dm-btree.c revision 550929faf89e2e2cdb3e9945ea87d383989274cf
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20	__dm_written_to_disk(src)
21{
22	memcpy(dest, src, len);
23	__dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27			 unsigned index, void *elt)
28	__dm_written_to_disk(elt)
29{
30	if (index < nr_elts)
31		memmove(base + (elt_size * (index + 1)),
32			base + (elt_size * index),
33			(nr_elts - index) * elt_size);
34
35	memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42{
43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45	while (hi - lo > 1) {
46		int mid = lo + ((hi - lo) / 2);
47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49		if (mid_key == key)
50			return mid;
51
52		if (mid_key < key)
53			lo = mid;
54		else
55			hi = mid;
56	}
57
58	return want_hi ? hi : lo;
59}
60
61int lower_bound(struct btree_node *n, uint64_t key)
62{
63	return bsearch(n, key, 0);
64}
65
66void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
67		  struct dm_btree_value_type *vt)
68{
69	unsigned i;
70	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
71
72	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
73		for (i = 0; i < nr_entries; i++)
74			dm_tm_inc(tm, value64(n, i));
75	else if (vt->inc)
76		for (i = 0; i < nr_entries; i++)
77			vt->inc(vt->context, value_ptr(n, i));
78}
79
80static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
81		      uint64_t key, void *value)
82		      __dm_written_to_disk(value)
83{
84	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
85	__le64 key_le = cpu_to_le64(key);
86
87	if (index > nr_entries ||
88	    index >= le32_to_cpu(node->header.max_entries)) {
89		DMERR("too many entries in btree node for insert");
90		__dm_unbless_for_disk(value);
91		return -ENOMEM;
92	}
93
94	__dm_bless_for_disk(&key_le);
95
96	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
97	array_insert(value_base(node), value_size, nr_entries, index, value);
98	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
99
100	return 0;
101}
102
103/*----------------------------------------------------------------*/
104
105/*
106 * We want 3n entries (for some n).  This works more nicely for repeated
107 * insert remove loops than (2n + 1).
108 */
109static uint32_t calc_max_entries(size_t value_size, size_t block_size)
110{
111	uint32_t total, n;
112	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
113
114	block_size -= sizeof(struct node_header);
115	total = block_size / elt_size;
116	n = total / 3;		/* rounds down */
117
118	return 3 * n;
119}
120
121int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
122{
123	int r;
124	struct dm_block *b;
125	struct btree_node *n;
126	size_t block_size;
127	uint32_t max_entries;
128
129	r = new_block(info, &b);
130	if (r < 0)
131		return r;
132
133	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134	max_entries = calc_max_entries(info->value_type.size, block_size);
135
136	n = dm_block_data(b);
137	memset(n, 0, block_size);
138	n->header.flags = cpu_to_le32(LEAF_NODE);
139	n->header.nr_entries = cpu_to_le32(0);
140	n->header.max_entries = cpu_to_le32(max_entries);
141	n->header.value_size = cpu_to_le32(info->value_type.size);
142
143	*root = dm_block_location(b);
144	return unlock_block(info, b);
145}
146EXPORT_SYMBOL_GPL(dm_btree_empty);
147
148/*----------------------------------------------------------------*/
149
150/*
151 * Deletion uses a recursive algorithm, since we have limited stack space
152 * we explicitly manage our own stack on the heap.
153 */
154#define MAX_SPINE_DEPTH 64
155struct frame {
156	struct dm_block *b;
157	struct btree_node *n;
158	unsigned level;
159	unsigned nr_children;
160	unsigned current_child;
161};
162
163struct del_stack {
164	struct dm_transaction_manager *tm;
165	int top;
166	struct frame spine[MAX_SPINE_DEPTH];
167};
168
169static int top_frame(struct del_stack *s, struct frame **f)
170{
171	if (s->top < 0) {
172		DMERR("btree deletion stack empty");
173		return -EINVAL;
174	}
175
176	*f = s->spine + s->top;
177
178	return 0;
179}
180
181static int unprocessed_frames(struct del_stack *s)
182{
183	return s->top >= 0;
184}
185
186static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
187{
188	int r;
189	uint32_t ref_count;
190
191	if (s->top >= MAX_SPINE_DEPTH - 1) {
192		DMERR("btree deletion stack out of memory");
193		return -ENOMEM;
194	}
195
196	r = dm_tm_ref(s->tm, b, &ref_count);
197	if (r)
198		return r;
199
200	if (ref_count > 1)
201		/*
202		 * This is a shared node, so we can just decrement it's
203		 * reference counter and leave the children.
