1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 *      - bitmap marked during normal i/o
19 *      - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define	NR_RAID1_BIOS 256
48
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error.  To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context.  So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70			  sector_t bi_sector);
71static void lower_barrier(struct r1conf *conf);
72
73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74{
75	struct pool_info *pi = data;
76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78	/* allocate a r1bio with room for raid_disks entries in the bios array */
79	return kzalloc(size, gfp_flags);
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84	kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
88#define RESYNC_DEPTH 32
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96{
97	struct pool_info *pi = data;
98	struct r1bio *r1_bio;
99	struct bio *bio;
100	int need_pages;
101	int i, j;
102
103	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104	if (!r1_bio)
105		return NULL;
106
107	/*
108	 * Allocate bios : 1 for reading, n-1 for writing
109	 */
110	for (j = pi->raid_disks ; j-- ; ) {
111		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112		if (!bio)
113			goto out_free_bio;
114		r1_bio->bios[j] = bio;
115	}
116	/*
117	 * Allocate RESYNC_PAGES data pages and attach them to
118	 * the first bio.
119	 * If this is a user-requested check/repair, allocate
120	 * RESYNC_PAGES for each bio.
121	 */
122	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123		need_pages = pi->raid_disks;
124	else
125		need_pages = 1;
126	for (j = 0; j < need_pages; j++) {
127		bio = r1_bio->bios[j];
128		bio->bi_vcnt = RESYNC_PAGES;
129
130		if (bio_alloc_pages(bio, gfp_flags))
131			goto out_free_pages;
132	}
133	/* If not user-requests, copy the page pointers to all bios */
134	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135		for (i=0; i<RESYNC_PAGES ; i++)
136			for (j=1; j<pi->raid_disks; j++)
137				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139	}
140
141	r1_bio->master_bio = NULL;
142
143	return r1_bio;
144
145out_free_pages:
146	while (--j >= 0) {
147		struct bio_vec *bv;
148
149		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150			__free_page(bv->bv_page);
151	}
152
153out_free_bio:
154	while (++j < pi->raid_disks)
155		bio_put(r1_bio->bios[j]);
156	r1bio_pool_free(r1_bio, data);
157	return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162	struct pool_info *pi = data;
163	int i,j;
164	struct r1bio *r1bio = __r1_bio;
165
166	for (i = 0; i < RESYNC_PAGES; i++)
167		for (j = pi->raid_disks; j-- ;) {
168			if (j == 0 ||
169			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172		}
173	for (i=0 ; i < pi->raid_disks; i++)
174		bio_put(r1bio->bios[i]);
175
176	r1bio_pool_free(r1bio, data);
177}
178
179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180{
181	int i;
182
183	for (i = 0; i < conf->raid_disks * 2; i++) {
184		struct bio **bio = r1_bio->bios + i;
185		if (!BIO_SPECIAL(*bio))
186			bio_put(*bio);
187		*bio = NULL;
188	}
189}
190
191static void free_r1bio(struct r1bio *r1_bio)
192{
193	struct r1conf *conf = r1_bio->mddev->private;
194
195	put_all_bios(conf, r1_bio);
196	mempool_free(r1_bio, conf->r1bio_pool);
197}
198
199static void put_buf(struct r1bio *r1_bio)
200{
201	struct r1conf *conf = r1_bio->mddev->private;
202	int i;
203
204	for (i = 0; i < conf->raid_disks * 2; i++) {
205		struct bio *bio = r1_bio->bios[i];
206		if (bio->bi_end_io)
207			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208	}
209
210	mempool_free(r1_bio, conf->r1buf_pool);
211
212	lower_barrier(conf);
213}
214
215static void reschedule_retry(struct r1bio *r1_bio)
216{
217	unsigned long flags;
218	struct mddev *mddev = r1_bio->mddev;
219	struct r1conf *conf = mddev->private;
220
221	spin_lock_irqsave(&conf->device_lock, flags);
222	list_add(&r1_bio->retry_list, &conf->retry_list);
223	conf->nr_queued ++;
224	spin_unlock_irqrestore(&conf->device_lock, flags);
225
226	wake_up(&conf->wait_barrier);
227	md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235static void call_bio_endio(struct r1bio *r1_bio)
236{
237	struct bio *bio = r1_bio->master_bio;
238	int done;
239	struct r1conf *conf = r1_bio->mddev->private;
240	sector_t start_next_window = r1_bio->start_next_window;
241	sector_t bi_sector = bio->bi_iter.bi_sector;
242
243	if (bio->bi_phys_segments) {
244		unsigned long flags;
245		spin_lock_irqsave(&conf->device_lock, flags);
246		bio->bi_phys_segments--;
247		done = (bio->bi_phys_segments == 0);
248		spin_unlock_irqrestore(&conf->device_lock, flags);
249		/*
250		 * make_request() might be waiting for
251		 * bi_phys_segments to decrease
252		 */
253		wake_up(&conf->wait_barrier);
254	} else
255		done = 1;
256
257	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259	if (done) {
260		bio_endio(bio, 0);
261		/*
262		 * Wake up any possible resync thread that waits for the device
263		 * to go idle.
264		 */
265		allow_barrier(conf, start_next_window, bi_sector);
266	}
267}
268
269static void raid_end_bio_io(struct r1bio *r1_bio)
270{
271	struct bio *bio = r1_bio->master_bio;
272
273	/* if nobody has done the final endio yet, do it now */
274	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277			 (unsigned long long) bio->bi_iter.bi_sector,
278			 (unsigned long long) bio_end_sector(bio) - 1);
279
280		call_bio_endio(r1_bio);
281	}
282	free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289{
290	struct r1conf *conf = r1_bio->mddev->private;
291
292	conf->mirrors[disk].head_position =
293		r1_bio->sector + (r1_bio->sectors);
294}
295
296/*
297 * Find the disk number which triggered given bio
298 */
299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300{
301	int mirror;
302	struct r1conf *conf = r1_bio->mddev->private;
303	int raid_disks = conf->raid_disks;
304
305	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306		if (r1_bio->bios[mirror] == bio)
307			break;
308
309	BUG_ON(mirror == raid_disks * 2);
310	update_head_pos(mirror, r1_bio);
311
312	return mirror;
313}
314
315static void raid1_end_read_request(struct bio *bio, int error)
316{
317	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318	struct r1bio *r1_bio = bio->bi_private;
319	int mirror;
320	struct r1conf *conf = r1_bio->mddev->private;
321
322	mirror = r1_bio->read_disk;
323	/*
324	 * this branch is our 'one mirror IO has finished' event handler:
325	 */
326	update_head_pos(mirror, r1_bio);
327
328	if (uptodate)
329		set_bit(R1BIO_Uptodate, &r1_bio->state);
330	else {
331		/* If all other devices have failed, we want to return
332		 * the error upwards rather than fail the last device.
333		 * Here we redefine "uptodate" to mean "Don't want to retry"
334		 */
335		unsigned long flags;
336		spin_lock_irqsave(&conf->device_lock, flags);
337		if (r1_bio->mddev->degraded == conf->raid_disks ||
338		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340			uptodate = 1;
341		spin_unlock_irqrestore(&conf->device_lock, flags);
342	}
343
344	if (uptodate) {
345		raid_end_bio_io(r1_bio);
346		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347	} else {
348		/*
349		 * oops, read error:
350		 */
351		char b[BDEVNAME_SIZE];
352		printk_ratelimited(
353			KERN_ERR "md/raid1:%s: %s: "
354			"rescheduling sector %llu\n",
355			mdname(conf->mddev),
356			bdevname(conf->mirrors[mirror].rdev->bdev,
357				 b),
358			(unsigned long long)r1_bio->sector);
359		set_bit(R1BIO_ReadError, &r1_bio->state);
360		reschedule_retry(r1_bio);
361		/* don't drop the reference on read_disk yet */
362	}
363}
364
365static void close_write(struct r1bio *r1_bio)
366{
367	/* it really is the end of this request */
368	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369		/* free extra copy of the data pages */
370		int i = r1_bio->behind_page_count;
371		while (i--)
372			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373		kfree(r1_bio->behind_bvecs);
374		r1_bio->behind_bvecs = NULL;
375	}
376	/* clear the bitmap if all writes complete successfully */
377	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378			r1_bio->sectors,
379			!test_bit(R1BIO_Degraded, &r1_bio->state),
380			test_bit(R1BIO_BehindIO, &r1_bio->state));
381	md_write_end(r1_bio->mddev);
382}
383
384static void r1_bio_write_done(struct r1bio *r1_bio)
385{
386	if (!atomic_dec_and_test(&r1_bio->remaining))
387		return;
388
389	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390		reschedule_retry(r1_bio);
391	else {
392		close_write(r1_bio);
393		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394			reschedule_retry(r1_bio);
395		else
396			raid_end_bio_io(r1_bio);
397	}
398}
399
400static void raid1_end_write_request(struct bio *bio, int error)
401{
402	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403	struct r1bio *r1_bio = bio->bi_private;
404	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405	struct r1conf *conf = r1_bio->mddev->private;
406	struct bio *to_put = NULL;
407
408	mirror = find_bio_disk(r1_bio, bio);
409
410	/*
411	 * 'one mirror IO has finished' event handler:
412	 */
413	if (!uptodate) {
414		set_bit(WriteErrorSeen,
415			&conf->mirrors[mirror].rdev->flags);
416		if (!test_and_set_bit(WantReplacement,
417				      &conf->mirrors[mirror].rdev->flags))
418			set_bit(MD_RECOVERY_NEEDED, &
419				conf->mddev->recovery);
420
421		set_bit(R1BIO_WriteError, &r1_bio->state);
422	} else {
423		/*
424		 * Set R1BIO_Uptodate in our master bio, so that we
425		 * will return a good error code for to the higher
426		 * levels even if IO on some other mirrored buffer
427		 * fails.
428		 *
429		 * The 'master' represents the composite IO operation
430		 * to user-side. So if something waits for IO, then it
431		 * will wait for the 'master' bio.
432		 */
433		sector_t first_bad;
434		int bad_sectors;
435
436		r1_bio->bios[mirror] = NULL;
437		to_put = bio;
438		/*
439		 * Do not set R1BIO_Uptodate if the current device is
440		 * rebuilding or Faulty. This is because we cannot use
441		 * such device for properly reading the data back (we could
442		 * potentially use it, if the current write would have felt
443		 * before rdev->recovery_offset, but for simplicity we don't
444		 * check this here.
445		 */
446		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448			set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450		/* Maybe we can clear some bad blocks. */
451		if (is_badblock(conf->mirrors[mirror].rdev,
452				r1_bio->sector, r1_bio->sectors,
453				&first_bad, &bad_sectors)) {
454			r1_bio->bios[mirror] = IO_MADE_GOOD;
455			set_bit(R1BIO_MadeGood, &r1_bio->state);
456		}
457	}
458
459	if (behind) {
460		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461			atomic_dec(&r1_bio->behind_remaining);
462
463		/*
464		 * In behind mode, we ACK the master bio once the I/O
465		 * has safely reached all non-writemostly
466		 * disks. Setting the Returned bit ensures that this
467		 * gets done only once -- we don't ever want to return
468		 * -EIO here, instead we'll wait
469		 */
470		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472			/* Maybe we can return now */
473			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474				struct bio *mbio = r1_bio->master_bio;
475				pr_debug("raid1: behind end write sectors"
476					 " %llu-%llu\n",
477					 (unsigned long long) mbio->bi_iter.bi_sector,
478					 (unsigned long long) bio_end_sector(mbio) - 1);
479				call_bio_endio(r1_bio);
480			}
481		}
482	}
483	if (r1_bio->bios[mirror] == NULL)
484		rdev_dec_pending(conf->mirrors[mirror].rdev,
485				 conf->mddev);
486
487	/*
488	 * Let's see if all mirrored write operations have finished
489	 * already.
490	 */
491	r1_bio_write_done(r1_bio);
492
493	if (to_put)
494		bio_put(to_put);
495}
496
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512{
513	const sector_t this_sector = r1_bio->sector;
514	int sectors;
515	int best_good_sectors;
516	int best_disk, best_dist_disk, best_pending_disk;
517	int has_nonrot_disk;
518	int disk;
519	sector_t best_dist;
520	unsigned int min_pending;
521	struct md_rdev *rdev;
522	int choose_first;
523	int choose_next_idle;
524
525	rcu_read_lock();
526	/*
527	 * Check if we can balance. We can balance on the whole
528	 * device if no resync is going on, or below the resync window.
