1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c.  See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 *    chunk_size
37 *    raid_disks
38 *    near_copies (stored in low byte of layout)
39 *    far_copies (stored in second byte of layout)
40 *    far_offset (stored in bit 16 of layout )
41 *    use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize.  Each device
44 * is divided into far_copies sections.   In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive).  The starting device for each section is offset
47 * near_copies from the starting device of the previous section.  Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive.  near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size.  The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array.  This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 *    A B C D    A B C D E
65 *      ...         ...
66 *    D A B C    E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 *    [A B] [C D]    [A B] [C D E]
69 *    |...| |...|    |...| | ... |
70 *    [B A] [D C]    [B A] [E C D]
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define	NR_RAID10_BIOS 256
77
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error.  To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context.  So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
100static int _enough(struct r10conf *conf, int previous, int ignore);
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102				int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
106
107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108{
109	struct r10conf *conf = data;
110	int size = offsetof(struct r10bio, devs[conf->copies]);
111
112	/* allocate a r10bio with room for raid_disks entries in the
113	 * bios array */
114	return kzalloc(size, gfp_flags);
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119	kfree(r10_bio);
120}
121
122/* Maximum size of each resync request */
123#define RESYNC_BLOCK_SIZE (64*1024)
124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138{
139	struct r10conf *conf = data;
140	struct page *page;
141	struct r10bio *r10_bio;
142	struct bio *bio;
143	int i, j;
144	int nalloc;
145
146	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147	if (!r10_bio)
148		return NULL;
149
150	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152		nalloc = conf->copies; /* resync */
153	else
154		nalloc = 2; /* recovery */
155
156	/*
157	 * Allocate bios.
158	 */
159	for (j = nalloc ; j-- ; ) {
160		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161		if (!bio)
162			goto out_free_bio;
163		r10_bio->devs[j].bio = bio;
164		if (!conf->have_replacement)
165			continue;
166		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167		if (!bio)
168			goto out_free_bio;
169		r10_bio->devs[j].repl_bio = bio;
170	}
171	/*
172	 * Allocate RESYNC_PAGES data pages and attach them
173	 * where needed.
174	 */
175	for (j = 0 ; j < nalloc; j++) {
176		struct bio *rbio = r10_bio->devs[j].repl_bio;
177		bio = r10_bio->devs[j].bio;
178		for (i = 0; i < RESYNC_PAGES; i++) {
179			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180					       &conf->mddev->recovery)) {
181				/* we can share bv_page's during recovery
182				 * and reshape */
183				struct bio *rbio = r10_bio->devs[0].bio;
184				page = rbio->bi_io_vec[i].bv_page;
185				get_page(page);
186			} else
187				page = alloc_page(gfp_flags);
188			if (unlikely(!page))
189				goto out_free_pages;
190
191			bio->bi_io_vec[i].bv_page = page;
192			if (rbio)
193				rbio->bi_io_vec[i].bv_page = page;
194		}
195	}
196
197	return r10_bio;
198
199out_free_pages:
200	for ( ; i > 0 ; i--)
201		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202	while (j--)
203		for (i = 0; i < RESYNC_PAGES ; i++)
204			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205	j = 0;
206out_free_bio:
207	for ( ; j < nalloc; j++) {
208		if (r10_bio->devs[j].bio)
209			bio_put(r10_bio->devs[j].bio);
210		if (r10_bio->devs[j].repl_bio)
211			bio_put(r10_bio->devs[j].repl_bio);
212	}
213	r10bio_pool_free(r10_bio, conf);
214	return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219	int i;
220	struct r10conf *conf = data;
221	struct r10bio *r10bio = __r10_bio;
222	int j;
223
224	for (j=0; j < conf->copies; j++) {
225		struct bio *bio = r10bio->devs[j].bio;
226		if (bio) {
227			for (i = 0; i < RESYNC_PAGES; i++) {
228				safe_put_page(bio->bi_io_vec[i].bv_page);
229				bio->bi_io_vec[i].bv_page = NULL;
230			}
231			bio_put(bio);
232		}
233		bio = r10bio->devs[j].repl_bio;
234		if (bio)
235			bio_put(bio);
236	}
237	r10bio_pool_free(r10bio, conf);
238}
239
240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241{
242	int i;
243
244	for (i = 0; i < conf->copies; i++) {
245		struct bio **bio = & r10_bio->devs[i].bio;
246		if (!BIO_SPECIAL(*bio))
247			bio_put(*bio);
248		*bio = NULL;
249		bio = &r10_bio->devs[i].repl_bio;
250		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251			bio_put(*bio);
252		*bio = NULL;
253	}
254}
255
256static void free_r10bio(struct r10bio *r10_bio)
257{
258	struct r10conf *conf = r10_bio->mddev->private;
259
260	put_all_bios(conf, r10_bio);
261	mempool_free(r10_bio, conf->r10bio_pool);
262}
263
264static void put_buf(struct r10bio *r10_bio)
265{
266	struct r10conf *conf = r10_bio->mddev->private;
267
268	mempool_free(r10_bio, conf->r10buf_pool);
269
270	lower_barrier(conf);
271}
272
273static void reschedule_retry(struct r10bio *r10_bio)
274{
275	unsigned long flags;
276	struct mddev *mddev = r10_bio->mddev;
277	struct r10conf *conf = mddev->private;
278
279	spin_lock_irqsave(&conf->device_lock, flags);
280	list_add(&r10_bio->retry_list, &conf->retry_list);
281	conf->nr_queued ++;
282	spin_unlock_irqrestore(&conf->device_lock, flags);
283
284	/* wake up frozen array... */
285	wake_up(&conf->wait_barrier);
286
287	md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295static void raid_end_bio_io(struct r10bio *r10_bio)
296{
297	struct bio *bio = r10_bio->master_bio;
298	int done;
299	struct r10conf *conf = r10_bio->mddev->private;
300
301	if (bio->bi_phys_segments) {
302		unsigned long flags;
303		spin_lock_irqsave(&conf->device_lock, flags);
304		bio->bi_phys_segments--;
305		done = (bio->bi_phys_segments == 0);
306		spin_unlock_irqrestore(&conf->device_lock, flags);
307	} else
308		done = 1;
309	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311	if (done) {
312		bio_endio(bio, 0);
313		/*
314		 * Wake up any possible resync thread that waits for the device
315		 * to go idle.