204		 */
205		dm_tm_dec(s->tm, b);
206
207	else {
208		struct frame *f = s->spine + ++s->top;
209
210		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
211		if (r) {
212			s->top--;
213			return r;
214		}
215
216		f->n = dm_block_data(f->b);
217		f->level = level;
218		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
219		f->current_child = 0;
220	}
221
222	return 0;
223}
224
225static void pop_frame(struct del_stack *s)
226{
227	struct frame *f = s->spine + s->top--;
228
229	dm_tm_dec(s->tm, dm_block_location(f->b));
230	dm_tm_unlock(s->tm, f->b);
231}
232
233int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
234{
235	int r;
236	struct del_stack *s;
237
238	s = kmalloc(sizeof(*s), GFP_KERNEL);
239	if (!s)
240		return -ENOMEM;
241	s->tm = info->tm;
242	s->top = -1;
243
244	r = push_frame(s, root, 1);
245	if (r)
246		goto out;
247
248	while (unprocessed_frames(s)) {
249		uint32_t flags;
250		struct frame *f;
251		dm_block_t b;
252
253		r = top_frame(s, &f);
254		if (r)
255			goto out;
256
257		if (f->current_child >= f->nr_children) {
258			pop_frame(s);
259			continue;
260		}
261
262		flags = le32_to_cpu(f->n->header.flags);
263		if (flags & INTERNAL_NODE) {
264			b = value64(f->n, f->current_child);
265			f->current_child++;
266			r = push_frame(s, b, f->level);
267			if (r)
268				goto out;
269
270		} else if (f->level != (info->levels - 1)) {
271			b = value64(f->n, f->current_child);
272			f->current_child++;
273			r = push_frame(s, b, f->level + 1);
274			if (r)
275				goto out;
276
277		} else {
278			if (info->value_type.dec) {
279				unsigned i;
280
281				for (i = 0; i < f->nr_children; i++)
282					info->value_type.dec(info->value_type.context,
283							     value_ptr(f->n, i));
284			}
285			f->current_child = f->nr_children;
286		}
287	}
288
289out:
290	kfree(s);
291	return r;
292}
293EXPORT_SYMBOL_GPL(dm_btree_del);
294
295/*----------------------------------------------------------------*/
296
297static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
298			    int (*search_fn)(struct btree_node *, uint64_t),
299			    uint64_t *result_key, void *v, size_t value_size)
300{
301	int i, r;
302	uint32_t flags, nr_entries;
303
304	do {
305		r = ro_step(s, block);
306		if (r < 0)
307			return r;
308
309		i = search_fn(ro_node(s), key);
310
311		flags = le32_to_cpu(ro_node(s)->header.flags);
312		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
313		if (i < 0 || i >= nr_entries)
314			return -ENODATA;
315
316		if (flags & INTERNAL_NODE)
317			block = value64(ro_node(s), i);
318
319	} while (!(flags & LEAF_NODE));
320
321	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
322	memcpy(v, value_ptr(ro_node(s), i), value_size);
323
324	return 0;
325}
326
327int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
328		    uint64_t *keys, void *value_le)
329{
330	unsigned level, last_level = info->levels - 1;
331	int r = -ENODATA;
332	uint64_t rkey;
333	__le64 internal_value_le;
334	struct ro_spine spine;
335
336	init_ro_spine(&spine, info);
337	for (level = 0; level < info->levels; level++) {
338		size_t size;
339		void *value_p;
340
341		if (level == last_level) {
342			value_p = value_le;
343			size = info->value_type.size;
344
345		} else {
346			value_p = &internal_value_le;
347			size = sizeof(uint64_t);
348		}
349
350		r = btree_lookup_raw(&spine, root, keys[level],
351				     lower_bound, &rkey,
352				     value_p, size);
353
354		if (!r) {
355			if (rkey != keys[level]) {
356				exit_ro_spine(&spine);
357				return -ENODATA;
358			}
359		} else {
360			exit_ro_spine(&spine);
361			return r;
362		}
363
364		root = le64_to_cpu(internal_value_le);
365	}
366	exit_ro_spine(&spine);
367
368	return r;
369}
370EXPORT_SYMBOL_GPL(dm_btree_lookup);
371
372/*
373 * Splits a node by creating a sibling node and shifting half the nodes
374 * contents across.  Assumes there is a parent node, and it has room for
375 * another child.