529	 * We take the first readable disk when above the resync window.
530	 */
531 retry:
532	sectors = r1_bio->sectors;
533	best_disk = -1;
534	best_dist_disk = -1;
535	best_dist = MaxSector;
536	best_pending_disk = -1;
537	min_pending = UINT_MAX;
538	best_good_sectors = 0;
539	has_nonrot_disk = 0;
540	choose_next_idle = 0;
541
542	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545		sector_t dist;
546		sector_t first_bad;
547		int bad_sectors;
548		unsigned int pending;
549		bool nonrot;
550
551		rdev = rcu_dereference(conf->mirrors[disk].rdev);
552		if (r1_bio->bios[disk] == IO_BLOCKED
553		    || rdev == NULL
554		    || test_bit(Unmerged, &rdev->flags)
555		    || test_bit(Faulty, &rdev->flags))
556			continue;
557		if (!test_bit(In_sync, &rdev->flags) &&
558		    rdev->recovery_offset < this_sector + sectors)
559			continue;
560		if (test_bit(WriteMostly, &rdev->flags)) {
561			/* Don't balance among write-mostly, just
562			 * use the first as a last resort */
563			if (best_disk < 0) {
564				if (is_badblock(rdev, this_sector, sectors,
565						&first_bad, &bad_sectors)) {
566					if (first_bad < this_sector)
567						/* Cannot use this */
568						continue;
569					best_good_sectors = first_bad - this_sector;
570				} else
571					best_good_sectors = sectors;
572				best_disk = disk;
573			}
574			continue;
575		}
576		/* This is a reasonable device to use.  It might
577		 * even be best.
578		 */
579		if (is_badblock(rdev, this_sector, sectors,
580				&first_bad, &bad_sectors)) {
581			if (best_dist < MaxSector)
582				/* already have a better device */
583				continue;
584			if (first_bad <= this_sector) {
585				/* cannot read here. If this is the 'primary'
586				 * device, then we must not read beyond
587				 * bad_sectors from another device..
588				 */
589				bad_sectors -= (this_sector - first_bad);
590				if (choose_first && sectors > bad_sectors)
591					sectors = bad_sectors;
592				if (best_good_sectors > sectors)
593					best_good_sectors = sectors;
594
595			} else {
596				sector_t good_sectors = first_bad - this_sector;
597				if (good_sectors > best_good_sectors) {
598					best_good_sectors = good_sectors;
599					best_disk = disk;
600				}
601				if (choose_first)
602					break;
603			}
604			continue;
605		} else
606			best_good_sectors = sectors;
607
608		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609		has_nonrot_disk |= nonrot;
610		pending = atomic_read(&rdev->nr_pending);
611		dist = abs(this_sector - conf->mirrors[disk].head_position);
612		if (choose_first) {
613			best_disk = disk;
614			break;
615		}
616		/* Don't change to another disk for sequential reads */
617		if (conf->mirrors[disk].next_seq_sect == this_sector
618		    || dist == 0) {
619			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620			struct raid1_info *mirror = &conf->mirrors[disk];
621
622			best_disk = disk;
623			/*
624			 * If buffered sequential IO size exceeds optimal
625			 * iosize, check if there is idle disk. If yes, choose
626			 * the idle disk. read_balance could already choose an
627			 * idle disk before noticing it's a sequential IO in
628			 * this disk. This doesn't matter because this disk
629			 * will idle, next time it will be utilized after the
630			 * first disk has IO size exceeds optimal iosize. In
631			 * this way, iosize of the first disk will be optimal
632			 * iosize at least. iosize of the second disk might be
633			 * small, but not a big deal since when the second disk
634			 * starts IO, the first disk is likely still busy.
635			 */
636			if (nonrot && opt_iosize > 0 &&
637			    mirror->seq_start != MaxSector &&
638			    mirror->next_seq_sect > opt_iosize &&
639			    mirror->next_seq_sect - opt_iosize >=
640			    mirror->seq_start) {
641				choose_next_idle = 1;
642				continue;
643			}
644			break;
645		}
646		/* If device is idle, use it */
647		if (pending == 0) {
648			best_disk = disk;
649			break;
650		}
651
652		if (choose_next_idle)
653			continue;
654
655		if (min_pending > pending) {
656			min_pending = pending;
657			best_pending_disk = disk;
658		}
659
660		if (dist < best_dist) {
661			best_dist = dist;
662			best_dist_disk = disk;
663		}
664	}
665
666	/*
667	 * If all disks are rotational, choose the closest disk. If any disk is
668	 * non-rotational, choose the disk with less pending request even the
669	 * disk is rotational, which might/might not be optimal for raids with
670	 * mixed ratation/non-rotational disks depending on workload.
671	 */
672	if (best_disk == -1) {
673		if (has_nonrot_disk)
674			best_disk = best_pending_disk;
675		else
676			best_disk = best_dist_disk;
677	}
678
679	if (best_disk >= 0) {
680		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681		if (!rdev)
682			goto retry;
683		atomic_inc(&rdev->nr_pending);
684		if (test_bit(Faulty, &rdev->flags)) {
685			/* cannot risk returning a device that failed
686			 * before we inc'ed nr_pending
687			 */
688			rdev_dec_pending(rdev, conf->mddev);
689			goto retry;
690		}
691		sectors = best_good_sectors;
692
693		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694			conf->mirrors[best_disk].seq_start = this_sector;
695
696		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697	}
698	rcu_read_unlock();
699	*max_sectors = sectors;
700
701	return best_disk;
702}
703
704static int raid1_mergeable_bvec(struct request_queue *q,
705				struct bvec_merge_data *bvm,
706				struct bio_vec *biovec)
707{
708	struct mddev *mddev = q->queuedata;
709	struct r1conf *conf = mddev->private;
710	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711	int max = biovec->bv_len;
712
713	if (mddev->merge_check_needed) {
714		int disk;
715		rcu_read_lock();
716		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717			struct md_rdev *rdev = rcu_dereference(
718				conf->mirrors[disk].rdev);
719			if (rdev && !test_bit(Faulty, &rdev->flags)) {
720				struct request_queue *q =
721					bdev_get_queue(rdev->bdev);
722				if (q->merge_bvec_fn) {
723					bvm->bi_sector = sector +
724						rdev->data_offset;
725					bvm->bi_bdev = rdev->bdev;
726					max = min(max, q->merge_bvec_fn(
727							  q, bvm, biovec));
728				}
729			}
730		}
731		rcu_read_unlock();
732	}
733	return max;
734
735}
736
737int md_raid1_congested(struct mddev *mddev, int bits)
738{
739	struct r1conf *conf = mddev->private;
740	int i, ret = 0;
741
742	if ((bits & (1 << BDI_async_congested)) &&
743	    conf->pending_count >= max_queued_requests)
744		return 1;
745
746	rcu_read_lock();
747	for (i = 0; i < conf->raid_disks * 2; i++) {
748		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749		if (rdev && !test_bit(Faulty, &rdev->flags)) {
750			struct request_queue *q = bdev_get_queue(rdev->bdev);
751
752			BUG_ON(!q);
753
754			/* Note the '|| 1' - when read_balance prefers
755			 * non-congested targets, it can be removed
756			 */
757			if ((bits & (1<<BDI_async_congested)) || 1)
758				ret |= bdi_congested(&q->backing_dev_info, bits);
759			else
760				ret &= bdi_congested(&q->backing_dev_info, bits);
761		}
762	}
763	rcu_read_unlock();
764	return ret;
765}
766EXPORT_SYMBOL_GPL(md_raid1_congested);
767
768static int raid1_congested(void *data, int bits)
769{
770	struct mddev *mddev = data;
771
772	return mddev_congested(mddev, bits) ||
773		md_raid1_congested(mddev, bits);
774}
775
776static void flush_pending_writes(struct r1conf *conf)
777{
778	/* Any writes that have been queued but are awaiting
779	 * bitmap updates get flushed here.
780	 */
781	spin_lock_irq(&conf->device_lock);
782
783	if (conf->pending_bio_list.head) {
784		struct bio *bio;
785		bio = bio_list_get(&conf->pending_bio_list);
786		conf->pending_count = 0;
787		spin_unlock_irq(&conf->device_lock);
788		/* flush any pending bitmap writes to
789		 * disk before proceeding w/ I/O */
790		bitmap_unplug(conf->mddev->bitmap);
791		wake_up(&conf->wait_barrier);
792
793		while (bio) { /* submit pending writes */
794			struct bio *next = bio->bi_next;
795			bio->bi_next = NULL;
796			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
797			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
798				/* Just ignore it */
799				bio_endio(bio, 0);
800			else
801				generic_make_request(bio);
802			bio = next;
803		}
804	} else
805		spin_unlock_irq(&conf->device_lock);
806}
807
808/* Barriers....
809 * Sometimes we need to suspend IO while we do something else,
810 * either some resync/recovery, or reconfigure the array.
811 * To do this we raise a 'barrier'.
812 * The 'barrier' is a counter that can be raised multiple times
813 * to count how many activities are happening which preclude
814 * normal IO.
815 * We can only raise the barrier if there is no pending IO.
816 * i.e. if nr_pending == 0.
817 * We choose only to raise the barrier if no-one is waiting for the
818 * barrier to go down.  This means that as soon as an IO request
819 * is ready, no other operations which require a barrier will start
820 * until the IO request has had a chance.
821 *
822 * So: regular IO calls 'wait_barrier'.  When that returns there
823 *    is no backgroup IO happening,  It must arrange to call
824 *    allow_barrier when it has finished its IO.
825 * backgroup IO calls must call raise_barrier.  Once that returns
826 *    there is no normal IO happeing.  It must arrange to call
827 *    lower_barrier when the particular background IO completes.
828 */
829static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
830{
831	spin_lock_irq(&conf->resync_lock);
832
833	/* Wait until no block IO is waiting */
834	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
835			    conf->resync_lock);
836
837	/* block any new IO from starting */
838	conf->barrier++;
839	conf->next_resync = sector_nr;
840
841	/* For these conditions we must wait:
842	 * A: while the array is in frozen state
843	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844	 *    the max count which allowed.
845	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846	 *    next resync will reach to the window which normal bios are
847	 *    handling.
848	 * D: while there are any active requests in the current window.
849	 */
850	wait_event_lock_irq(conf->wait_barrier,
851			    !conf->array_frozen &&
852			    conf->barrier < RESYNC_DEPTH &&
853			    conf->current_window_requests == 0 &&
854			    (conf->start_next_window >=
855			     conf->next_resync + RESYNC_SECTORS),
856			    conf->resync_lock);
857
858	conf->nr_pending++;
859	spin_unlock_irq(&conf->resync_lock);
860}
861
862static void lower_barrier(struct r1conf *conf)
863{
864	unsigned long flags;
865	BUG_ON(conf->barrier <= 0);
866	spin_lock_irqsave(&conf->resync_lock, flags);
867	conf->barrier--;
868	conf->nr_pending--;
869	spin_unlock_irqrestore(&conf->resync_lock, flags);
870	wake_up(&conf->wait_barrier);
871}
872
873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
874{
875	bool wait = false;
876
877	if (conf->array_frozen || !bio)
878		wait = true;
879	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880		if ((conf->mddev->curr_resync_completed
881		     >= bio_end_sector(bio)) ||
882		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
883		     <= bio->bi_iter.bi_sector))
884			wait = false;
885		else
886			wait = true;
887	}
888
889	return wait;
890}
891
892static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
893{
894	sector_t sector = 0;
895
896	spin_lock_irq(&conf->resync_lock);
897	if (need_to_wait_for_sync(conf, bio)) {
898		conf->nr_waiting++;
899		/* Wait for the barrier to drop.
900		 * However if there are already pending
901		 * requests (preventing the barrier from
902		 * rising completely), and the
903		 * per-process bio queue isn't empty,
904		 * then don't wait, as we need to empty
905		 * that queue to allow conf->start_next_window
906		 * to increase.