316		 */
317		allow_barrier(conf);
318	}
319	free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326{
327	struct r10conf *conf = r10_bio->mddev->private;
328
329	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330		r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
333/*
334 * Find the disk number which triggered given bio
335 */
336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337			 struct bio *bio, int *slotp, int *replp)
338{
339	int slot;
340	int repl = 0;
341
342	for (slot = 0; slot < conf->copies; slot++) {
343		if (r10_bio->devs[slot].bio == bio)
344			break;
345		if (r10_bio->devs[slot].repl_bio == bio) {
346			repl = 1;
347			break;
348		}
349	}
350
351	BUG_ON(slot == conf->copies);
352	update_head_pos(slot, r10_bio);
353
354	if (slotp)
355		*slotp = slot;
356	if (replp)
357		*replp = repl;
358	return r10_bio->devs[slot].devnum;
359}
360
361static void raid10_end_read_request(struct bio *bio, int error)
362{
363	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364	struct r10bio *r10_bio = bio->bi_private;
365	int slot, dev;
366	struct md_rdev *rdev;
367	struct r10conf *conf = r10_bio->mddev->private;
368
369	slot = r10_bio->read_slot;
370	dev = r10_bio->devs[slot].devnum;
371	rdev = r10_bio->devs[slot].rdev;
372	/*
373	 * this branch is our 'one mirror IO has finished' event handler:
374	 */
375	update_head_pos(slot, r10_bio);
376
377	if (uptodate) {
378		/*
379		 * Set R10BIO_Uptodate in our master bio, so that
380		 * we will return a good error code to the higher
381		 * levels even if IO on some other mirrored buffer fails.
382		 *
383		 * The 'master' represents the composite IO operation to
384		 * user-side. So if something waits for IO, then it will
385		 * wait for the 'master' bio.
386		 */
387		set_bit(R10BIO_Uptodate, &r10_bio->state);
388	} else {
389		/* If all other devices that store this block have
390		 * failed, we want to return the error upwards rather
391		 * than fail the last device.  Here we redefine
392		 * "uptodate" to mean "Don't want to retry"
393		 */
394		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395			     rdev->raid_disk))
396			uptodate = 1;
397	}
398	if (uptodate) {
399		raid_end_bio_io(r10_bio);
400		rdev_dec_pending(rdev, conf->mddev);
401	} else {
402		/*
403		 * oops, read error - keep the refcount on the rdev
404		 */
405		char b[BDEVNAME_SIZE];
406		printk_ratelimited(KERN_ERR
407				   "md/raid10:%s: %s: rescheduling sector %llu\n",
408				   mdname(conf->mddev),
409				   bdevname(rdev->bdev, b),
410				   (unsigned long long)r10_bio->sector);
411		set_bit(R10BIO_ReadError, &r10_bio->state);
412		reschedule_retry(r10_bio);
413	}
414}
415
416static void close_write(struct r10bio *r10_bio)
417{
418	/* clear the bitmap if all writes complete successfully */
419	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420			r10_bio->sectors,
421			!test_bit(R10BIO_Degraded, &r10_bio->state),
422			0);
423	md_write_end(r10_bio->mddev);
424}
425
426static void one_write_done(struct r10bio *r10_bio)
427{
428	if (atomic_dec_and_test(&r10_bio->remaining)) {
429		if (test_bit(R10BIO_WriteError, &r10_bio->state))
430			reschedule_retry(r10_bio);
431		else {
432			close_write(r10_bio);
433			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434				reschedule_retry(r10_bio);
435			else
436				raid_end_bio_io(r10_bio);
437		}
438	}
439}
440
441static void raid10_end_write_request(struct bio *bio, int error)
442{
443	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444	struct r10bio *r10_bio = bio->bi_private;
445	int dev;
446	int dec_rdev = 1;
447	struct r10conf *conf = r10_bio->mddev->private;
448	int slot, repl;
449	struct md_rdev *rdev = NULL;
450
451	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453	if (repl)
454		rdev = conf->mirrors[dev].replacement;
455	if (!rdev) {
456		smp_rmb();
457		repl = 0;
458		rdev = conf->mirrors[dev].rdev;
459	}
460	/*
461	 * this branch is our 'one mirror IO has finished' event handler:
462	 */
463	if (!uptodate) {
464		if (repl)
465			/* Never record new bad blocks to replacement,
466			 * just fail it.
467			 */
468			md_error(rdev->mddev, rdev);
469		else {
470			set_bit(WriteErrorSeen,	&rdev->flags);
471			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472				set_bit(MD_RECOVERY_NEEDED,
473					&rdev->mddev->recovery);
474			set_bit(R10BIO_WriteError, &r10_bio->state);
475			dec_rdev = 0;
476		}
477	} else {
478		/*
479		 * Set R10BIO_Uptodate in our master bio, so that
480		 * we will return a good error code for to the higher
481		 * levels even if IO on some other mirrored buffer fails.
482		 *
483		 * The 'master' represents the composite IO operation to
484		 * user-side. So if something waits for IO, then it will
485		 * wait for the 'master' bio.
486		 */
487		sector_t first_bad;
488		int bad_sectors;
489
490		/*
491		 * Do not set R10BIO_Uptodate if the current device is
492		 * rebuilding or Faulty. This is because we cannot use
493		 * such device for properly reading the data back (we could
494		 * potentially use it, if the current write would have felt
495		 * before rdev->recovery_offset, but for simplicity we don't
496		 * check this here.
497		 */
498		if (test_bit(In_sync, &rdev->flags) &&
499		    !test_bit(Faulty, &rdev->flags))
500			set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502		/* Maybe we can clear some bad blocks. */
503		if (is_badblock(rdev,
504				r10_bio->devs[slot].addr,
505				r10_bio->sectors,
506				&first_bad, &bad_sectors)) {
507			bio_put(bio);
508			if (repl)
509				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510			else
511				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512			dec_rdev = 0;
513			set_bit(R10BIO_MadeGood, &r10_bio->state);
514		}
515	}
516
517	/*
518	 *
519	 * Let's see if all mirrored write operations have finished
520	 * already.