376 *
377 * Before:
378 *	  +--------+
379 *	  | Parent |
380 *	  +--------+
381 *	     |
382 *	     v
383 *	+----------+
384 *	| A ++++++ |
385 *	+----------+
386 *
387 *
388 * After:
389 *		+--------+
390 *		| Parent |
391 *		+--------+
392 *		  |	|
393 *		  v	+------+
394 *	    +---------+	       |
395 *	    | A* +++  |	       v
396 *	    +---------+	  +-------+
397 *			  | B +++ |
398 *			  +-------+
399 *
400 * Where A* is a shadow of A.
401 */
402static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
403			       unsigned parent_index, uint64_t key)
404{
405	int r;
406	size_t size;
407	unsigned nr_left, nr_right;
408	struct dm_block *left, *right, *parent;
409	struct btree_node *ln, *rn, *pn;
410	__le64 location;
411
412	left = shadow_current(s);
413
414	r = new_block(s->info, &right);
415	if (r < 0)
416		return r;
417
418	ln = dm_block_data(left);
419	rn = dm_block_data(right);
420
421	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
422	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
423
424	ln->header.nr_entries = cpu_to_le32(nr_left);
425
426	rn->header.flags = ln->header.flags;
427	rn->header.nr_entries = cpu_to_le32(nr_right);
428	rn->header.max_entries = ln->header.max_entries;
429	rn->header.value_size = ln->header.value_size;
430	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
431
432	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
433		sizeof(uint64_t) : s->info->value_type.size;
434	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
435	       size * nr_right);
436
437	/*
438	 * Patch up the parent
439	 */
440	parent = shadow_parent(s);
441
442	pn = dm_block_data(parent);
443	location = cpu_to_le64(dm_block_location(left));
444	__dm_bless_for_disk(&location);
445	memcpy_disk(value_ptr(pn, parent_index),
446		    &location, sizeof(__le64));
447
448	location = cpu_to_le64(dm_block_location(right));
449	__dm_bless_for_disk(&location);
450
451	r = insert_at(sizeof(__le64), pn, parent_index + 1,
452		      le64_to_cpu(rn->keys[0]), &location);
453	if (r)
454		return r;
455
456	if (key < le64_to_cpu(rn->keys[0])) {
457		unlock_block(s->info, right);
458		s->nodes[1] = left;
459	} else {
460		unlock_block(s->info, left);
461		s->nodes[1] = right;
462	}
463
464	return 0;
465}
466
467/*
468 * Splits a node by creating two new children beneath the given node.
