 1, &center);
378	if (r) {
379		exit_child(info, &left);
380		return r;
381	}
382
383	r = init_child(info, vt, parent, left_index + 2, &right);
384	if (r) {
385		exit_child(info, &left);
386		exit_child(info, &center);
387		return r;
388	}
389
390	__rebalance3(info, parent, &left, &center, &right);
391
392	r = exit_child(info, &left);
393	if (r) {
394		exit_child(info, &center);
395		exit_child(info, &right);
396		return r;
397	}
398
399	r = exit_child(info, &center);
400	if (r) {
401		exit_child(info, &right);
402		return r;
403	}
404
405	r = exit_child(info, &right);
406	if (r)
407		return r;
408
409	return 0;
410}
411
412static int get_nr_entries(struct dm_transaction_manager *tm,
413			  dm_block_t b, uint32_t *result)
414{
415	int r;
416	struct dm_block *block;
417	struct btree_node *n;
418
419	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
420	if (r)
421		return r;
422
423	n = dm_block_data(block);
424	*result = le32_to_cpu(n->header.nr_entries);
425
426	return dm_tm_unlock(tm, block);
427}
428
429static int rebalance_children(struct shadow_spine *s,
430			      struct dm_btree_info *info,
431			      struct dm_btree_value_type *vt, uint64_t key)
432{
433	int i, r, has_left_sibling, has_right_sibling;
434	uint32_t child_entries;
435	struct btree_node *n;
436
437	n = dm_block_data(shadow_current(s));
438
439	if (le32_to_cpu(n->header.nr_entries) == 1) {
440		struct dm_block *child;
441		dm_block_t b = value64(n, 0);
442
443		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
444		if (r)
445			return r;
446
447		memcpy(n, dm_block_data(child),
448		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
449		r = dm_tm_unlock(info->tm, child);
450		if (r)
451			return r;
452
453		dm_tm_dec(info->tm, dm_block_location(child));
454		return 0;
455	}
456
457	i = lower_bound(n, key);
458	if (i < 0)
459		return -ENODATA;
460
461	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
462	if (r)
463		return r;
464
465	has_left_sibling = i > 0;
466	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
467
468	if (!has_left_sibling)
469		r = rebalance2(s, info, vt, i);
470
471	else if (!has_right_sibling)
472		r = rebalance2(s, info, vt, i - 1);
473
474	else
475		r = rebalance3(s, info, vt, i - 1);
476
477	return r;
478}
479
480static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
481{
482	int i = lower_bound(n, key);
483
484	if ((i < 0) ||
485	    (i >= le32_to_cpu(n->header.nr_entries)) ||
486	    (le64_to_cpu(n->keys[i]) != key))
487		return -ENODATA;
488
489	*index = i;
490
491	return 0;
492}
493
494/*
495 * Prepares for removal from one level of the hierarchy.  The caller must
496 * call delete_at() to remove the entry at index.
497 */
498static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
499		      struct dm_btree_value_type *vt, dm_block_t root,
500		      uint64_t key, unsigned *index)
501{
502	int i = *index, r;
503	struct btree_node *n;
504
505	for (;;) {
506		r = shadow_step(s, root, vt);
507		if (r < 0)
508			break;
509
510		/*
511		 * We have to patch up the parent node, ugly, but I don't
512		 * see a way to do this automatically as part of the spine
513		 * op.
514		 */
515		if (shadow_has_parent(s)) {
516			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
517			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
518			       &location, sizeof(__le64));
519		}
520
521		n = dm_block_data(shadow_current(s));
522
523		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
524			return do_leaf(n, key, index);
525
526		r = rebalance_children(s, info, vt, key);
527		if (r)
528			break;
529
530		n = dm_block_data(shadow_current(s));
531		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
532			return do_leaf(n, key, index);
533
534		i = lower_bound(n, key);
535
536		/*
537		 * We know the key is present, or else
538		 * rebalance_children would have returned
539		 * -ENODATA
540		 */
541		root = value64(n, i);
542	}
543
544	return r;
545}
546
547static struct dm_btree_value_type le64_type = {
548	.context = NULL,
549	.size = sizeof(__le64),
550	.inc = NULL,
551	.dec = NULL,
552	.equal = NULL
553};
554
555int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
556		    uint64_t *keys, dm_block_t *new_root)
557{
558	unsigned level, last_level = info->levels - 1;
559	int index = 0, r = 0;
560	struct shadow_spine spine;
561	struct btree_node *n;
562
563	init_shadow_spine(&spine, info);
564	for (level = 0; level < info->levels; level++) {
565		r = remove_raw(&spine, info,
566			       (level == last_level ?
567				&info->value_type : &le64_type),
568			       root, keys[level], (unsigned *)&index);
569		if (r < 0)
570			break;
571
572		n = dm_block_data(shadow_current(&spine));
573		if (level != last_level) {
574			root = value64(n, index);
575			continue;
576		}
577
578		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
579
580		if (info->value_type.dec)
581			info->value_type.dec(info->value_type.context,
582					     value_ptr(n, index));
583
584		delete_at(n, index);
585	}
586
587	*new_root = shadow_root(&spine);
588	exit_shadow_spine(&spine);
589
590	return r;
591}
592EXPORT_SYMBOL_GPL(dm_btree_remove);
593