521	 */
522	one_write_done(r10_bio);
523	if (dec_rdev)
524		rdev_dec_pending(rdev, conf->mddev);
525}
526
527/*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553{
554	int n,f;
555	sector_t sector;
556	sector_t chunk;
557	sector_t stripe;
558	int dev;
559	int slot = 0;
560	int last_far_set_start, last_far_set_size;
561
562	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563	last_far_set_start *= geo->far_set_size;
564
565	last_far_set_size = geo->far_set_size;
566	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568	/* now calculate first sector/dev */
569	chunk = r10bio->sector >> geo->chunk_shift;
570	sector = r10bio->sector & geo->chunk_mask;
571
572	chunk *= geo->near_copies;
573	stripe = chunk;
574	dev = sector_div(stripe, geo->raid_disks);
575	if (geo->far_offset)
576		stripe *= geo->far_copies;
577
578	sector += stripe << geo->chunk_shift;
579
580	/* and calculate all the others */
581	for (n = 0; n < geo->near_copies; n++) {
582		int d = dev;
583		int set;
584		sector_t s = sector;
585		r10bio->devs[slot].devnum = d;
586		r10bio->devs[slot].addr = s;
587		slot++;
588
589		for (f = 1; f < geo->far_copies; f++) {
590			set = d / geo->far_set_size;
591			d += geo->near_copies;
592
593			if ((geo->raid_disks % geo->far_set_size) &&
594			    (d > last_far_set_start)) {
595				d -= last_far_set_start;
596				d %= last_far_set_size;
597				d += last_far_set_start;
598			} else {
599				d %= geo->far_set_size;
600				d += geo->far_set_size * set;
601			}
602			s += geo->stride;
603			r10bio->devs[slot].devnum = d;
604			r10bio->devs[slot].addr = s;
605			slot++;
606		}
607		dev++;
608		if (dev >= geo->raid_disks) {
609			dev = 0;
610			sector += (geo->chunk_mask + 1);
611		}
612	}
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617	struct geom *geo = &conf->geo;
618
619	if (conf->reshape_progress != MaxSector &&
620	    ((r10bio->sector >= conf->reshape_progress) !=
621	     conf->mddev->reshape_backwards)) {
622		set_bit(R10BIO_Previous, &r10bio->state);
623		geo = &conf->prev;
624	} else
625		clear_bit(R10BIO_Previous, &r10bio->state);
626
627	__raid10_find_phys(geo, r10bio);
628}
629
630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631{
632	sector_t offset, chunk, vchunk;
633	/* Never use conf->prev as this is only called during resync
634	 * or recovery, so reshape isn't happening
635	 */
636	struct geom *geo = &conf->geo;
637	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638	int far_set_size = geo->far_set_size;
639	int last_far_set_start;
640
641	if (geo->raid_disks % geo->far_set_size) {
642		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643		last_far_set_start *= geo->far_set_size;
644
645		if (dev >= last_far_set_start) {
646			far_set_size = geo->far_set_size;
647			far_set_size += (geo->raid_disks % geo->far_set_size);
648			far_set_start = last_far_set_start;
649		}
650	}
651
652	offset = sector & geo->chunk_mask;
653	if (geo->far_offset) {
654		int fc;
655		chunk = sector >> geo->chunk_shift;
656		fc = sector_div(chunk, geo->far_copies);
657		dev -= fc * geo->near_copies;
658		if (dev < far_set_start)
659			dev += far_set_size;
660	} else {
661		while (sector >= geo->stride) {
662			sector -= geo->stride;
663			if (dev < (geo->near_copies + far_set_start))
664				dev += far_set_size - geo->near_copies;
665			else
666				dev -= geo->near_copies;
667		}
668		chunk = sector >> geo->chunk_shift;
669	}
670	vchunk = chunk * geo->raid_disks + dev;
671	sector_div(vchunk, geo->near_copies);
672	return (vchunk << geo->chunk_shift) + offset;
673}
674
675/**
676 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 *	@q: request queue
678 *	@bvm: properties of new bio
679 *	@biovec: the request that could be merged to it.
680 *
681 *	Return amount of bytes we can accept at this offset
682 *	This requires checking for end-of-chunk if near_copies != raid_disks,
683 *	and for subordinate merge_bvec_fns if merge_check_needed.
684 */
685static int raid10_mergeable_bvec(struct request_queue *q,
686				 struct bvec_merge_data *bvm,
687				 struct bio_vec *biovec)
688{
689	struct mddev *mddev = q->queuedata;
690	struct r10conf *conf = mddev->private;
691	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692	int max;
693	unsigned int chunk_sectors;
694	unsigned int bio_sectors = bvm->bi_size >> 9;
695	struct geom *geo = &conf->geo;
696
697	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
698	if (conf->reshape_progress != MaxSector &&
699	    ((sector >= conf->reshape_progress) !=
700	     conf->mddev->reshape_backwards))
701		geo = &conf->prev;
702
703	if (geo->near_copies < geo->raid_disks) {
704		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
705					+ bio_sectors)) << 9;
706		if (max < 0)
707			/* bio_add cannot handle a negative return */
708			max = 0;
709		if (max <= biovec->bv_len && bio_sectors == 0)
710			return biovec->bv_len;
711	} else
712		max = biovec->bv_len;
713
714	if (mddev->merge_check_needed) {
715		struct {
716			struct r10bio r10_bio;
717			struct r10dev devs[conf->copies];
718		} on_stack;
719		struct r10bio *r10_bio = &on_stack.r10_bio;
720		int s;
721		if (conf->reshape_progress != MaxSector) {
722			/* Cannot give any guidance during reshape */
723			if (max <= biovec->bv_len && bio_sectors == 0)
724				return biovec->bv_len;
725			return 0;
726		}
727		r10_bio->sector = sector;
728		raid10_find_phys(conf, r10_bio);
729		rcu_read_lock();
730		for (s = 0; s < conf->copies; s++) {
731			int disk = r10_bio->devs[s].devnum;
732			struct md_rdev *rdev = rcu_dereference(
733				conf->mirrors[disk].rdev);
734			if (rdev && !test_bit(Faulty, &rdev->flags)) {
735				struct request_queue *q =
736					bdev_get_queue(rdev->bdev);
737				if (q->merge_bvec_fn) {
738					bvm->bi_sector = r10_bio->devs[s].addr
739						+ rdev->data_offset;
740					bvm->bi_bdev = rdev->bdev;
741					max = min(max, q->merge_bvec_fn(
742							  q, bvm, biovec));
743				}
744			}
745			rdev = rcu_dereference(conf->mirrors[disk].replacement);
746			if (rdev && !test_bit(Faulty, &rdev->flags)) {
747				struct request_queue *q =
748					bdev_get_queue(rdev->bdev);
749				if (q->merge_bvec_fn) {
750					bvm->bi_sector = r10_bio->devs[s].addr
751						+ rdev->data_offset;
752					bvm->bi_bdev = rdev->bdev;
753					max = min(max, q->merge_bvec_fn(
754							  q, bvm, biovec));
755				}
756			}
757		}
758		rcu_read_unlock();
759	}
760	return max;
761}
762
763/*
764 * This routine returns the disk from which the requested read should
765 * be done. There is a per-array 'next expected sequential IO' sector
766 * number - if this matches on the next IO then we use the last disk.
767 * There is also a per-disk 'last know head position' sector that is
768 * maintained from IRQ contexts, both the normal and the resync IO
769 * completion handlers update this position correctly. If there is no
770 * perfect sequential match then we pick the disk whose head is closest.
771 *
772 * If there are 2 mirrors in the same 2 devices, performance degrades
773 * because position is mirror, not device based.
774 *
775 * The rdev for the device selected will have nr_pending incremented.
776 */
777
778/*
779 * FIXME: possibly should rethink readbalancing and do it differently
780 * depending on near_copies / far_copies geometry.
781 */
782static struct md_rdev *read_balance(struct r10conf *conf,
783				    struct r10bio *r10_bio,
784				    int *max_sectors)
785{
786	const sector_t this_sector = r10_bio->sector;
787	int disk, slot;
788	int sectors = r10_bio->sectors;
789	int best_good_sectors;
790	sector_t new_distance, best_dist;
791	struct md_rdev *best_rdev, *rdev = NULL;
792	int do_balance;
793	int best_slot;
794	struct geom *geo = &conf->geo;
795
796	raid10_find_phys(conf, r10_bio);
797	rcu_read_lock();
798retry:
799	sectors = r10_bio->sectors;
800	best_slot = -1;
801	best_rdev = NULL;
802	best_dist = MaxSector;
803	best_good_sectors = 0;
804	do_balance = 1;
805	/*
806	 * Check if we can balance. We can balance on the whole
807	 * device if no resync is going on (recovery is ok), or below
808	 * the resync window. We take the first readable disk when
809	 * above the resync window.