469 *
470 * Before:
471 *	  +----------+
472 *	  | A ++++++ |
473 *	  +----------+
474 *
475 *
476 * After:
477 *	+------------+
478 *	| A (shadow) |
479 *	+------------+
480 *	    |	|
481 *   +------+	+----+
482 *   |		     |
483 *   v		     v
484 * +-------+	 +-------+
485 * | B +++ |	 | C +++ |
486 * +-------+	 +-------+
487 */
488static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
489{
490	int r;
491	size_t size;
492	unsigned nr_left, nr_right;
493	struct dm_block *left, *right, *new_parent;
494	struct btree_node *pn, *ln, *rn;
495	__le64 val;
496
497	new_parent = shadow_current(s);
498
499	r = new_block(s->info, &left);
500	if (r < 0)
501		return r;
502
503	r = new_block(s->info, &right);
504	if (r < 0) {
505		/* FIXME: put left */
506		return r;
507	}
508
509	pn = dm_block_data(new_parent);
510	ln = dm_block_data(left);
511	rn = dm_block_data(right);
512
513	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
514	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
515
516	ln->header.flags = pn->header.flags;
517	ln->header.nr_entries = cpu_to_le32(nr_left);
518	ln->header.max_entries = pn->header.max_entries;
519	ln->header.value_size = pn->header.value_size;
520
521	rn->header.flags = pn->header.flags;
522	rn->header.nr_entries = cpu_to_le32(nr_right);
523	rn->header.max_entries = pn->header.max_entries;
524	rn->header.value_size = pn->header.value_size;
525
526	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
527	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
528
529	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
530		sizeof(__le64) : s->info->value_type.size;
531	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
532	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
533	       nr_right * size);
534
535	/* new_parent should just point to l and r now */
536	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
537	pn->header.nr_entries = cpu_to_le32(2);
538	pn->header.max_entries = cpu_to_le32(
539		calc_max_entries(sizeof(__le64),
540				 dm_bm_block_size(
541					 dm_tm_get_bm(s->info->tm))));
542	pn->header.value_size = cpu_to_le32(sizeof(__le64));
543
544	val = cpu_to_le64(dm_block_location(left));
545	__dm_bless_for_disk(&val);
546	pn->keys[0] = ln->keys[0];
547	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
548
549	val = cpu_to_le64(dm_block_location(right));
550	__dm_bless_for_disk(&val);
551	pn->keys[1] = rn->keys[0];
552	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
553
554	/*
555	 * rejig the spine.  This is ugly, since it knows too
556	 * much about the spine
557	 */
558	if (s->nodes[0] != new_parent) {
559		unlock_block(s->info, s->nodes[0]);
560		s->nodes[0] = new_parent;
561	}
562	if (key < le64_to_cpu(rn->keys[0])) {
563		unlock_block(s->info, right);
564		s->nodes[1] = left;
565	} else {
566		unlock_block(s->info, left);
567		s->nodes[1] = right;
568	}
569	s->count = 2;
570
571	return 0;
572}
573
574static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
575			    struct dm_btree_value_type *vt,
576			    uint64_t key, unsigned *index)
577{
578	int r, i = *index, top = 1;
579	struct btree_node *node;
580
581	for (;;) {
582		r = shadow_step(s, root, vt);
583		if (r < 0)
584			return r;
585
586		node = dm_block_data(shadow_current(s));
587
588		/*
589		 * We have to patch up the parent node, ugly, but I don't
590		 * see a way to do this automatically as part of the spine
591		 * op.
592		 */
593		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
594			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
595
596			__dm_bless_for_disk(&location);
597			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
598				    &location, sizeof(__le64));
599		}
600
601		node = dm_block_data(shadow_current(s));
602
603		if (node->header.nr_entries == node->header.max_entries) {
604			if (top)
605				r = btree_split_beneath(s, key);
606			else
607				r = btree_split_sibling(s, root, i, key);
608
609			if (r < 0)
610				return r;
611		}
612
613		node = dm_block_data(shadow_current(s));
614
615		i = lower_bound(node, key);
616
617		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
618			break;
619
620		if (i < 0) {
621			/* change the bounds on the lowest key */
622			node->keys[0] = cpu_to_le64(key);
623			i = 0;
624		}
625
626		root = value64(node, i);
627		top = 0;
628	}
629
630	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
631		i++;
632
633	*index = i;