907		 */
908		wait_event_lock_irq(conf->wait_barrier,
909				    !conf->array_frozen &&
910				    (!conf->barrier ||
911				     ((conf->start_next_window <
912				       conf->next_resync + RESYNC_SECTORS) &&
913				      current->bio_list &&
914				      !bio_list_empty(current->bio_list))),
915				    conf->resync_lock);
916		conf->nr_waiting--;
917	}
918
919	if (bio && bio_data_dir(bio) == WRITE) {
920		if (bio->bi_iter.bi_sector >=
921		    conf->mddev->curr_resync_completed) {
922			if (conf->start_next_window == MaxSector)
923				conf->start_next_window =
924					conf->next_resync +
925					NEXT_NORMALIO_DISTANCE;
926
927			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
928			    <= bio->bi_iter.bi_sector)
929				conf->next_window_requests++;
930			else
931				conf->current_window_requests++;
932			sector = conf->start_next_window;
933		}
934	}
935
936	conf->nr_pending++;
937	spin_unlock_irq(&conf->resync_lock);
938	return sector;
939}
940
941static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
942			  sector_t bi_sector)
943{
944	unsigned long flags;
945
946	spin_lock_irqsave(&conf->resync_lock, flags);
947	conf->nr_pending--;
948	if (start_next_window) {
949		if (start_next_window == conf->start_next_window) {
950			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
951			    <= bi_sector)
952				conf->next_window_requests--;
953			else
954				conf->current_window_requests--;
955		} else
956			conf->current_window_requests--;
957
958		if (!conf->current_window_requests) {
959			if (conf->next_window_requests) {
960				conf->current_window_requests =
961					conf->next_window_requests;
962				conf->next_window_requests = 0;
963				conf->start_next_window +=
964					NEXT_NORMALIO_DISTANCE;
965			} else
966				conf->start_next_window = MaxSector;
967		}
968	}
969	spin_unlock_irqrestore(&conf->resync_lock, flags);
970	wake_up(&conf->wait_barrier);
971}
972
973static void freeze_array(struct r1conf *conf, int extra)
974{
975	/* stop syncio and normal IO and wait for everything to
976	 * go quite.
977	 * We wait until nr_pending match nr_queued+extra
978	 * This is called in the context of one normal IO request
979	 * that has failed. Thus any sync request that might be pending
980	 * will be blocked by nr_pending, and we need to wait for
981	 * pending IO requests to complete or be queued for re-try.
982	 * Thus the number queued (nr_queued) plus this request (extra)
983	 * must match the number of pending IOs (nr_pending) before
984	 * we continue.
985	 */
986	spin_lock_irq(&conf->resync_lock);
987	conf->array_frozen = 1;
988	wait_event_lock_irq_cmd(conf->wait_barrier,
989				conf->nr_pending == conf->nr_queued+extra,
990				conf->resync_lock,
991				flush_pending_writes(conf));
992	spin_unlock_irq(&conf->resync_lock);
993}
994static void unfreeze_array(struct r1conf *conf)
995{
996	/* reverse the effect of the freeze */
997	spin_lock_irq(&conf->resync_lock);
998	conf->array_frozen = 0;
999	wake_up(&conf->wait_barrier);
1000	spin_unlock_irq(&conf->resync_lock);
1001}
1002
1003/* duplicate the data pages for behind I/O
1004 */
1005static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1006{
1007	int i;
1008	struct bio_vec *bvec;
1009	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1010					GFP_NOIO);
1011	if (unlikely(!bvecs))
1012		return;
1013
1014	bio_for_each_segment_all(bvec, bio, i) {
1015		bvecs[i] = *bvec;
1016		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017		if (unlikely(!bvecs[i].bv_page))
1018			goto do_sync_io;
1019		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021		kunmap(bvecs[i].bv_page);
1022		kunmap(bvec->bv_page);
1023	}
1024	r1_bio->behind_bvecs = bvecs;
1025	r1_bio->behind_page_count = bio->bi_vcnt;
1026	set_bit(R1BIO_BehindIO, &r1_bio->state);
1027	return;
1028
1029do_sync_io:
1030	for (i = 0; i < bio->bi_vcnt; i++)
1031		if (bvecs[i].bv_page)
1032			put_page(bvecs[i].bv_page);
1033	kfree(bvecs);
1034	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035		 bio->bi_iter.bi_size);
1036}
1037
1038struct raid1_plug_cb {
1039	struct blk_plug_cb	cb;
1040	struct bio_list		pending;
1041	int			pending_cnt;
1042};
1043
1044static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045{
1046	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1047						  cb);
1048	struct mddev *mddev = plug->cb.data;
1049	struct r1conf *conf = mddev->private;
1050	struct bio *bio;
1051
1052	if (from_schedule || current->bio_list) {
1053		spin_lock_irq(&conf->device_lock);
1054		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055		conf->pending_count += plug->pending_cnt;
1056		spin_unlock_irq(&conf->device_lock);
1057		wake_up(&conf->wait_barrier);
1058		md_wakeup_thread(mddev->thread);
1059		kfree(plug);
1060		return;
1061	}
1062
1063	/* we aren't scheduling, so we can do the write-out directly. */
1064	bio = bio_list_get(&plug->pending);
1065	bitmap_unplug(mddev->bitmap);
1066	wake_up(&conf->wait_barrier);
1067
1068	while (bio) { /* submit pending writes */
1069		struct bio *next = bio->bi_next;
1070		bio->bi_next = NULL;
1071		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073			/* Just ignore it */
1074			bio_endio(bio, 0);
1075		else
1076			generic_make_request(bio);
1077		bio = next;
1078	}
1079	kfree(plug);
1080}
1081
1082static void make_request(struct mddev *mddev, struct bio * bio)
1083{
1084	struct r1conf *conf = mddev->private;
1085	struct raid1_info *mirror;
1086	struct r1bio *r1_bio;
1087	struct bio *read_bio;
1088	int i, disks;
1089	struct bitmap *bitmap;
1090	unsigned long flags;
1091	const int rw = bio_data_dir(bio);
1092	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1093	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1094	const unsigned long do_discard = (bio->bi_rw
1095					  & (REQ_DISCARD | REQ_SECURE));
1096	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1097	struct md_rdev *blocked_rdev;
1098	struct blk_plug_cb *cb;
1099	struct raid1_plug_cb *plug = NULL;
1100	int first_clone;
1101	int sectors_handled;
1102	int max_sectors;
1103	sector_t start_next_window;
1104
1105	/*
1106	 * Register the new request and wait if the reconstruction
1107	 * thread has put up a bar for new requests.
1108	 * Continue immediately if no resync is active currently.
1109	 */
1110
1111	md_write_start(mddev, bio); /* wait on superblock update early */
1112
1113	if (bio_data_dir(bio) == WRITE &&
1114	    bio_end_sector(bio) > mddev->suspend_lo &&
1115	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1116		/* As the suspend_* range is controlled by
1117		 * userspace, we want an interruptible
1118		 * wait.
1119		 */
1120		DEFINE_WAIT(w);
1121		for (;;) {
1122			flush_signals(current);
1123			prepare_to_wait(&conf->wait_barrier,
1124					&w, TASK_INTERRUPTIBLE);
1125			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1127				break;
1128			schedule();
1129		}
1130		finish_wait(&conf->wait_barrier, &w);
1131	}
1132
1133	start_next_window = wait_barrier(conf, bio);
1134
1135	bitmap = mddev->bitmap;
1136
1137	/*
1138	 * make_request() can abort the operation when READA is being
1139	 * used and no empty request is available.
1140	 *
1141	 */
1142	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143
1144	r1_bio->master_bio = bio;
1145	r1_bio->sectors = bio_sectors(bio);
1146	r1_bio->state = 0;
1147	r1_bio->mddev = mddev;
1148	r1_bio->sector = bio->bi_iter.bi_sector;
1149
1150	/* We might need to issue multiple reads to different
1151	 * devices if there are bad blocks around, so we keep
1152	 * track of the number of reads in bio->bi_phys_segments.
1153	 * If this is 0, there is only one r1_bio and no locking
1154	 * will be needed when requests complete.  If it is
1155	 * non-zero, then it is the number of not-completed requests.
1156	 */
1157	bio->bi_phys_segments = 0;
1158	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159
1160	if (rw == READ) {
1161		/*
1162		 * read balancing logic:
1163		 */
1164		int rdisk;
1165
1166read_again:
1167		rdisk = read_balance(conf, r1_bio, &max_sectors);
1168
1169		if (rdisk < 0) {
1170			/* couldn't find anywhere to read from */
1171			raid_end_bio_io(r1_bio);
1172			return;
1173		}
1174		mirror = conf->mirrors + rdisk;
1175
1176		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1177		    bitmap) {
1178			/* Reading from a write-mostly device must
1179			 * take care not to over-take any writes
1180			 * that are 'behind'
1181			 */
1182			wait_event(bitmap->behind_wait,
1183				   atomic_read(&bitmap->behind_writes) == 0);
1184		}
1185		r1_bio->read_disk = rdisk;
1186		r1_bio->start_next_window = 0;
1187
1188		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1189		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1190			 max_sectors);
1191
1192		r1_bio->bios[rdisk] = read_bio;
1193
1194		read_bio->bi_iter.bi_sector = r1_bio->sector +
1195			mirror->rdev->data_offset;
1196		read_bio->bi_bdev = mirror->rdev->bdev;
1197		read_bio->bi_end_io = raid1_end_read_request;
1198		read_bio->bi_rw = READ | do_sync;
1199		read_bio->bi_private = r1_bio;
1200
1201		if (max_sectors < r1_bio->sectors) {
1202			/* could not read all from this device, so we will
1203			 * need another r1_bio.
1204			 */
1205
1206			sectors_handled = (r1_bio->sector + max_sectors
1207					   - bio->bi_iter.bi_sector);
1208			r1_bio->sectors = max_sectors;
1209			spin_lock_irq(&conf->device_lock);
1210			if (bio->bi_phys_segments == 0)
1211				bio->bi_phys_segments = 2;
1212			else
1213				bio->bi_phys_segments++;
1214			spin_unlock_irq(&conf->device_lock);
1215			/* Cannot call generic_make_request directly
1216			 * as that will be queued in __make_request
1217			 * and subsequent mempool_alloc might block waiting
1218			 * for it.  So hand bio over to raid1d.
1219			 */
1220			reschedule_retry(r1_bio);
1221
1222			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1223
1224			r1_bio->master_bio = bio;
1225			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1226			r1_bio->state = 0;
1227			r1_bio->mddev = mddev;
1228			r1_bio->sector = bio->bi_iter.bi_sector +
1229				sectors_handled;
1230			goto read_again;
1231		} else
1232			generic_make_request(read_bio);
1233		return;
1234	}
1235
1236	/*
1237	 * WRITE:
1238	 */
1239	if (conf->pending_count >= max_queued_requests) {
1240		md_wakeup_thread(mddev->thread);
1241		wait_event(conf->wait_barrier,
1242			   conf->pending_count < max_queued_requests);
1243	}
1244	/* first select target devices under rcu_lock and
1245	 * inc refcount on their rdev.  Record them by setting
1246	 * bios[x] to bio
1247	 * If there are known/acknowledged bad blocks on any device on
1248	 * which we have seen a write error, we want to avoid writing those
1249	 * blocks.
1250	 * This potentially requires several writes to write around
1251	 * the bad blocks.  Each set of writes gets it's own r1bio
1252	 * with a set of bios attached.
1253	 */
1254
1255	disks = conf->raid_disks * 2;
1256 retry_write:
1257	r1_bio->start_next_window = start_next_window;
1258	blocked_rdev = NULL;
1259	rcu_read_lock();
1260	max_sectors = r1_bio->sectors;
1261	for (i = 0;  i < disks; i++) {
1262		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1263		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264			atomic_inc(&rdev->nr_pending);
1265			blocked_rdev = rdev;
1266			break;
1267		}
1268		r1_bio->bios[i] = NULL;
1269		if (!rdev || test_bit(Faulty, &rdev->flags)
1270		    || test_bit(Unmerged, &rdev->flags)) {
1271			if (i < conf->raid_disks)
1272				set_bit(R1BIO_Degraded, &r1_bio->state);
1273			continue;
1274		}
1275
1276		atomic_inc(&rdev->nr_pending);
1277		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278			sector_t first_bad;
1279			int bad_sectors;
1280			int is_bad;
1281
1282			is_bad = is_badblock(rdev, r1_bio->sector,
1283					     max_sectors,
1284					     &first_bad, &bad_sectors);
1285			if (is_bad < 0) {
1286				/* mustn't write here until the bad block is
1287				 * acknowledged*/
1288				set_bit(BlockedBadBlocks, &rdev->flags);
1289				blocked_rdev = rdev;
1290				break;
1291			}
1292			if (is_bad && first_bad <= r1_bio->sector) {
1293				/* Cannot write here at all */
1294				bad_sectors -= (r1_bio->sector - first_bad);
1295				if (bad_sectors < max_sectors)
1296					/* mustn't write more than bad_sectors
1297					 * to other devices yet
1298					 */
1299					max_sectors = bad_sectors;
1300				rdev_dec_pending(rdev, mddev);
1301				/* We don't set R1BIO_Degraded as that
1302				 * only applies if the disk is
1303				 * missing, so it might be re-added,
1304				 * and we want to know to recover this
1305				 * chunk.