810	 */
811	if (conf->mddev->recovery_cp < MaxSector
812	    && (this_sector + sectors >= conf->next_resync))
813		do_balance = 0;
814
815	for (slot = 0; slot < conf->copies ; slot++) {
816		sector_t first_bad;
817		int bad_sectors;
818		sector_t dev_sector;
819
820		if (r10_bio->devs[slot].bio == IO_BLOCKED)
821			continue;
822		disk = r10_bio->devs[slot].devnum;
823		rdev = rcu_dereference(conf->mirrors[disk].replacement);
824		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
825		    test_bit(Unmerged, &rdev->flags) ||
826		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827			rdev = rcu_dereference(conf->mirrors[disk].rdev);
828		if (rdev == NULL ||
829		    test_bit(Faulty, &rdev->flags) ||
830		    test_bit(Unmerged, &rdev->flags))
831			continue;
832		if (!test_bit(In_sync, &rdev->flags) &&
833		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
834			continue;
835
836		dev_sector = r10_bio->devs[slot].addr;
837		if (is_badblock(rdev, dev_sector, sectors,
838				&first_bad, &bad_sectors)) {
839			if (best_dist < MaxSector)
840				/* Already have a better slot */
841				continue;
842			if (first_bad <= dev_sector) {
843				/* Cannot read here.  If this is the
844				 * 'primary' device, then we must not read
845				 * beyond 'bad_sectors' from another device.
846				 */
847				bad_sectors -= (dev_sector - first_bad);
848				if (!do_balance && sectors > bad_sectors)
849					sectors = bad_sectors;
850				if (best_good_sectors > sectors)
851					best_good_sectors = sectors;
852			} else {
853				sector_t good_sectors =
854					first_bad - dev_sector;
855				if (good_sectors > best_good_sectors) {
856					best_good_sectors = good_sectors;
857					best_slot = slot;
858					best_rdev = rdev;
859				}
860				if (!do_balance)
861					/* Must read from here */
862					break;
863			}
864			continue;
865		} else
866			best_good_sectors = sectors;
867
868		if (!do_balance)
869			break;
870
871		/* This optimisation is debatable, and completely destroys
872		 * sequential read speed for 'far copies' arrays.  So only
873		 * keep it for 'near' arrays, and review those later.
874		 */
875		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
876			break;
877
878		/* for far > 1 always use the lowest address */
879		if (geo->far_copies > 1)
880			new_distance = r10_bio->devs[slot].addr;
881		else
882			new_distance = abs(r10_bio->devs[slot].addr -
883					   conf->mirrors[disk].head_position);
884		if (new_distance < best_dist) {
885			best_dist = new_distance;
886			best_slot = slot;
887			best_rdev = rdev;
888		}
889	}
890	if (slot >= conf->copies) {
891		slot = best_slot;
892		rdev = best_rdev;
893	}
894
895	if (slot >= 0) {
896		atomic_inc(&rdev->nr_pending);
897		if (test_bit(Faulty, &rdev->flags)) {
898			/* Cannot risk returning a device that failed
899			 * before we inc'ed nr_pending
900			 */
901			rdev_dec_pending(rdev, conf->mddev);
902			goto retry;
903		}
904		r10_bio->read_slot = slot;
905	} else
906		rdev = NULL;
907	rcu_read_unlock();
908	*max_sectors = best_good_sectors;
909
910	return rdev;
911}
912
913int md_raid10_congested(struct mddev *mddev, int bits)
914{
915	struct r10conf *conf = mddev->private;
916	int i, ret = 0;
917
918	if ((bits & (1 << BDI_async_congested)) &&
919	    conf->pending_count >= max_queued_requests)
920		return 1;
921
922	rcu_read_lock();
923	for (i = 0;
924	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
925		     && ret == 0;
926	     i++) {
927		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
928		if (rdev && !test_bit(Faulty, &rdev->flags)) {
929			struct request_queue *q = bdev_get_queue(rdev->bdev);
930
931			ret |= bdi_congested(&q->backing_dev_info, bits);
932		}
933	}
934	rcu_read_unlock();
935	return ret;
936}
937EXPORT_SYMBOL_GPL(md_raid10_congested);
938
939static int raid10_congested(void *data, int bits)
940{
941	struct mddev *mddev = data;
942
943	return mddev_congested(mddev, bits) ||
944		md_raid10_congested(mddev, bits);
945}
946
947static void flush_pending_writes(struct r10conf *conf)
948{
949	/* Any writes that have been queued but are awaiting
950	 * bitmap updates get flushed here.
951	 */
952	spin_lock_irq(&conf->device_lock);
953
954	if (conf->pending_bio_list.head) {
955		struct bio *bio;
956		bio = bio_list_get(&conf->pending_bio_list);
957		conf->pending_count = 0;
958		spin_unlock_irq(&conf->device_lock);
959		/* flush any pending bitmap writes to disk
960		 * before proceeding w/ I/O */
961		bitmap_unplug(conf->mddev->bitmap);
962		wake_up(&conf->wait_barrier);
963
964		while (bio) { /* submit pending writes */
965			struct bio *next = bio->bi_next;
966			bio->bi_next = NULL;
967			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
968			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
969				/* Just ignore it */
970				bio_endio(bio, 0);
971			else
972				generic_make_request(bio);
973			bio = next;
974		}
975	} else
976		spin_unlock_irq(&conf->device_lock);
977}
978
979/* Barriers....
980 * Sometimes we need to suspend IO while we do something else,
981 * either some resync/recovery, or reconfigure the array.
982 * To do this we raise a 'barrier'.
983 * The 'barrier' is a counter that can be raised multiple times
984 * to count how many activities are happening which preclude
985 * normal IO.
986 * We can only raise the barrier if there is no pending IO.
987 * i.e. if nr_pending == 0.
988 * We choose only to raise the barrier if no-one is waiting for the
989 * barrier to go down.  This means that as soon as an IO request
990 * is ready, no other operations which require a barrier will start
991 * until the IO request has had a chance.
992 *
993 * So: regular IO calls 'wait_barrier'.  When that returns there
994 *    is no backgroup IO happening,  It must arrange to call
995 *    allow_barrier when it has finished its IO.
996 * backgroup IO calls must call raise_barrier.  Once that returns
997 *    there is no normal IO happeing.  It must arrange to call
998 *    lower_barrier when the particular background IO completes.