634	return 0;
635}
636
637static int insert(struct dm_btree_info *info, dm_block_t root,
638		  uint64_t *keys, void *value, dm_block_t *new_root,
639		  int *inserted)
640		  __dm_written_to_disk(value)
641{
642	int r, need_insert;
643	unsigned level, index = -1, last_level = info->levels - 1;
644	dm_block_t block = root;
645	struct shadow_spine spine;
646	struct btree_node *n;
647	struct dm_btree_value_type le64_type;
648
649	le64_type.context = NULL;
650	le64_type.size = sizeof(__le64);
651	le64_type.inc = NULL;
652	le64_type.dec = NULL;
653	le64_type.equal = NULL;
654
655	init_shadow_spine(&spine, info);
656
657	for (level = 0; level < (info->levels - 1); level++) {
658		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
659		if (r < 0)
660			goto bad;
661
662		n = dm_block_data(shadow_current(&spine));
663		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
664			       (le64_to_cpu(n->keys[index]) != keys[level]));
665
666		if (need_insert) {
667			dm_block_t new_tree;
668			__le64 new_le;
669
670			r = dm_btree_empty(info, &new_tree);
671			if (r < 0)
672				goto bad;
673
674			new_le = cpu_to_le64(new_tree);
675			__dm_bless_for_disk(&new_le);
676
677			r = insert_at(sizeof(uint64_t), n, index,
678				      keys[level], &new_le);
679			if (r)
680				goto bad;
681		}
682
683		if (level < last_level)
684			block = value64(n, index);
685	}
686
687	r = btree_insert_raw(&spine, block, &info->value_type,
688			     keys[level], &index);
689	if (r < 0)
690		goto bad;
691
692	n = dm_block_data(shadow_current(&spine));
693	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
694		       (le64_to_cpu(n->keys[index]) != keys[level]));
695
696	if (need_insert) {
697		if (inserted)
698			*inserted = 1;
699
700		r = insert_at(info->value_type.size, n, index,
701			      keys[level], value);
702		if (r)
703			goto bad_unblessed;
704	} else {
705		if (inserted)
706			*inserted = 0;
707
708		if (info->value_type.dec &&
709		    (!info->value_type.equal ||
710		     !info->value_type.equal(
711			     info->value_type.context,
712			     value_ptr(n, index),
713			     value))) {
714			info->value_type.dec(info->value_type.context,
715					     value_ptr(n, index));
716		}
717		memcpy_disk(value_ptr(n, index),
718			    value, info->value_type.size);
719	}
720
721	*new_root = shadow_root(&spine);
722	exit_shadow_spine(&spine);
723
724	return 0;
725
726bad:
727	__dm_unbless_for_disk(value);
728bad_unblessed:
729	exit_shadow_spine(&spine);
730	return r;
731}
732
733int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
734		    uint64_t *keys, void *value, dm_block_t *new_root)
735		    __dm_written_to_disk(value)
736{
737	return insert(info, root, keys, value, new_root, NULL);
738}
739EXPORT_SYMBOL_GPL(dm_btree_insert);
740
741int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
742			   uint64_t *keys, void *value, dm_block_t *new_root,
743			   int *inserted)
744			   __dm_written_to_disk(value)
745{
746	return insert(info, root, keys, value, new_root, inserted);
747}
748EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
749
750/*----------------------------------------------------------------*/
751
752static int find_highest_key(struct ro_spine *s, dm_block_t block,
753			    uint64_t *result_key, dm_block_t *next_block)
754{
755	int i, r;
756	uint32_t flags;
757
758	do {
759		r = ro_step(s, block);
760		if (r < 0)
761			return r;
762
763		flags = le32_to_cpu(ro_node(s)->header.flags);
764		i = le32_to_cpu(ro_node(s)->header.nr_entries);
765		if (!i)
766			return -ENODATA;
767		else
768			i--;
769
770		*result_key = le64_to_cpu(ro_node(s)->keys[i]);
771		if (next_block || flags & INTERNAL_NODE)
772			block = value64(ro_node(s), i);
773
774	} while (flags & INTERNAL_NODE);
775
776	if (next_block)
777		*next_block = block;
778	return 0;
779}
780
781int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
782			      uint64_t *result_keys)
783{
784	int r = 0, count = 0, level;
785	struct ro_spine spine;
786
787	init_ro_spine(&spine, info);
788	for (level = 0; level < info->levels; level++) {
789		r = find_highest_key(&spine, root, result_keys + level,
790				     level == info->levels - 1 ? NULL : &root);
791		if (r == -ENODATA) {
792			r = 0;
793			break;
794
795		} else if (r)
796			break;
797
798		count++;
799	}
800	exit_ro_spine(&spine);
801
802	return r ? r : count;
803}
804EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
805