1306				 * In this case the device is here,
1307				 * and the fact that this chunk is not
1308				 * in-sync is recorded in the bad
1309				 * block log
1310				 */
1311				continue;
1312			}
1313			if (is_bad) {
1314				int good_sectors = first_bad - r1_bio->sector;
1315				if (good_sectors < max_sectors)
1316					max_sectors = good_sectors;
1317			}
1318		}
1319		r1_bio->bios[i] = bio;
1320	}
1321	rcu_read_unlock();
1322
1323	if (unlikely(blocked_rdev)) {
1324		/* Wait for this device to become unblocked */
1325		int j;
1326		sector_t old = start_next_window;
1327
1328		for (j = 0; j < i; j++)
1329			if (r1_bio->bios[j])
1330				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1331		r1_bio->state = 0;
1332		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1333		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1334		start_next_window = wait_barrier(conf, bio);
1335		/*
1336		 * We must make sure the multi r1bios of bio have
1337		 * the same value of bi_phys_segments
1338		 */
1339		if (bio->bi_phys_segments && old &&
1340		    old != start_next_window)
1341			/* Wait for the former r1bio(s) to complete */
1342			wait_event(conf->wait_barrier,
1343				   bio->bi_phys_segments == 1);
1344		goto retry_write;
1345	}
1346
1347	if (max_sectors < r1_bio->sectors) {
1348		/* We are splitting this write into multiple parts, so
1349		 * we need to prepare for allocating another r1_bio.
1350		 */
1351		r1_bio->sectors = max_sectors;
1352		spin_lock_irq(&conf->device_lock);
1353		if (bio->bi_phys_segments == 0)
1354			bio->bi_phys_segments = 2;
1355		else
1356			bio->bi_phys_segments++;
1357		spin_unlock_irq(&conf->device_lock);
1358	}
1359	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1360
1361	atomic_set(&r1_bio->remaining, 1);
1362	atomic_set(&r1_bio->behind_remaining, 0);
1363
1364	first_clone = 1;
1365	for (i = 0; i < disks; i++) {
1366		struct bio *mbio;
1367		if (!r1_bio->bios[i])
1368			continue;
1369
1370		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1371		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1372
1373		if (first_clone) {
1374			/* do behind I/O ?
1375			 * Not if there are too many, or cannot
1376			 * allocate memory, or a reader on WriteMostly
1377			 * is waiting for behind writes to flush */
1378			if (bitmap &&
1379			    (atomic_read(&bitmap->behind_writes)
1380			     < mddev->bitmap_info.max_write_behind) &&
1381			    !waitqueue_active(&bitmap->behind_wait))
1382				alloc_behind_pages(mbio, r1_bio);
1383
1384			bitmap_startwrite(bitmap, r1_bio->sector,
1385					  r1_bio->sectors,
1386					  test_bit(R1BIO_BehindIO,
1387						   &r1_bio->state));
1388			first_clone = 0;
1389		}
1390		if (r1_bio->behind_bvecs) {
1391			struct bio_vec *bvec;
1392			int j;
1393
1394			/*
1395			 * We trimmed the bio, so _all is legit
1396			 */
1397			bio_for_each_segment_all(bvec, mbio, j)
1398				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1399			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400				atomic_inc(&r1_bio->behind_remaining);
1401		}
1402
1403		r1_bio->bios[i] = mbio;
1404
1405		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1406				   conf->mirrors[i].rdev->data_offset);
1407		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408		mbio->bi_end_io	= raid1_end_write_request;
1409		mbio->bi_rw =
1410			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1411		mbio->bi_private = r1_bio;
1412
1413		atomic_inc(&r1_bio->remaining);
1414
1415		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1416		if (cb)
1417			plug = container_of(cb, struct raid1_plug_cb, cb);
1418		else
1419			plug = NULL;
1420		spin_lock_irqsave(&conf->device_lock, flags);
1421		if (plug) {
1422			bio_list_add(&plug->pending, mbio);
1423			plug->pending_cnt++;
1424		} else {
1425			bio_list_add(&conf->pending_bio_list, mbio);
1426			conf->pending_count++;
1427		}
1428		spin_unlock_irqrestore(&conf->device_lock, flags);
1429		if (!plug)
1430			md_wakeup_thread(mddev->thread);
1431	}
1432	/* Mustn't call r1_bio_write_done before this next test,
1433	 * as it could result in the bio being freed.
1434	 */
1435	if (sectors_handled < bio_sectors(bio)) {
1436		r1_bio_write_done(r1_bio);
1437		/* We need another r1_bio.  It has already been counted
1438		 * in bio->bi_phys_segments
1439		 */
1440		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441		r1_bio->master_bio = bio;
1442		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1443		r1_bio->state = 0;
1444		r1_bio->mddev = mddev;
1445		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1446		goto retry_write;
1447	}
1448
1449	r1_bio_write_done(r1_bio);
1450
1451	/* In case raid1d snuck in to freeze_array */
1452	wake_up(&conf->wait_barrier);
1453}
1454
1455static void status(struct seq_file *seq, struct mddev *mddev)
1456{
1457	struct r1conf *conf = mddev->private;
1458	int i;
1459
1460	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1461		   conf->raid_disks - mddev->degraded);
1462	rcu_read_lock();
1463	for (i = 0; i < conf->raid_disks; i++) {
1464		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1465		seq_printf(seq, "%s",
1466			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1467	}
1468	rcu_read_unlock();
1469	seq_printf(seq, "]");
1470}
1471
1472static void error(struct mddev *mddev, struct md_rdev *rdev)
1473{
1474	char b[BDEVNAME_SIZE];
1475	struct r1conf *conf = mddev->private;
1476
1477	/*
1478	 * If it is not operational, then we have already marked it as dead
1479	 * else if it is the last working disks, ignore the error, let the
1480	 * next level up know.
1481	 * else mark the drive as failed
1482	 */
1483	if (test_bit(In_sync, &rdev->flags)
1484	    && (conf->raid_disks - mddev->degraded) == 1) {
1485		/*
1486		 * Don't fail the drive, act as though we were just a
1487		 * normal single drive.
1488		 * However don't try a recovery from this drive as
1489		 * it is very likely to fail.
1490		 */
1491		conf->recovery_disabled = mddev->recovery_disabled;
1492		return;
1493	}
1494	set_bit(Blocked, &rdev->flags);
1495	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496		unsigned long flags;
1497		spin_lock_irqsave(&conf->device_lock, flags);
1498		mddev->degraded++;
1499		set_bit(Faulty, &rdev->flags);
1500		spin_unlock_irqrestore(&conf->device_lock, flags);
1501	} else
1502		set_bit(Faulty, &rdev->flags);
1503	/*
1504	 * if recovery is running, make sure it aborts.
1505	 */
1506	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1508	printk(KERN_ALERT
1509	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510	       "md/raid1:%s: Operation continuing on %d devices.\n",
1511	       mdname(mddev), bdevname(rdev->bdev, b),
1512	       mdname(mddev), conf->raid_disks - mddev->degraded);
1513}
1514
1515static void print_conf(struct r1conf *conf)
1516{
1517	int i;
1518
1519	printk(KERN_DEBUG "RAID1 conf printout:\n");
1520	if (!conf) {
1521		printk(KERN_DEBUG "(!conf)\n");
1522		return;
1523	}
1524	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1525		conf->raid_disks);
1526
1527	rcu_read_lock();
1528	for (i = 0; i < conf->raid_disks; i++) {
1529		char b[BDEVNAME_SIZE];
1530		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1531		if (rdev)
1532			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1533			       i, !test_bit(In_sync, &rdev->flags),
1534			       !test_bit(Faulty, &rdev->flags),
1535			       bdevname(rdev->bdev,b));
1536	}
1537	rcu_read_unlock();
1538}
1539
1540static void close_sync(struct r1conf *conf)
1541{
1542	wait_barrier(conf, NULL);
1543	allow_barrier(conf, 0, 0);
1544
1545	mempool_destroy(conf->r1buf_pool);
1546	conf->r1buf_pool = NULL;
1547
1548	spin_lock_irq(&conf->resync_lock);
1549	conf->next_resync = 0;
1550	conf->start_next_window = MaxSector;
1551	conf->current_window_requests +=
1552		conf->next_window_requests;
1553	conf->next_window_requests = 0;
1554	spin_unlock_irq(&conf->resync_lock);
1555}
1556
1557static int raid1_spare_active(struct mddev *mddev)
1558{
1559	int i;
1560	struct r1conf *conf = mddev->private;
1561	int count = 0;
1562	unsigned long flags;
1563
1564	/*
1565	 * Find all failed disks within the RAID1 configuration
1566	 * and mark them readable.
1567	 * Called under mddev lock, so rcu protection not needed.
1568	 */
1569	for (i = 0; i < conf->raid_disks; i++) {
1570		struct md_rdev *rdev = conf->mirrors[i].rdev;
1571		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1572		if (repl
1573		    && repl->recovery_offset == MaxSector
1574		    && !test_bit(Faulty, &repl->flags)
1575		    && !test_and_set_bit(In_sync, &repl->flags)) {
1576			/* replacement has just become active */
1577			if (!rdev ||
1578			    !test_and_clear_bit(In_sync, &rdev->flags))
1579				count++;
1580			if (rdev) {
1581				/* Replaced device not technically
1582				 * faulty, but we need to be sure
1583				 * it gets removed and never re-added
1584				 */
1585				set_bit(Faulty, &rdev->flags);
1586				sysfs_notify_dirent_safe(
1587					rdev->sysfs_state);
1588			}
1589		}
1590		if (rdev
1591		    && rdev->recovery_offset == MaxSector
1592		    && !test_bit(Faulty, &rdev->flags)
1593		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1594			count++;
1595			sysfs_notify_dirent_safe(rdev->sysfs_state);
1596		}
1597	}
1598	spin_lock_irqsave(&conf->device_lock, flags);
1599	mddev->degraded -= count;
1600	spin_unlock_irqrestore(&conf->device_lock, flags);
1601
1602	print_conf(conf);
1603	return count;
1604}
1605
1606static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607{
1608	struct r1conf *conf = mddev->private;
1609	int err = -EEXIST;
1610	int mirror = 0;
1611	struct raid1_info *p;
1612	int first = 0;
1613	int last = conf->raid_disks - 1;
1614	struct request_queue *q = bdev_get_queue(rdev->bdev);
1615
1616	if (mddev->recovery_disabled == conf->recovery_disabled)
1617		return -EBUSY;
1618
1619	if (rdev->raid_disk >= 0)
1620		first = last = rdev->raid_disk;
1621
1622	if (q->merge_bvec_fn) {
1623		set_bit(Unmerged, &rdev->flags);
1624		mddev->merge_check_needed = 1;
1625	}
1626
1627	for (mirror = first; mirror <= last; mirror++) {
1628		p = conf->mirrors+mirror;
1629		if (!p->rdev) {
1630
1631			if (mddev->gendisk)
1632				disk_stack_limits(mddev->gendisk, rdev->bdev,
1633						  rdev->data_offset << 9);
1634
1635			p->head_position = 0;
1636			rdev->raid_disk = mirror;
1637			err = 0;
1638			/* As all devices are equivalent, we don't need a full recovery
1639			 * if this was recently any drive of the array
1640			 */
1641			if (rdev->saved_raid_disk < 0)
1642				conf->fullsync = 1;
1643			rcu_assign_pointer(p->rdev, rdev);
1644			break;
1645		}
1646		if (test_bit(WantReplacement, &p->rdev->flags) &&
1647		    p[conf->raid_disks].rdev == NULL) {
1648			/* Add this device as a replacement */
1649			clear_bit(In_sync, &rdev->flags);
1650			set_bit(Replacement, &rdev->flags);
1651			rdev->raid_disk = mirror;
1652			err = 0;
1653			conf->fullsync = 1;
1654			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655			break;
1656		}
1657	}
1658	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659		/* Some requests might not have seen this new
1660		 * merge_bvec_fn.  We must wait for them to complete
1661		 * before merging the device fully.