999 */
1000
1001static void raise_barrier(struct r10conf *conf, int force)
1002{
1003	BUG_ON(force && !conf->barrier);
1004	spin_lock_irq(&conf->resync_lock);
1005
1006	/* Wait until no block IO is waiting (unless 'force') */
1007	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1008			    conf->resync_lock);
1009
1010	/* block any new IO from starting */
1011	conf->barrier++;
1012
1013	/* Now wait for all pending IO to complete */
1014	wait_event_lock_irq(conf->wait_barrier,
1015			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1016			    conf->resync_lock);
1017
1018	spin_unlock_irq(&conf->resync_lock);
1019}
1020
1021static void lower_barrier(struct r10conf *conf)
1022{
1023	unsigned long flags;
1024	spin_lock_irqsave(&conf->resync_lock, flags);
1025	conf->barrier--;
1026	spin_unlock_irqrestore(&conf->resync_lock, flags);
1027	wake_up(&conf->wait_barrier);
1028}
1029
1030static void wait_barrier(struct r10conf *conf)
1031{
1032	spin_lock_irq(&conf->resync_lock);
1033	if (conf->barrier) {
1034		conf->nr_waiting++;
1035		/* Wait for the barrier to drop.
1036		 * However if there are already pending
1037		 * requests (preventing the barrier from
1038		 * rising completely), and the
1039		 * pre-process bio queue isn't empty,
1040		 * then don't wait, as we need to empty
1041		 * that queue to get the nr_pending
1042		 * count down.
1043		 */
1044		wait_event_lock_irq(conf->wait_barrier,
1045				    !conf->barrier ||
1046				    (conf->nr_pending &&
1047				     current->bio_list &&
1048				     !bio_list_empty(current->bio_list)),
1049				    conf->resync_lock);
1050		conf->nr_waiting--;
1051	}
1052	conf->nr_pending++;
1053	spin_unlock_irq(&conf->resync_lock);
1054}
1055
1056static void allow_barrier(struct r10conf *conf)
1057{
1058	unsigned long flags;
1059	spin_lock_irqsave(&conf->resync_lock, flags);
1060	conf->nr_pending--;
1061	spin_unlock_irqrestore(&conf->resync_lock, flags);
1062	wake_up(&conf->wait_barrier);
1063}
1064
1065static void freeze_array(struct r10conf *conf, int extra)
1066{
1067	/* stop syncio and normal IO and wait for everything to
1068	 * go quiet.
1069	 * We increment barrier and nr_waiting, and then
1070	 * wait until nr_pending match nr_queued+extra
1071	 * This is called in the context of one normal IO request
1072	 * that has failed. Thus any sync request that might be pending
1073	 * will be blocked by nr_pending, and we need to wait for
1074	 * pending IO requests to complete or be queued for re-try.
1075	 * Thus the number queued (nr_queued) plus this request (extra)
1076	 * must match the number of pending IOs (nr_pending) before
1077	 * we continue.
1078	 */
1079	spin_lock_irq(&conf->resync_lock);
1080	conf->barrier++;
1081	conf->nr_waiting++;
1082	wait_event_lock_irq_cmd(conf->wait_barrier,
1083				conf->nr_pending == conf->nr_queued+extra,
1084				conf->resync_lock,
1085				flush_pending_writes(conf));
1086
1087	spin_unlock_irq(&conf->resync_lock);
1088}
1089
1090static void unfreeze_array(struct r10conf *conf)
1091{
1092	/* reverse the effect of the freeze */
1093	spin_lock_irq(&conf->resync_lock);
1094	conf->barrier--;
1095	conf->nr_waiting--;
1096	wake_up(&conf->wait_barrier);
1097	spin_unlock_irq(&conf->resync_lock);
1098}
1099
1100static sector_t choose_data_offset(struct r10bio *r10_bio,
1101				   struct md_rdev *rdev)
1102{
1103	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104	    test_bit(R10BIO_Previous, &r10_bio->state))
1105		return rdev->data_offset;
1106	else
1107		return rdev->new_data_offset;
1108}
1109
1110struct raid10_plug_cb {
1111	struct blk_plug_cb	cb;
1112	struct bio_list		pending;
1113	int			pending_cnt;
1114};
1115
1116static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1117{
1118	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1119						   cb);
1120	struct mddev *mddev = plug->cb.data;
1121	struct r10conf *conf = mddev->private;
1122	struct bio *bio;
1123
1124	if (from_schedule || current->bio_list) {
1125		spin_lock_irq(&conf->device_lock);
1126		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1127		conf->pending_count += plug->pending_cnt;
1128		spin_unlock_irq(&conf->device_lock);
1129		wake_up(&conf->wait_barrier);
1130		md_wakeup_thread(mddev->thread);
1131		kfree(plug);
1132		return;
1133	}
1134
1135	/* we aren't scheduling, so we can do the write-out directly. */
1136	bio = bio_list_get(&plug->pending);
1137	bitmap_unplug(mddev->bitmap);
1138	wake_up(&conf->wait_barrier);
1139
1140	while (bio) { /* submit pending writes */
1141		struct bio *next = bio->bi_next;
1142		bio->bi_next = NULL;
1143		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1144		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1145			/* Just ignore it */
1146			bio_endio(bio, 0);
1147		else
1148			generic_make_request(bio);
1149		bio = next;
1150	}
1151	kfree(plug);
1152}
1153
1154static void __make_request(struct mddev *mddev, struct bio *bio)
1155{
1156	struct r10conf *conf = mddev->private;
1157	struct r10bio *r10_bio;
1158	struct bio *read_bio;
1159	int i;
1160	const int rw = bio_data_dir(bio);
1161	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1162	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1163	const unsigned long do_discard = (bio->bi_rw
1164					  & (REQ_DISCARD | REQ_SECURE));
1165	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1166	unsigned long flags;
1167	struct md_rdev *blocked_rdev;
1168	struct blk_plug_cb *cb;
1169	struct raid10_plug_cb *plug = NULL;
1170	int sectors_handled;
1171	int max_sectors;
1172	int sectors;
1173
1174	/*
1175	 * Register the new request and wait if the reconstruction
1176	 * thread has put up a bar for new requests.
1177	 * Continue immediately if no resync is active currently.
1178	 */
1179	wait_barrier(conf);
1180
1181	sectors = bio_sectors(bio);
1182	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1183	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1184	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1185		/* IO spans the reshape position.  Need to wait for
1186		 * reshape to pass
1187		 */
1188		allow_barrier(conf);
1189		wait_event(conf->wait_barrier,
1190			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1191			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1192			   sectors);
1193		wait_barrier(conf);
1194	}
1195	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1196	    bio_data_dir(bio) == WRITE &&
1197	    (mddev->reshape_backwards
1198	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1199		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1200	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1201		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1202		/* Need to update reshape_position in metadata */
1203		mddev->reshape_position = conf->reshape_progress;
1204		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1205		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1206		md_wakeup_thread(mddev->thread);
1207		wait_event(mddev->sb_wait,
1208			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1209
1210		conf->reshape_safe = mddev->reshape_position;
1211	}
1212
1213	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1214
1215	r10_bio->master_bio = bio;
1216	r10_bio->sectors = sectors;
1217
1218	r10_bio->mddev = mddev;
1219	r10_bio->sector = bio->bi_iter.bi_sector;
1220	r10_bio->state = 0;
1221
1222	/* We might need to issue multiple reads to different
1223	 * devices if there are bad blocks around, so we keep
1224	 * track of the number of reads in bio->bi_phys_segments.