1662		 * First we make sure any code which has tested
1663		 * our function has submitted the request, then
1664		 * we wait for all outstanding requests to complete.
1665		 */
1666		synchronize_sched();
1667		freeze_array(conf, 0);
1668		unfreeze_array(conf);
1669		clear_bit(Unmerged, &rdev->flags);
1670	}
1671	md_integrity_add_rdev(rdev, mddev);
1672	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1674	print_conf(conf);
1675	return err;
1676}
1677
1678static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679{
1680	struct r1conf *conf = mddev->private;
1681	int err = 0;
1682	int number = rdev->raid_disk;
1683	struct raid1_info *p = conf->mirrors + number;
1684
1685	if (rdev != p->rdev)
1686		p = conf->mirrors + conf->raid_disks + number;
1687
1688	print_conf(conf);
1689	if (rdev == p->rdev) {
1690		if (test_bit(In_sync, &rdev->flags) ||
1691		    atomic_read(&rdev->nr_pending)) {
1692			err = -EBUSY;
1693			goto abort;
1694		}
1695		/* Only remove non-faulty devices if recovery
1696		 * is not possible.
1697		 */
1698		if (!test_bit(Faulty, &rdev->flags) &&
1699		    mddev->recovery_disabled != conf->recovery_disabled &&
1700		    mddev->degraded < conf->raid_disks) {
1701			err = -EBUSY;
1702			goto abort;
1703		}
1704		p->rdev = NULL;
1705		synchronize_rcu();
1706		if (atomic_read(&rdev->nr_pending)) {
1707			/* lost the race, try later */
1708			err = -EBUSY;
1709			p->rdev = rdev;
1710			goto abort;
1711		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712			/* We just removed a device that is being replaced.
1713			 * Move down the replacement.  We drain all IO before
1714			 * doing this to avoid confusion.
1715			 */
1716			struct md_rdev *repl =
1717				conf->mirrors[conf->raid_disks + number].rdev;
1718			freeze_array(conf, 0);
1719			clear_bit(Replacement, &repl->flags);
1720			p->rdev = repl;
1721			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722			unfreeze_array(conf);
1723			clear_bit(WantReplacement, &rdev->flags);
1724		} else
1725			clear_bit(WantReplacement, &rdev->flags);
1726		err = md_integrity_register(mddev);
1727	}
1728abort:
1729
1730	print_conf(conf);
1731	return err;
1732}
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736	struct r1bio *r1_bio = bio->bi_private;
1737
1738	update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740	/*
1741	 * we have read a block, now it needs to be re-written,
1742	 * or re-read if the read failed.
1743	 * We don't do much here, just schedule handling by raid1d
1744	 */
1745	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748	if (atomic_dec_and_test(&r1_bio->remaining))
1749		reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
1753{
1754	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755	struct r1bio *r1_bio = bio->bi_private;
1756	struct mddev *mddev = r1_bio->mddev;
1757	struct r1conf *conf = mddev->private;
1758	int mirror=0;
1759	sector_t first_bad;
1760	int bad_sectors;
1761
1762	mirror = find_bio_disk(r1_bio, bio);
1763
1764	if (!uptodate) {
1765		sector_t sync_blocks = 0;
1766		sector_t s = r1_bio->sector;
1767		long sectors_to_go = r1_bio->sectors;
1768		/* make sure these bits doesn't get cleared. */
1769		do {
1770			bitmap_end_sync(mddev->bitmap, s,
1771					&sync_blocks, 1);
1772			s += sync_blocks;
1773			sectors_to_go -= sync_blocks;
1774		} while (sectors_to_go > 0);
1775		set_bit(WriteErrorSeen,
1776			&conf->mirrors[mirror].rdev->flags);
1777		if (!test_and_set_bit(WantReplacement,
1778				      &conf->mirrors[mirror].rdev->flags))
1779			set_bit(MD_RECOVERY_NEEDED, &
1780				mddev->recovery);
1781		set_bit(R1BIO_WriteError, &r1_bio->state);
1782	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783			       r1_bio->sector,
1784			       r1_bio->sectors,
1785			       &first_bad, &bad_sectors) &&
1786		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787				r1_bio->sector,
1788				r1_bio->sectors,
1789				&first_bad, &bad_sectors)
1790		)
1791		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794		int s = r1_bio->sectors;
1795		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797			reschedule_retry(r1_bio);
1798		else {
1799			put_buf(r1_bio);
1800			md_done_sync(mddev, s, uptodate);
1801		}
1802	}
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806			    int sectors, struct page *page, int rw)
1807{
1808	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809		/* success */
1810		return 1;
1811	if (rw == WRITE) {
1812		set_bit(WriteErrorSeen, &rdev->flags);
1813		if (!test_and_set_bit(WantReplacement,
1814				      &rdev->flags))
1815			set_bit(MD_RECOVERY_NEEDED, &
1816				rdev->mddev->recovery);
1817	}
1818	/* need to record an error - either for the block or the device */
1819	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820		md_error(rdev->mddev, rdev);
1821	return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826	/* Try some synchronous reads of other devices to get
1827	 * good data, much like with normal read errors.  Only
1828	 * read into the pages we already have so we don't
1829	 * need to re-issue the read request.
1830	 * We don't need to freeze the array, because being in an
1831	 * active sync request, there is no normal IO, and
1832	 * no overlapping syncs.
1833	 * We don't need to check is_badblock() again as we
1834	 * made sure that anything with a bad block in range
1835	 * will have bi_end_io clear.
1836	 */
1837	struct mddev *mddev = r1_bio->mddev;
1838	struct r1conf *conf = mddev->private;
1839	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840	sector_t sect = r1_bio->sector;
1841	int sectors = r1_bio->sectors;
1842	int idx = 0;
1843
1844	while(sectors) {
1845		int s = sectors;
1846		int d = r1_bio->read_disk;
1847		int success = 0;
1848		struct md_rdev *rdev;
1849		int start;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853		do {
1854			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855				/* No rcu protection needed here devices
1856				 * can only be removed when no resync is
1857				 * active, and resync is currently active
1858				 */
1859				rdev = conf->mirrors[d].rdev;
1860				if (sync_page_io(rdev, sect, s<<9,
1861						 bio->bi_io_vec[idx].bv_page,
1862						 READ, false)) {
1863					success = 1;
1864					break;
1865				}
1866			}
1867			d++;
1868			if (d == conf->raid_disks * 2)
1869				d = 0;
1870		} while (!success && d != r1_bio->read_disk);
1871
1872		if (!success) {
1873			char b[BDEVNAME_SIZE];
1874			int abort = 0;
1875			/* Cannot read from anywhere, this block is lost.
1876			 * Record a bad block on each device.  If that doesn't
1877			 * work just disable and interrupt the recovery.
1878			 * Don't fail devices as that won't really help.
1879			 */
1880			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881			       " for block %llu\n",
1882			       mdname(mddev),
1883			       bdevname(bio->bi_bdev, b),
1884			       (unsigned long long)r1_bio->sector);
1885			for (d = 0; d < conf->raid_disks * 2; d++) {
1886				rdev = conf->mirrors[d].rdev;
1887				if (!rdev || test_bit(Faulty, &rdev->flags))
1888					continue;
1889				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890					abort = 1;
1891			}
1892			if (abort) {
1893				conf->recovery_disabled =
1894					mddev->recovery_disabled;
1895				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896				md_done_sync(mddev, r1_bio->sectors, 0);
1897				put_buf(r1_bio);
1898				return 0;
1899			}
1900			/* Try next page */
1901			sectors -= s;
1902			sect += s;
1903			idx++;
1904			continue;
1905		}
1906
1907		start = d;
1908		/* write it back and re-read */
1909		while (d != r1_bio->read_disk) {
1910			if (d == 0)
1911				d = conf->raid_disks * 2;
1912			d--;
1913			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914				continue;
1915			rdev = conf->mirrors[d].rdev;
1916			if (r1_sync_page_io(rdev, sect, s,
1917					    bio->bi_io_vec[idx].bv_page,
1918					    WRITE) == 0) {
1919				r1_bio->bios[d]->bi_end_io = NULL;
1920				rdev_dec_pending(rdev, mddev);
1921			}
1922		}
1923		d = start;
1924		while (d != r1_bio->read_disk) {
1925			if (d == 0)
1926				d = conf->raid_disks * 2;
1927			d--;
1928			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929				continue;
1930			rdev = conf->mirrors[d].rdev;
1931			if (r1_sync_page_io(rdev, sect, s,
1932					    bio->bi_io_vec[idx].bv_page,
1933					    READ) != 0)
1934				atomic_add(s, &rdev->corrected_errors);
1935		}
1936		sectors -= s;
1937		sect += s;
1938		idx ++;
1939	}
1940	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942	return 1;
1943}
1944
1945static void process_checks(struct r1bio *r1_bio)
1946{
1947	/* We have read all readable devices.  If we haven't
1948	 * got the block, then there is no hope left.
1949	 * If we have, then we want to do a comparison
1950	 * and skip the write if everything is the same.
1951	 * If any blocks failed to read, then we need to
1952	 * attempt an over-write
1953	 */
1954	struct mddev *mddev = r1_bio->mddev;
1955	struct r1conf *conf = mddev->private;
1956	int primary;
1957	int i;
1958	int vcnt;
1959
1960	/* Fix variable parts of all bios */
1961	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962	for (i = 0; i < conf->raid_disks * 2; i++) {
1963		int j;
1964		int size;
1965		int uptodate;
1966		struct bio *b = r1_bio->bios[i];
1967		if (b->bi_end_io != end_sync_read)
1968			continue;
1969		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971		bio_reset(b);
1972		if (!uptodate)
1973			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974		b->bi_vcnt = vcnt;
1975		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976		b->bi_iter.bi_sector = r1_bio->sector +
1977			conf->mirrors[i].rdev->data_offset;
1978		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979		b->bi_end_io = end_sync_read;
1980		b->bi_private = r1_bio;
1981
1982		size = b->bi_iter.bi_size;
1983		for (j = 0; j < vcnt ; j++) {
1984			struct bio_vec *bi;
1985			bi = &b->bi_io_vec[j];
1986			bi->bv_offset = 0;
1987			if (size > PAGE_SIZE)
1988				bi->bv_len = PAGE_SIZE;
1989			else
1990				bi->bv_len = size;
1991			size -= PAGE_SIZE;
1992		}
1993	}
1994	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997			r1_bio->bios[primary]->bi_end_io = NULL;
1998			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999			break;
2000		}
2001	r1_bio->read_disk = primary;
2002	for (i = 0; i < conf->raid_disks * 2; i++) {
2003		int j;
2004		struct bio *pbio = r1_bio->bios[primary];
2005		struct bio *sbio = r1_bio->bios[i];
2006		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007
2008		if (sbio->bi_end_io != end_sync_read)
2009			continue;
2010		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012
2013		if (uptodate) {
2014			for (j = vcnt; j-- ; ) {
2015				struct page *p, *s;
2016				p = pbio->bi_io_vec[j].bv_page;
2017				s = sbio->bi_io_vec[j].bv_page;
2018				if (memcmp(page_address(p),
2019					   page_address(s),
2020					   sbio->bi_io_vec[j].bv_len))
2021					break;
2022			}
2023		} else
2024			j = 0;
2025		if (j >= 0)
2026			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028			      && uptodate)) {
2029			/* No need to write to this device. */
2030			sbio->bi_end_io = NULL;
2031			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032			continue;
2033		}
2034
2035		bio_copy_data(sbio, pbio);
2036	}
2037}
2038
2039static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2040{
2041	struct r1conf *conf = mddev->private;
2042	int i;
2043	int disks = conf->raid_disks * 2;
2044	struct bio *bio, *wbio;
2045
2046	bio = r1_bio->bios[r1_bio->read_disk];
2047
2048	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2049		/* ouch - failed to read all of that. */
2050		if (!fix_sync_read_error(r1_bio))
2051			return;
2052
2053	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2054		process_checks(r1_bio);
2055
2056	/*
2057	 * schedule writes
2058	 */
2059	atomic_set(&r1_bio->remaining, 1);
2060	for (i = 0; i < disks ; i++) {
2061		wbio = r1_bio->bios[i];
2062		if (wbio->bi_end_io == NULL ||
2063		    (wbio->bi_end_io == end_sync_read &&
2064		     (i == r1_bio->read_disk ||
2065		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2066			continue;
2067
2068		wbio->bi_rw = WRITE;
2069		wbio->bi_end_io = end_sync_write;
2070		atomic_inc(&r1_bio->remaining);
2071		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2072
2073		generic_make_request(wbio);
2074	}
2075
2076	if (atomic_dec_and_test(&r1_bio->remaining)) {
2077		/* if we're here, all write(s) have completed, so clean up */
2078		int s = r1_bio->sectors;
2079		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2080		    test_bit(R1BIO_WriteError, &r1_bio->state))
2081			reschedule_retry(r1_bio);
2082		else {
2083			put_buf(r1_bio);
2084			md_done_sync(mddev, s, 1);
2085		}
2086	}
2087}
2088
2089/*
2090 * This is a kernel thread which:
2091 *
2092 *	1.	Retries failed read operations on working mirrors.
2093 *	2.	Updates the raid superblock when problems encounter.
2094 *	3.	Performs writes following reads for array synchronising.
2095 */
2096
2097static void fix_read_error(struct r1conf *conf, int read_disk,
2098			   sector_t sect, int sectors)
2099{
2100	struct mddev *mddev = conf->mddev;
2101	while(sectors) {
2102		int s = sectors;
2103		int d = read_disk;
2104		int success = 0;
2105		int start;
2106		struct md_rdev *rdev;
2107
2108		if (s > (PAGE_SIZE>>9))
2109			s = PAGE_SIZE >> 9;
2110
2111		do {
2112			/* Note: no rcu protection needed here
2113			 * as this is synchronous in the raid1d thread
2114			 * which is the thread that might remove
2115			 * a device.  If raid1d ever becomes multi-threaded....
2116			 */
2117			sector_t first_bad;
2118			int bad_sectors;
2119
2120			rdev = conf->mirrors[d].rdev;
2121			if (rdev &&
2122			    (test_bit(In_sync, &rdev->flags) ||
2123			     (!test_bit(Faulty, &rdev->flags) &&
2124			      rdev->recovery_offset >= sect + s)) &&
2125			    is_badblock(rdev, sect, s,
2126					&first_bad, &bad_sectors) == 0 &&
2127			    sync_page_io(rdev, sect, s<<9,
2128					 conf->tmppage, READ, false))
2129				success = 1;
2130			else {
2131				d++;
2132				if (d == conf->raid_disks * 2)
2133					d = 0;
2134			}
2135		} while (!success && d != read_disk);
2136
2137		if (!success) {
2138			/* Cannot read from anywhere - mark it bad */
2139			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2140			if (!rdev_set_badblocks(rdev, sect, s, 0))
2141				md_error(mddev, rdev);
2142			break;
2143		}
2144		/* write it back and re-read */
2145		start = d;
2146		while (d != read_disk) {
2147			if (d==0)
2148				d = conf->raid_disks * 2;
2149			d--;
2150			rdev = conf->mirrors[d].rdev;
2151			if (rdev &&
2152			    !test_bit(Faulty, &rdev->flags))
2153				r1_sync_page_io(rdev, sect, s,
2154						conf->tmppage, WRITE);
2155		}
2156		d = start;
2157		while (d != read_disk) {
2158			char b[BDEVNAME_SIZE];
2159			if (d==0)
2160				d = conf->raid_disks * 2;
2161			d--;
2162			rdev = conf->mirrors[d].rdev;
2163			if (rdev &&
2164			    !test_bit(Faulty, &rdev->flags)) {
2165				if (r1_sync_page_io(rdev, sect, s,
2166						    conf->tmppage, READ)) {
2167					atomic_add(s, &rdev->corrected_errors);
2168					printk(KERN_INFO
2169					       "md/raid1:%s: read error corrected "
2170					       "(%d sectors at %llu on %s)\n",
2171					       mdname(mddev), s,
2172					       (unsigned long long)(sect +
2173					           rdev->data_offset),
2174					       bdevname(rdev->bdev, b));
2175				}
2176			}
2177		}
2178		sectors -= s;
2179		sect += s;
2180	}
2181}
2182
2183static int narrow_write_error(struct r1bio *r1_bio, int i)
2184{
2185	struct mddev *mddev = r1_bio->mddev;
2186	struct r1conf *conf = mddev->private;
2187	struct md_rdev *rdev = conf->mirrors[i].rdev;
2188
2189	/* bio has the data to be written to device 'i' where
2190	 * we just recently had a write error.
2191	 * We repeatedly clone the bio and trim down to one block,
2192	 * then try the write.  Where the write fails we record
2193	 * a bad block.
2194	 * It is conceivable that the bio doesn't exactly align with
2195	 * blocks.  We must handle this somehow.
2196	 *
2197	 * We currently own a reference on the rdev.
2198	 */
2199
2200	int block_sectors;
2201	sector_t sector;
2202	int sectors;
2203	int sect_to_write = r1_bio->sectors;
2204	int ok = 1;
2205
2206	if (rdev->badblocks.shift < 0)
2207		return 0;
2208
2209	block_sectors = 1 << rdev->badblocks.shift;
2210	sector = r1_bio->sector;
2211	sectors = ((sector + block_sectors)
2212		   & ~(sector_t)(block_sectors - 1))
2213		- sector;
2214
2215	while (sect_to_write) {
2216		struct bio *wbio;
2217		if (sectors > sect_to_write)
2218			sectors = sect_to_write;
2219		/* Write at 'sector' for 'sectors'*/
2220
2221		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2222			unsigned vcnt = r1_bio->behind_page_count;
2223			struct bio_vec *vec = r1_bio->behind_bvecs;
2224
2225			while (!vec->bv_page) {
2226				vec++;
2227				vcnt--;
2228			}
2229
2230			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2231			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2232
2233			wbio->bi_vcnt = vcnt;
2234		} else {
2235			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2236		}
2237
2238		wbio->bi_rw = WRITE;
2239		wbio->bi_iter.bi_sector = r1_bio->sector;
2240		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2241
2242		bio_trim(wbio, sector - r1_bio->sector, sectors);
2243		wbio->bi_iter.bi_sector += rdev->data_offset;
2244		wbio->bi_bdev = rdev->bdev;
2245		if (submit_bio_wait(WRITE, wbio) == 0)
2246			/* failure! */
2247			ok = rdev_set_badblocks(rdev, sector,
2248						sectors, 0)
2249				&& ok;
2250
2251		bio_put(wbio);
2252		sect_to_write -= sectors;
2253		sector += sectors;
2254		sectors = block_sectors;
2255	}
2256	return ok;
2257}
2258
2259static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2260{
2261	int m;
2262	int s = r1_bio->sectors;
2263	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2264		struct md_rdev *rdev = conf->mirrors[m].rdev;
2265		struct bio *bio = r1_bio->bios[m];
2266		if (bio->bi_end_io == NULL)
2267			continue;
2268		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2270			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2271		}
2272		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2274			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2275				md_error(conf->mddev, rdev);
2276		}
2277	}
2278	put_buf(r1_bio);
2279	md_done_sync(conf->mddev, s, 1);
2280}
2281
2282static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2283{
2284	int m;
2285	for (m = 0; m < conf->raid_disks * 2 ; m++)
2286		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2287			struct md_rdev *rdev = conf->mirrors[m].rdev;
2288			rdev_clear_badblocks(rdev,
2289					     r1_bio->sector,
2290					     r1_bio->sectors, 0);
2291			rdev_dec_pending(rdev, conf->mddev);
2292		} else if (r1_bio->bios[m] != NULL) {
2293			/* This drive got a write error.  We need to
2294			 * narrow down and record precise write
2295			 * errors.
2296			 */
2297			if (!narrow_write_error(r1_bio, m)) {
2298				md_error(conf->mddev,
2299					 conf->mirrors[m].rdev);
2300				/* an I/O failed, we can't clear the bitmap */
2301				set_bit(R1BIO_Degraded, &r1_bio->state);
2302			}
2303			rdev_dec_pending(conf->mirrors[m].rdev,
2304					 conf->mddev);
2305		}
2306	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2307		close_write(r1_bio);
2308	raid_end_bio_io(r1_bio);
2309}
2310
2311static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2312{
2313	int disk;
2314	int max_sectors;
2315	struct mddev *mddev = conf->mddev;
2316	struct bio *bio;
2317	char b[BDEVNAME_SIZE];
2318	struct md_rdev *rdev;
2319
2320	clear_bit(R1BIO_ReadError, &r1_bio->state);
2321	/* we got a read error. Maybe the drive is bad.  Maybe just
2322	 * the block and we can fix it.
2323	 * We freeze all other IO, and try reading the block from
2324	 * other devices.  When we find one, we re-write
2325	 * and check it that fixes the read error.
2326	 * This is all done synchronously while the array is
2327	 * frozen
2328	 */
2329	if (mddev->ro == 0) {
2330		freeze_array(conf, 1);
2331		fix_read_error(conf, r1_bio->read_disk,
2332			       r1_bio->sector, r1_bio->sectors);
2333		unfreeze_array(conf);
2334	} else
2335		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2336	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2337
2338	bio = r1_bio->bios[r1_bio->read_disk];
2339	bdevname(bio->bi_bdev, b);
2340read_more:
2341	disk = read_balance(conf, r1_bio, &max_sectors);
2342	if (disk == -1) {
2343		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2344		       " read error for block %llu\n",
2345		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2346		raid_end_bio_io(r1_bio);
2347	} else {
2348		const unsigned long do_sync
2349			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2350		if (bio) {
2351			r1_bio->bios[r1_bio->read_disk] =
2352				mddev->ro ? IO_BLOCKED : NULL;
2353			bio_put(bio);
2354		}
2355		r1_bio->read_disk = disk;
2356		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2357		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2358			 max_sectors);
2359		r1_bio->bios[r1_bio->read_disk] = bio;
2360		rdev = conf->mirrors[disk].rdev;
2361		printk_ratelimited(KERN_ERR
2362				   "md/raid1:%s: redirecting sector %llu"
2363				   " to other mirror: %s\n",
2364				   mdname(mddev),
2365				   (unsigned long long)r1_bio->sector,
2366				   bdevname(rdev->bdev, b));
2367		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2368		bio->bi_bdev = rdev->bdev;
2369		bio->bi_end_io = raid1_end_read_request;
2370		bio->bi_rw = READ | do_sync;
2371		bio->bi_private = r1_bio;
2372		if (max_sectors < r1_bio->sectors) {
2373			/* Drat - have to split this up more */
2374			struct bio *mbio = r1_bio->master_bio;
2375			int sectors_handled = (r1_bio->sector + max_sectors
2376					       - mbio->bi_iter.bi_sector);
2377			r1_bio->sectors = max_sectors;
2378			spin_lock_irq(&conf->device_lock);
2379			if (mbio->bi_phys_segments == 0)
2380				mbio->bi_phys_segments = 2;
2381			else
2382				mbio->bi_phys_segments++;
2383			spin_unlock_irq(&conf->device_lock);
2384			generic_make_request(bio);
2385			bio = NULL;
2386
2387			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2388
2389			r1_bio->master_bio = mbio;
2390			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2391			r1_bio->state = 0;
2392			set_bit(R1BIO_ReadError, &r1_bio->state);
2393			r1_bio->mddev = mddev;
2394			r1_bio->sector = mbio->bi_iter.bi_sector +
2395				sectors_handled;
2396
2397			goto read_more;
2398		} else
2399			generic_make_request(bio);
2400	}
2401}
2402
2403static void raid1d(struct md_thread *thread)
2404{
2405	struct mddev *mddev = thread->mddev;
2406	struct r1bio *r1_bio;
2407	unsigned long flags;
2408	struct r1conf *conf = mddev->private;
2409	struct list_head *head = &conf->retry_list;
2410	struct blk_plug plug;
2411
2412	md_check_recovery(mddev);
2413
2414	blk_start_plug(&plug);
2415	for (;;) {
2416
2417		flush_pending_writes(conf);
2418
2419		spin_lock_irqsave(&conf->device_lock, flags);
2420		if (list_empty(head)) {
2421			spin_unlock_irqrestore(&conf->device_lock, flags);
2422			break;
2423		}
2424		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2425		list_del(head->prev);
2426		conf->nr_queued--;
2427		spin_unlock_irqrestore(&conf->device_lock, flags);
2428
2429		mddev = r1_bio->mddev;
2430		conf = mddev->private;
2431		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2432			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433			    test_bit(R1BIO_WriteError, &r1_bio->state))
2434				handle_sync_write_finished(conf, r1_bio);
2435			else
2436				sync_request_write(mddev, r1_bio);
2437		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2438			   test_bit(R1BIO_WriteError, &r1_bio->state))
2439			handle_write_finished(conf, r1_bio);
2440		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2441			handle_read_error(conf, r1_bio);
2442		else
2443			/* just a partial read to be scheduled from separate
2444			 * context
2445			 */
2446			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2447
2448		cond_resched();
2449		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2450			md_check_recovery(mddev);
2451	}
2452	blk_finish_plug(&plug);
2453}
2454
2455static int init_resync(struct r1conf *conf)
2456{
2457	int buffs;
2458
2459	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2460	BUG_ON(conf->r1buf_pool);
2461	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2462					  conf->poolinfo);
2463	if (!conf->r1buf_pool)
2464		return -ENOMEM;
2465	conf->next_resync = 0;
2466	return 0;
2467}
2468
2469/*
2470 * perform a "sync" on one "block"
2471 *
2472 * We need to make sure that no normal I/O request - particularly write
2473 * requests - conflict with active sync requests.