1225	 * If this is 0, there is only one r10_bio and no locking
1226	 * will be needed when the request completes.  If it is
1227	 * non-zero, then it is the number of not-completed requests.
1228	 */
1229	bio->bi_phys_segments = 0;
1230	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1231
1232	if (rw == READ) {
1233		/*
1234		 * read balancing logic:
1235		 */
1236		struct md_rdev *rdev;
1237		int slot;
1238
1239read_again:
1240		rdev = read_balance(conf, r10_bio, &max_sectors);
1241		if (!rdev) {
1242			raid_end_bio_io(r10_bio);
1243			return;
1244		}
1245		slot = r10_bio->read_slot;
1246
1247		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1248		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1249			 max_sectors);
1250
1251		r10_bio->devs[slot].bio = read_bio;
1252		r10_bio->devs[slot].rdev = rdev;
1253
1254		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255			choose_data_offset(r10_bio, rdev);
1256		read_bio->bi_bdev = rdev->bdev;
1257		read_bio->bi_end_io = raid10_end_read_request;
1258		read_bio->bi_rw = READ | do_sync;
1259		read_bio->bi_private = r10_bio;
1260
1261		if (max_sectors < r10_bio->sectors) {
1262			/* Could not read all from this device, so we will
1263			 * need another r10_bio.
1264			 */
1265			sectors_handled = (r10_bio->sector + max_sectors
1266					   - bio->bi_iter.bi_sector);
1267			r10_bio->sectors = max_sectors;
1268			spin_lock_irq(&conf->device_lock);
1269			if (bio->bi_phys_segments == 0)
1270				bio->bi_phys_segments = 2;
1271			else
1272				bio->bi_phys_segments++;
1273			spin_unlock_irq(&conf->device_lock);
1274			/* Cannot call generic_make_request directly
1275			 * as that will be queued in __generic_make_request
1276			 * and subsequent mempool_alloc might block
1277			 * waiting for it.  so hand bio over to raid10d.
1278			 */
1279			reschedule_retry(r10_bio);
1280
1281			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1282
1283			r10_bio->master_bio = bio;
1284			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1285			r10_bio->state = 0;
1286			r10_bio->mddev = mddev;
1287			r10_bio->sector = bio->bi_iter.bi_sector +
1288				sectors_handled;
1289			goto read_again;
1290		} else
1291			generic_make_request(read_bio);
1292		return;
1293	}
1294
1295	/*
1296	 * WRITE:
1297	 */
1298	if (conf->pending_count >= max_queued_requests) {
1299		md_wakeup_thread(mddev->thread);
1300		wait_event(conf->wait_barrier,
1301			   conf->pending_count < max_queued_requests);
1302	}
1303	/* first select target devices under rcu_lock and
1304	 * inc refcount on their rdev.  Record them by setting
1305	 * bios[x] to bio
1306	 * If there are known/acknowledged bad blocks on any device
1307	 * on which we have seen a write error, we want to avoid
1308	 * writing to those blocks.  This potentially requires several
1309	 * writes to write around the bad blocks.  Each set of writes
1310	 * gets its own r10_bio with a set of bios attached.  The number
1311	 * of r10_bios is recored in bio->bi_phys_segments just as with
1312	 * the read case.
1313	 */
1314
1315	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1316	raid10_find_phys(conf, r10_bio);
1317retry_write:
1318	blocked_rdev = NULL;
1319	rcu_read_lock();
1320	max_sectors = r10_bio->sectors;
1321
1322	for (i = 0;  i < conf->copies; i++) {
1323		int d = r10_bio->devs[i].devnum;
1324		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1325		struct md_rdev *rrdev = rcu_dereference(
1326			conf->mirrors[d].replacement);
1327		if (rdev == rrdev)
1328			rrdev = NULL;
1329		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1330			atomic_inc(&rdev->nr_pending);
1331			blocked_rdev = rdev;
1332			break;
1333		}
1334		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1335			atomic_inc(&rrdev->nr_pending);
1336			blocked_rdev = rrdev;
1337			break;
1338		}
1339		if (rdev && (test_bit(Faulty, &rdev->flags)
1340			     || test_bit(Unmerged, &rdev->flags)))
1341			rdev = NULL;
1342		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1343			      || test_bit(Unmerged, &rrdev->flags)))
1344			rrdev = NULL;
1345
1346		r10_bio->devs[i].bio = NULL;
1347		r10_bio->devs[i].repl_bio = NULL;
1348
1349		if (!rdev && !rrdev) {
1350			set_bit(R10BIO_Degraded, &r10_bio->state);
1351			continue;
1352		}
1353		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1354			sector_t first_bad;
1355			sector_t dev_sector = r10_bio->devs[i].addr;
1356			int bad_sectors;
1357			int is_bad;
1358
1359			is_bad = is_badblock(rdev, dev_sector,
1360					     max_sectors,
1361					     &first_bad, &bad_sectors);
1362			if (is_bad < 0) {
1363				/* Mustn't write here until the bad block
1364				 * is acknowledged
1365				 */
1366				atomic_inc(&rdev->nr_pending);
1367				set_bit(BlockedBadBlocks, &rdev->flags);
1368				blocked_rdev = rdev;
1369				break;
1370			}
1371			if (is_bad && first_bad <= dev_sector) {
1372				/* Cannot write here at all */
1373				bad_sectors -= (dev_sector - first_bad);
1374				if (bad_sectors < max_sectors)
1375					/* Mustn't write more than bad_sectors
1376					 * to other devices yet
1377					 */
1378					max_sectors = bad_sectors;
1379				/* We don't set R10BIO_Degraded as that
1380				 * only applies if the disk is missing,
1381				 * so it might be re-added, and we want to
1382				 * know to recover this chunk.
1383				 * In this case the device is here, and the
1384				 * fact that this chunk is not in-sync is
1385				 * recorded in the bad block log.
1386				 */
1387				continue;
1388			}
1389			if (is_bad) {
1390				int good_sectors = first_bad - dev_sector;
1391				if (good_sectors < max_sectors)
1392					max_sectors = good_sectors;
1393			}
1394		}
1395		if (rdev) {
1396			r10_bio->devs[i].bio = bio;
1397			atomic_inc(&rdev->nr_pending);
1398		}
1399		if (rrdev) {
1400			r10_bio->devs[i].repl_bio = bio;
1401			atomic_inc(&rrdev->nr_pending);
1402		}
1403	}
1404	rcu_read_unlock();
1405
1406	if (unlikely(blocked_rdev)) {
1407		/* Have to wait for this device to get unblocked, then retry */
1408		int j;
1409		int d;
1410
1411		for (j = 0; j < i; j++) {
1412			if (r10_bio->devs[j].bio) {
1413				d = r10_bio->devs[j].devnum;
1414				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1415			}
1416			if (r10_bio->devs[j].repl_bio) {
1417				struct md_rdev *rdev;
1418				d = r10_bio->devs[j].devnum;
1419				rdev = conf->mirrors[d].replacement;
1420				if (!rdev) {
1421					/* Race with remove_disk */
1422					smp_mb();
1423					rdev = conf->mirrors[d].rdev;
1424				}
1425				rdev_dec_pending(rdev, mddev);
1426			}
1427		}
1428		allow_barrier(conf);
1429		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1430		wait_barrier(conf);
1431		goto retry_write;
1432	}
1433
1434	if (max_sectors < r10_bio->sectors) {
1435		/* We are splitting this into multiple parts, so
1436		 * we need to prepare for allocating another r10_bio.