2474 *
2475 * This is achieved by tracking pending requests and a 'barrier' concept
2476 * that can be installed to exclude normal IO requests.
2477 */
2478
2479static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2480{
2481	struct r1conf *conf = mddev->private;
2482	struct r1bio *r1_bio;
2483	struct bio *bio;
2484	sector_t max_sector, nr_sectors;
2485	int disk = -1;
2486	int i;
2487	int wonly = -1;
2488	int write_targets = 0, read_targets = 0;
2489	sector_t sync_blocks;
2490	int still_degraded = 0;
2491	int good_sectors = RESYNC_SECTORS;
2492	int min_bad = 0; /* number of sectors that are bad in all devices */
2493
2494	if (!conf->r1buf_pool)
2495		if (init_resync(conf))
2496			return 0;
2497
2498	max_sector = mddev->dev_sectors;
2499	if (sector_nr >= max_sector) {
2500		/* If we aborted, we need to abort the
2501		 * sync on the 'current' bitmap chunk (there will
2502		 * only be one in raid1 resync.
2503		 * We can find the current addess in mddev->curr_resync
2504		 */
2505		if (mddev->curr_resync < max_sector) /* aborted */
2506			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507						&sync_blocks, 1);
2508		else /* completed sync */
2509			conf->fullsync = 0;
2510
2511		bitmap_close_sync(mddev->bitmap);
2512		close_sync(conf);
2513		return 0;
2514	}
2515
2516	if (mddev->bitmap == NULL &&
2517	    mddev->recovery_cp == MaxSector &&
2518	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2519	    conf->fullsync == 0) {
2520		*skipped = 1;
2521		return max_sector - sector_nr;
2522	}
2523	/* before building a request, check if we can skip these blocks..
2524	 * This call the bitmap_start_sync doesn't actually record anything
2525	 */
2526	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2527	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2528		/* We can skip this block, and probably several more */
2529		*skipped = 1;
2530		return sync_blocks;
2531	}
2532	/*
2533	 * If there is non-resync activity waiting for a turn,
2534	 * and resync is going fast enough,
2535	 * then let it though before starting on this new sync request.
2536	 */
2537	if (!go_faster && conf->nr_waiting)
2538		msleep_interruptible(1000);
2539
2540	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542
2543	raise_barrier(conf, sector_nr);
2544
2545	rcu_read_lock();
2546	/*
2547	 * If we get a correctably read error during resync or recovery,
2548	 * we might want to read from a different device.  So we
2549	 * flag all drives that could conceivably be read from for READ,
2550	 * and any others (which will be non-In_sync devices) for WRITE.
2551	 * If a read fails, we try reading from something else for which READ
2552	 * is OK.
2553	 */
2554
2555	r1_bio->mddev = mddev;
2556	r1_bio->sector = sector_nr;
2557	r1_bio->state = 0;
2558	set_bit(R1BIO_IsSync, &r1_bio->state);
2559
2560	for (i = 0; i < conf->raid_disks * 2; i++) {
2561		struct md_rdev *rdev;
2562		bio = r1_bio->bios[i];
2563		bio_reset(bio);
2564
2565		rdev = rcu_dereference(conf->mirrors[i].rdev);
2566		if (rdev == NULL ||
2567		    test_bit(Faulty, &rdev->flags)) {
2568			if (i < conf->raid_disks)
2569				still_degraded = 1;
2570		} else if (!test_bit(In_sync, &rdev->flags)) {
2571			bio->bi_rw = WRITE;
2572			bio->bi_end_io = end_sync_write;
2573			write_targets ++;
2574		} else {
2575			/* may need to read from here */
2576			sector_t first_bad = MaxSector;
2577			int bad_sectors;
2578
2579			if (is_badblock(rdev, sector_nr, good_sectors,
2580					&first_bad, &bad_sectors)) {
2581				if (first_bad > sector_nr)
2582					good_sectors = first_bad - sector_nr;
2583				else {
2584					bad_sectors -= (sector_nr - first_bad);
2585					if (min_bad == 0 ||
2586					    min_bad > bad_sectors)
2587						min_bad = bad_sectors;
2588				}
2589			}
2590			if (sector_nr < first_bad) {
2591				if (test_bit(WriteMostly, &rdev->flags)) {
2592					if (wonly < 0)
2593						wonly = i;
2594				} else {
2595					if (disk < 0)
2596						disk = i;
2597				}
2598				bio->bi_rw = READ;
2599				bio->bi_end_io = end_sync_read;
2600				read_targets++;
2601			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604				/*
2605				 * The device is suitable for reading (InSync),
2606				 * but has bad block(s) here. Let's try to correct them,
2607				 * if we are doing resync or repair. Otherwise, leave
2608				 * this device alone for this sync request.
2609				 */
2610				bio->bi_rw = WRITE;
2611				bio->bi_end_io = end_sync_write;
2612				write_targets++;
2613			}
2614		}
2615		if (bio->bi_end_io) {
2616			atomic_inc(&rdev->nr_pending);
2617			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618			bio->bi_bdev = rdev->bdev;
2619			bio->bi_private = r1_bio;
2620		}
2621	}
2622	rcu_read_unlock();
2623	if (disk < 0)
2624		disk = wonly;
2625	r1_bio->read_disk = disk;
2626
2627	if (read_targets == 0 && min_bad > 0) {
2628		/* These sectors are bad on all InSync devices, so we
2629		 * need to mark them bad on all write targets
2630		 */
2631		int ok = 1;
2632		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634				struct md_rdev *rdev = conf->mirrors[i].rdev;
2635				ok = rdev_set_badblocks(rdev, sector_nr,
2636							min_bad, 0
2637					) && ok;
2638			}
2639		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640		*skipped = 1;
2641		put_buf(r1_bio);
2642
2643		if (!ok) {
2644			/* Cannot record the badblocks, so need to
2645			 * abort the resync.
2646			 * If there are multiple read targets, could just
2647			 * fail the really bad ones ???
2648			 */
2649			conf->recovery_disabled = mddev->recovery_disabled;
2650			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651			return 0;
2652		} else
2653			return min_bad;
2654
2655	}
2656	if (min_bad > 0 && min_bad < good_sectors) {
2657		/* only resync enough to reach the next bad->good
2658		 * transition */
2659		good_sectors = min_bad;
2660	}
2661
2662	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663		/* extra read targets are also write targets */
2664		write_targets += read_targets-1;
2665
2666	if (write_targets == 0 || read_targets == 0) {
2667		/* There is nowhere to write, so all non-sync
2668		 * drives must be failed - so we are finished
2669		 */
2670		sector_t rv;
2671		if (min_bad > 0)
2672			max_sector = sector_nr + min_bad;
2673		rv = max_sector - sector_nr;
2674		*skipped = 1;
2675		put_buf(r1_bio);
2676		return rv;
2677	}
2678
2679	if (max_sector > mddev->resync_max)
2680		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681	if (max_sector > sector_nr + good_sectors)
2682		max_sector = sector_nr + good_sectors;
2683	nr_sectors = 0;
2684	sync_blocks = 0;
2685	do {
2686		struct page *page;
2687		int len = PAGE_SIZE;
2688		if (sector_nr + (len>>9) > max_sector)
2689			len = (max_sector - sector_nr) << 9;
2690		if (len == 0)
2691			break;
2692		if (sync_blocks == 0) {
2693			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694					       &sync_blocks, still_degraded) &&
2695			    !conf->fullsync &&
2696			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697				break;
2698			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699			if ((len >> 9) > sync_blocks)
2700				len = sync_blocks<<9;
2701		}
2702
2703		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704			bio = r1_bio->bios[i];
2705			if (bio->bi_end_io) {
2706				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707				if (bio_add_page(bio, page, len, 0) == 0) {
2708					/* stop here */
2709					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710					while (i > 0) {
2711						i--;
2712						bio = r1_bio->bios[i];
2713						if (bio->bi_end_io==NULL)
2714							continue;
2715						/* remove last page from this bio */
2716						bio->bi_vcnt--;
2717						bio->bi_iter.bi_size -= len;
2718						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719					}
2720					goto bio_full;
2721				}
2722			}
2723		}
2724		nr_sectors += len>>9;
2725		sector_nr += len>>9;
2726		sync_blocks -= (len>>9);
2727	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
2729	r1_bio->sectors = nr_sectors;
2730
2731	/* For a user-requested sync, we read all readable devices and do a
2732	 * compare
2733	 */
2734	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735		atomic_set(&r1_bio->remaining, read_targets);
2736		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737			bio = r1_bio->bios[i];
2738			if (bio->bi_end_io == end_sync_read) {
2739				read_targets--;
2740				md_sync_acct(bio->bi_bdev, nr_sectors);
2741				generic_make_request(bio);
2742			}
2743		}
2744	} else {
2745		atomic_set(&r1_bio->remaining, 1);
2746		bio = r1_bio->bios[r1_bio->read_disk];
2747		md_sync_acct(bio->bi_bdev, nr_sectors);
2748		generic_make_request(bio);
2749
2750	}
2751	return nr_sectors;
2752}
2753
2754static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755{
2756	if (sectors)
2757		return sectors;
2758
2759	return mddev->dev_sectors;
2760}
2761
2762static struct r1conf *setup_conf(struct mddev *mddev)
2763{
2764	struct r1conf *conf;
2765	int i;
2766	struct raid1_info *disk;
2767	struct md_rdev *rdev;
2768	int err = -ENOMEM;
2769
2770	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771	if (!conf)
2772		goto abort;
2773
2774	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775				* mddev->raid_disks * 2,
2776				 GFP_KERNEL);
2777	if (!conf->mirrors)
2778		goto abort;
2779
2780	conf->tmppage = alloc_page(GFP_KERNEL);
2781	if (!conf->tmppage)
2782		goto abort;
2783
2784	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785	if (!conf->poolinfo)
2786		goto abort;
2787	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789					  r1bio_pool_free,
2790					  conf->poolinfo);
2791	if (!conf->r1bio_pool)
2792		goto abort;
2793
2794	conf->poolinfo->mddev = mddev;
2795
2796	err = -EINVAL;
2797	spin_lock_init(&conf->device_lock);
2798	rdev_for_each(rdev, mddev) {
2799		struct request_queue *q;
2800		int disk_idx = rdev->raid_disk;
2801		if (disk_idx >= mddev->raid_disks
2802		    || disk_idx < 0)
2803			continue;
2804		if (test_bit(Replacement, &rdev->flags))
2805			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806		else
2807			disk = conf->mirrors + disk_idx;
2808
2809		if (disk->rdev)
2810			goto abort;
2811		disk->rdev = rdev;
2812		q = bdev_get_queue(rdev->bdev);
2813		if (q->merge_bvec_fn)
2814			mddev->merge_check_needed = 1;
2815
2816		disk->head_position = 0;
2817		disk->seq_start = MaxSector;
2818	}
2819	conf->raid_disks = mddev->raid_disks;
2820	conf->mddev = mddev;
2821	INIT_LIST_HEAD(&conf->retry_list);
2822
2823	spin_lock_init(&conf->resync_lock);
2824	init_waitqueue_head(&conf->wait_barrier);
2825
2826	bio_list_init(&conf->pending_bio_list);
2827	conf->pending_count = 0;
2828	conf->recovery_disabled = mddev->recovery_disabled - 1;
2829
2830	conf->start_next_window = MaxSector;
2831	conf->current_window_requests = conf->next_window_requests = 0;
2832
2833	err = -EIO;
2834	for (i = 0; i < conf->raid_disks * 2; i++) {
2835
2836		disk = conf->mirrors + i;