1437		 */
1438		r10_bio->sectors = max_sectors;
1439		spin_lock_irq(&conf->device_lock);
1440		if (bio->bi_phys_segments == 0)
1441			bio->bi_phys_segments = 2;
1442		else
1443			bio->bi_phys_segments++;
1444		spin_unlock_irq(&conf->device_lock);
1445	}
1446	sectors_handled = r10_bio->sector + max_sectors -
1447		bio->bi_iter.bi_sector;
1448
1449	atomic_set(&r10_bio->remaining, 1);
1450	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1451
1452	for (i = 0; i < conf->copies; i++) {
1453		struct bio *mbio;
1454		int d = r10_bio->devs[i].devnum;
1455		if (r10_bio->devs[i].bio) {
1456			struct md_rdev *rdev = conf->mirrors[d].rdev;
1457			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1458			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1459				 max_sectors);
1460			r10_bio->devs[i].bio = mbio;
1461
1462			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1463					   choose_data_offset(r10_bio,
1464							      rdev));
1465			mbio->bi_bdev = rdev->bdev;
1466			mbio->bi_end_io	= raid10_end_write_request;
1467			mbio->bi_rw =
1468				WRITE | do_sync | do_fua | do_discard | do_same;
1469			mbio->bi_private = r10_bio;
1470
1471			atomic_inc(&r10_bio->remaining);
1472
1473			cb = blk_check_plugged(raid10_unplug, mddev,
1474					       sizeof(*plug));
1475			if (cb)
1476				plug = container_of(cb, struct raid10_plug_cb,
1477						    cb);
1478			else
1479				plug = NULL;
1480			spin_lock_irqsave(&conf->device_lock, flags);
1481			if (plug) {
1482				bio_list_add(&plug->pending, mbio);
1483				plug->pending_cnt++;
1484			} else {
1485				bio_list_add(&conf->pending_bio_list, mbio);
1486				conf->pending_count++;
1487			}
1488			spin_unlock_irqrestore(&conf->device_lock, flags);
1489			if (!plug)
1490				md_wakeup_thread(mddev->thread);
1491		}
1492
1493		if (r10_bio->devs[i].repl_bio) {
1494			struct md_rdev *rdev = conf->mirrors[d].replacement;
1495			if (rdev == NULL) {
1496				/* Replacement just got moved to main 'rdev' */
1497				smp_mb();
1498				rdev = conf->mirrors[d].rdev;
1499			}
1500			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1502				 max_sectors);
1503			r10_bio->devs[i].repl_bio = mbio;
1504
1505			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1506					   choose_data_offset(
1507						   r10_bio, rdev));
1508			mbio->bi_bdev = rdev->bdev;
1509			mbio->bi_end_io	= raid10_end_write_request;
1510			mbio->bi_rw =
1511				WRITE | do_sync | do_fua | do_discard | do_same;
1512			mbio->bi_private = r10_bio;
1513
1514			atomic_inc(&r10_bio->remaining);
1515			spin_lock_irqsave(&conf->device_lock, flags);
1516			bio_list_add(&conf->pending_bio_list, mbio);
1517			conf->pending_count++;
1518			spin_unlock_irqrestore(&conf->device_lock, flags);
1519			if (!mddev_check_plugged(mddev))
1520				md_wakeup_thread(mddev->thread);
1521		}
1522	}
1523
1524	/* Don't remove the bias on 'remaining' (one_write_done) until
1525	 * after checking if we need to go around again.
1526	 */
1527
1528	if (sectors_handled < bio_sectors(bio)) {
1529		one_write_done(r10_bio);
1530		/* We need another r10_bio.  It has already been counted
1531		 * in bio->bi_phys_segments.
1532		 */
1533		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1534
1535		r10_bio->master_bio = bio;
1536		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1537
1538		r10_bio->mddev = mddev;
1539		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1540		r10_bio->state = 0;
1541		goto retry_write;
1542	}
1543	one_write_done(r10_bio);
1544}
1545
1546static void make_request(struct mddev *mddev, struct bio *bio)
1547{
1548	struct r10conf *conf = mddev->private;
1549	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1550	int chunk_sects = chunk_mask + 1;
1551
1552	struct bio *split;
1553
1554	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1555		md_flush_request(mddev, bio);
1556		return;
1557	}
1558
1559	md_write_start(mddev, bio);
1560
1561	do {
1562
1563		/*
1564		 * If this request crosses a chunk boundary, we need to split
1565		 * it.
1566		 */
1567		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1568			     bio_sectors(bio) > chunk_sects
1569			     && (conf->geo.near_copies < conf->geo.raid_disks
1570				 || conf->prev.near_copies <
1571				 conf->prev.raid_disks))) {
1572			split = bio_split(bio, chunk_sects -
1573					  (bio->bi_iter.bi_sector &
1574					   (chunk_sects - 1)),
1575					  GFP_NOIO, fs_bio_set);
1576			bio_chain(split, bio);
1577		} else {
1578			split = bio;
1579		}
1580
1581		__make_request(mddev, split);
1582	} while (split != bio);
1583
1584	/* In case raid10d snuck in to freeze_array */
1585	wake_up(&conf->wait_barrier);
1586}
1587
1588static void status(struct seq_file *seq, struct mddev *mddev)
1589{
1590	struct r10conf *conf = mddev->private;
1591	int i;
1592
1593	if (conf->geo.near_copies < conf->geo.raid_disks)
1594		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595	if (conf->geo.near_copies > 1)
1596		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597	if (conf->geo.far_copies > 1) {
1598		if (conf->geo.far_offset)
1599			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600		else
1601			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602	}
1603	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604					conf->geo.raid_disks - mddev->degraded);
1605	for (i = 0; i < conf->geo.raid_disks; i++)
1606		seq_printf(seq, "%s",
1607			      conf->mirrors[i].rdev &&
1608			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1609	seq_printf(seq, "]");
1610}
1611
1612/* check if there are enough drives for
1613 * every block to appear on atleast one.
1614 * Don't consider the device numbered 'ignore'
1615 * as we might be about to remove it.