2837
2838		if (i < conf->raid_disks &&
2839		    disk[conf->raid_disks].rdev) {
2840			/* This slot has a replacement. */
2841			if (!disk->rdev) {
2842				/* No original, just make the replacement
2843				 * a recovering spare
2844				 */
2845				disk->rdev =
2846					disk[conf->raid_disks].rdev;
2847				disk[conf->raid_disks].rdev = NULL;
2848			} else if (!test_bit(In_sync, &disk->rdev->flags))
2849				/* Original is not in_sync - bad */
2850				goto abort;
2851		}
2852
2853		if (!disk->rdev ||
2854		    !test_bit(In_sync, &disk->rdev->flags)) {
2855			disk->head_position = 0;
2856			if (disk->rdev &&
2857			    (disk->rdev->saved_raid_disk < 0))
2858				conf->fullsync = 1;
2859		}
2860	}
2861
2862	err = -ENOMEM;
2863	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864	if (!conf->thread) {
2865		printk(KERN_ERR
2866		       "md/raid1:%s: couldn't allocate thread\n",
2867		       mdname(mddev));
2868		goto abort;
2869	}
2870
2871	return conf;
2872
2873 abort:
2874	if (conf) {
2875		if (conf->r1bio_pool)
2876			mempool_destroy(conf->r1bio_pool);
2877		kfree(conf->mirrors);
2878		safe_put_page(conf->tmppage);
2879		kfree(conf->poolinfo);
2880		kfree(conf);
2881	}
2882	return ERR_PTR(err);
2883}
2884
2885static int stop(struct mddev *mddev);
2886static int run(struct mddev *mddev)
2887{
2888	struct r1conf *conf;
2889	int i;
2890	struct md_rdev *rdev;
2891	int ret;
2892	bool discard_supported = false;
2893
2894	if (mddev->level != 1) {
2895		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896		       mdname(mddev), mddev->level);
2897		return -EIO;
2898	}
2899	if (mddev->reshape_position != MaxSector) {
2900		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901		       mdname(mddev));
2902		return -EIO;
2903	}
2904	/*
2905	 * copy the already verified devices into our private RAID1
2906	 * bookkeeping area. [whatever we allocate in run(),
2907	 * should be freed in stop()]
2908	 */
2909	if (mddev->private == NULL)
2910		conf = setup_conf(mddev);
2911	else
2912		conf = mddev->private;
2913
2914	if (IS_ERR(conf))
2915		return PTR_ERR(conf);
2916
2917	if (mddev->queue)
2918		blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
2920	rdev_for_each(rdev, mddev) {
2921		if (!mddev->gendisk)
2922			continue;
2923		disk_stack_limits(mddev->gendisk, rdev->bdev,
2924				  rdev->data_offset << 9);
2925		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926			discard_supported = true;
2927	}
2928
2929	mddev->degraded = 0;
2930	for (i=0; i < conf->raid_disks; i++)
2931		if (conf->mirrors[i].rdev == NULL ||
2932		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934			mddev->degraded++;
2935
2936	if (conf->raid_disks - mddev->degraded == 1)
2937		mddev->recovery_cp = MaxSector;
2938
2939	if (mddev->recovery_cp != MaxSector)
2940		printk(KERN_NOTICE "md/raid1:%s: not clean"
2941		       " -- starting background reconstruction\n",
2942		       mdname(mddev));
2943	printk(KERN_INFO
2944		"md/raid1:%s: active with %d out of %d mirrors\n",
2945		mdname(mddev), mddev->raid_disks - mddev->degraded,
2946		mddev->raid_disks);
2947
2948	/*
2949	 * Ok, everything is just fine now
2950	 */
2951	mddev->thread = conf->thread;
2952	conf->thread = NULL;
2953	mddev->private = conf;
2954
2955	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956
2957	if (mddev->queue) {
2958		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959		mddev->queue->backing_dev_info.congested_data = mddev;
2960		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2961
2962		if (discard_supported)
2963			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964						mddev->queue);
2965		else
2966			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967						  mddev->queue);
2968	}
2969
2970	ret =  md_integrity_register(mddev);
2971	if (ret)
2972		stop(mddev);
2973	return ret;
2974}
2975
2976static int stop(struct mddev *mddev)
2977{
2978	struct r1conf *conf = mddev->private;
2979	struct bitmap *bitmap = mddev->bitmap;
2980
2981	/* wait for behind writes to complete */
2982	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2983		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2984		       mdname(mddev));
2985		/* need to kick something here to make sure I/O goes? */
2986		wait_event(bitmap->behind_wait,
2987			   atomic_read(&bitmap->behind_writes) == 0);
2988	}
2989
2990	freeze_array(conf, 0);
2991	unfreeze_array(conf);
2992
2993	md_unregister_thread(&mddev->thread);
2994	if (conf->r1bio_pool)
2995		mempool_destroy(conf->r1bio_pool);
2996	kfree(conf->mirrors);
2997	safe_put_page(conf->tmppage);
2998	kfree(conf->poolinfo);
2999	kfree(conf);
3000	mddev->private = NULL;
3001	return 0;
3002}
3003
3004static int raid1_resize(struct mddev *mddev, sector_t sectors)
3005{
3006	/* no resync is happening, and there is enough space
3007	 * on all devices, so we can resize.
3008	 * We need to make sure resync covers any new space.
3009	 * If the array is shrinking we should possibly wait until
3010	 * any io in the removed space completes, but it hardly seems
3011	 * worth it.
3012	 */
3013	sector_t newsize = raid1_size(mddev, sectors, 0);
3014	if (mddev->external_size &&
3015	    mddev->array_sectors > newsize)
3016		return -EINVAL;
3017	if (mddev->bitmap) {
3018		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3019		if (ret)
3020			return ret;
3021	}
3022	md_set_array_sectors(mddev, newsize);
3023	set_capacity(mddev->gendisk, mddev->array_sectors);
3024	revalidate_disk(mddev->gendisk);
3025	if (sectors > mddev->dev_sectors &&
3026	    mddev->recovery_cp > mddev->dev_sectors) {
3027		mddev->recovery_cp = mddev->dev_sectors;
3028		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3029	}
3030	mddev->dev_sectors = sectors;
3031	mddev->resync_max_sectors = sectors;
3032	return 0;
3033}
3034
3035static int raid1_reshape(struct mddev *mddev)
3036{
3037	/* We need to:
3038	 * 1/ resize the r1bio_pool
3039	 * 2/ resize conf->mirrors
3040	 *
3041	 * We allocate a new r1bio_pool if we can.
3042	 * Then raise a device barrier and wait until all IO stops.
3043	 * Then resize conf->mirrors and swap in the new r1bio pool.
3044	 *
3045	 * At the same time, we "pack" the devices so that all the missing
3046	 * devices have the higher raid_disk numbers.
3047	 */
3048	mempool_t *newpool, *oldpool;
3049	struct pool_info *newpoolinfo;
3050	struct raid1_info *newmirrors;
3051	struct r1conf *conf = mddev->private;
3052	int cnt, raid_disks;
3053	unsigned long flags;
3054	int d, d2, err;
3055
3056	/* Cannot change chunk_size, layout, or level */
3057	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3058	    mddev->layout != mddev->new_layout ||
3059	    mddev->level != mddev->new_level) {
3060		mddev->new_chunk_sectors = mddev->chunk_sectors;
3061		mddev->new_layout = mddev->layout;
3062		mddev->new_level = mddev->level;
3063		return -EINVAL;
3064	}
3065
3066	err = md_allow_write(mddev);
3067	if (err)
3068		return err;
3069
3070	raid_disks = mddev->raid_disks + mddev->delta_disks;
3071
3072	if (raid_disks < conf->raid_disks) {
3073		cnt=0;
3074		for (d= 0; d < conf->raid_disks; d++)
3075			if (conf->mirrors[d].rdev)
3076				cnt++;
3077		if (cnt > raid_disks)
3078			return -EBUSY;
3079	}
3080
3081	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3082	if (!newpoolinfo)
3083		return -ENOMEM;
3084	newpoolinfo->mddev = mddev;
3085	newpoolinfo->raid_disks = raid_disks * 2;
3086
3087	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088				 r1bio_pool_free, newpoolinfo);
3089	if (!newpool) {
3090		kfree(newpoolinfo);
3091		return -ENOMEM;
3092	}
3093	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3094			     GFP_KERNEL);
3095	if (!newmirrors) {
3096		kfree(newpoolinfo);
3097		mempool_destroy(newpool);
3098		return -ENOMEM;
3099	}
3100
3101	freeze_array(conf, 0);
3102
3103	/* ok, everything is stopped */
3104	oldpool = conf->r1bio_pool;
3105	conf->r1bio_pool = newpool;
3106
3107	for (d = d2 = 0; d < conf->raid_disks; d++) {
3108		struct md_rdev *rdev = conf->mirrors[d].rdev;
3109		if (rdev && rdev->raid_disk != d2) {
3110			sysfs_unlink_rdev(mddev, rdev);
3111			rdev->raid_disk = d2;
3112			sysfs_unlink_rdev(mddev, rdev);
3113			if (sysfs_link_rdev(mddev, rdev))
3114				printk(KERN_WARNING
3115				       "md/raid1:%s: cannot register rd%d\n",
3116				       mdname(mddev), rdev->raid_disk);
3117		}
3118		if (rdev)
3119			newmirrors[d2++].rdev = rdev;
3120	}
3121	kfree(conf->mirrors);
3122	conf->mirrors = newmirrors;
3123	kfree(conf->poolinfo);
3124	conf->poolinfo = newpoolinfo;
3125
3126	spin_lock_irqsave(&conf->device_lock, flags);
3127	mddev->degraded += (raid_disks - conf->raid_disks);
3128	spin_unlock_irqrestore(&conf->device_lock, flags);
3129	conf->raid_disks = mddev->raid_disks = raid_disks;
3130	mddev->delta_disks = 0;
3131
3132	unfreeze_array(conf);
3133
3134	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135	md_wakeup_thread(mddev->thread);
3136
3137	mempool_destroy(oldpool);
3138	return 0;
3139}
3140
3141static void raid1_quiesce(struct mddev *mddev, int state)
3142{
3143	struct r1conf *conf = mddev->private;
3144
3145	switch(state) {
3146	case 2: /* wake for suspend */
3147		wake_up(&conf->wait_barrier);
3148		break;
3149	case 1:
3150		freeze_array(conf, 0);
3151		break;
3152	case 0:
3153		unfreeze_array(conf);
3154		break;
3155	}
3156}
3157
3158static void *raid1_takeover(struct mddev *mddev)
3159{
3160	/* raid1 can take over:
3161	 *  raid5 with 2 devices, any layout or chunk size
3162	 */
3163	if (mddev->level == 5 && mddev->raid_disks == 2) {
3164		struct r1conf *conf;
3165		mddev->new_level = 1;
3166		mddev->new_layout = 0;
3167		mddev->new_chunk_sectors = 0;
3168		conf = setup_conf(mddev);
3169		if (!IS_ERR(conf))
3170			/* Array must appear to be quiesced */
3171			conf->array_frozen = 1;
3172		return conf;
3173	}
3174	return ERR_PTR(-EINVAL);
3175}
3176
3177static struct md_personality raid1_personality =
3178{
3179	.name		= "raid1",
3180	.level		= 1,
3181	.owner		= THIS_MODULE,
3182	.make_request	= make_request,
3183	.run		= run,
3184	.stop		= stop,
3185	.status		= status,
3186	.error_handler	= error,
3187	.hot_add_disk	= raid1_add_disk,
3188	.hot_remove_disk= raid1_remove_disk,
3189	.spare_active	= raid1_spare_active,
3190	.sync_request	= sync_request,
3191	.resize		= raid1_resize,
3192	.size		= raid1_size,
3193	.check_reshape	= raid1_reshape,
3194	.quiesce	= raid1_quiesce,
3195	.takeover	= raid1_takeover,
3196};
3197
3198static int __init raid_init(void)
3199{
3200	return register_md_personality(&raid1_personality);
3201}
3202
3203static void raid_exit(void)
3204{
3205	unregister_md_personality(&raid1_personality);
3206}
3207
3208module_init(raid_init);
3209module_exit(raid_exit);
3210MODULE_LICENSE("GPL");
3211MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3212MODULE_ALIAS("md-personality-3"); /* RAID1 */
3213MODULE_ALIAS("md-raid1");
3214MODULE_ALIAS("md-level-1");
3215
3216module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3217