1616 */
1617static int _enough(struct r10conf *conf, int previous, int ignore)
1618{
1619	int first = 0;
1620	int has_enough = 0;
1621	int disks, ncopies;
1622	if (previous) {
1623		disks = conf->prev.raid_disks;
1624		ncopies = conf->prev.near_copies;
1625	} else {
1626		disks = conf->geo.raid_disks;
1627		ncopies = conf->geo.near_copies;
1628	}
1629
1630	rcu_read_lock();
1631	do {
1632		int n = conf->copies;
1633		int cnt = 0;
1634		int this = first;
1635		while (n--) {
1636			struct md_rdev *rdev;
1637			if (this != ignore &&
1638			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1639			    test_bit(In_sync, &rdev->flags))
1640				cnt++;
1641			this = (this+1) % disks;
1642		}
1643		if (cnt == 0)
1644			goto out;
1645		first = (first + ncopies) % disks;
1646	} while (first != 0);
1647	has_enough = 1;
1648out:
1649	rcu_read_unlock();
1650	return has_enough;
1651}
1652
1653static int enough(struct r10conf *conf, int ignore)
1654{
1655	/* when calling 'enough', both 'prev' and 'geo' must
1656	 * be stable.
1657	 * This is ensured if ->reconfig_mutex or ->device_lock
1658	 * is held.
1659	 */
1660	return _enough(conf, 0, ignore) &&
1661		_enough(conf, 1, ignore);
1662}
1663
1664static void error(struct mddev *mddev, struct md_rdev *rdev)
1665{
1666	char b[BDEVNAME_SIZE];
1667	struct r10conf *conf = mddev->private;
1668	unsigned long flags;
1669
1670	/*
1671	 * If it is not operational, then we have already marked it as dead
1672	 * else if it is the last working disks, ignore the error, let the
1673	 * next level up know.
1674	 * else mark the drive as failed
1675	 */
1676	spin_lock_irqsave(&conf->device_lock, flags);
1677	if (test_bit(In_sync, &rdev->flags)
1678	    && !enough(conf, rdev->raid_disk)) {
1679		/*
1680		 * Don't fail the drive, just return an IO error.
1681		 */
1682		spin_unlock_irqrestore(&conf->device_lock, flags);
1683		return;
1684	}
1685	if (test_and_clear_bit(In_sync, &rdev->flags))
1686		mddev->degraded++;
1687	/*
1688	 * If recovery is running, make sure it aborts.
1689	 */
1690	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1691	set_bit(Blocked, &rdev->flags);
1692	set_bit(Faulty, &rdev->flags);
1693	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1694	spin_unlock_irqrestore(&conf->device_lock, flags);
1695	printk(KERN_ALERT
1696	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1697	       "md/raid10:%s: Operation continuing on %d devices.\n",
1698	       mdname(mddev), bdevname(rdev->bdev, b),
1699	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1700}
1701
1702static void print_conf(struct r10conf *conf)
1703{
1704	int i;
1705	struct raid10_info *tmp;
1706
1707	printk(KERN_DEBUG "RAID10 conf printout:\n");
1708	if (!conf) {
1709		printk(KERN_DEBUG "(!conf)\n");
1710		return;
1711	}
1712	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1713		conf->geo.raid_disks);
1714
1715	for (i = 0; i < conf->geo.raid_disks; i++) {
1716		char b[BDEVNAME_SIZE];
1717		tmp = conf->mirrors + i;
1718		if (tmp->rdev)
1719			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1720				i, !test_bit(In_sync, &tmp->rdev->flags),
1721			        !test_bit(Faulty, &tmp->rdev->flags),
1722				bdevname(tmp->rdev->bdev,b));
1723	}
1724}
1725
1726static void close_sync(struct r10conf *conf)
1727{
1728	wait_barrier(conf);
1729	allow_barrier(conf);
1730
1731	mempool_destroy(conf->r10buf_pool);
1732	conf->r10buf_pool = NULL;
1733}
1734
1735static int raid10_spare_active(struct mddev *mddev)
1736{
1737	int i;
1738	struct r10conf *conf = mddev->private;
1739	struct raid10_info *tmp;
1740	int count = 0;
1741	unsigned long flags;
1742
1743	/*
1744	 * Find all non-in_sync disks within the RAID10 configuration
1745	 * and mark them in_sync
1746	 */
1747	for (i = 0; i < conf->geo.raid_disks; i++) {
1748		tmp = conf->mirrors + i;
1749		if (tmp->replacement
1750		    && tmp->replacement->recovery_offset == MaxSector
1751		    && !test_bit(Faulty, &tmp->replacement->flags)
1752		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1753			/* Replacement has just become active */
1754			if (!tmp->rdev
1755			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1756				count++;
1757			if (tmp->rdev) {
1758				/* Replaced device not technically faulty,
1759				 * but we need to be sure it gets removed
1760				 * and never re-added.
1761				 */
1762				set_bit(Faulty, &tmp->rdev->flags);
1763				sysfs_notify_dirent_safe(
1764					tmp->rdev->sysfs_state);
1765			}
1766			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1767		} else if (tmp->rdev
1768			   && tmp->rdev->recovery_offset == MaxSector
1769			   && !test_bit(Faulty, &tmp->rdev->flags)
1770			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1771			count++;
1772			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1773		}
1774	}
1775	spin_lock_irqsave(&conf->device_lock, flags);
1776	mddev->degraded -= count;
1777	spin_unlock_irqrestore(&conf->device_lock, flags);
1778
1779	print_conf(conf);
1780	return count;
1781}
1782
1783static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1784{
1785	struct r10conf *conf = mddev->private;
1786	int err = -EEXIST;
1787	int mirror;
1788	int first = 0;
1789	int last = conf->geo.raid_disks - 1;
1790	struct request_queue *q = bdev_get_queue(rdev->bdev);
1791
1792	if (mddev->recovery_cp < MaxSector)
1793		/* only hot-add to in-sync arrays, as recovery is
1794		 * very different from resync
1795		 */
1796		return -EBUSY;
1797	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1798		return -EINVAL;
1799
1800	if (rdev->raid_disk >= 0)
1801		first = last = rdev->raid_disk;
1802
1803	if (q->merge_bvec_fn) {
1804		set_bit(Unmerged, &rdev->flags);
1805		mddev->merge_check_needed = 1;
1806	}
1807
1808	if (rdev->saved_raid_disk >= first &&
1809	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1810		mirror = rdev->saved_raid_disk;
1811	else
1812		mirror = first;
1813	for ( ; mirror <= last ; mirror++) {
1814		struct raid10_info *p = &conf->mirrors[mirror];
1815		if (p->recovery_disabled == mddev->recovery_disabled)
1816			continue;
1817		if (p->rdev) {
1818			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1819			    p->replacement != NULL)
1820				continue;
1821			clear_bit(In_sync, &rdev->flags);
1822			set_bit(Replacement, &rdev->flags);
1823			rdev->raid_disk = mirror;
1824			err = 0;
1825			if (mddev->gendisk)
1826				disk_stack_limits(mddev->gendisk, rdev->bdev,
1827						  rdev->data_offset << 9);
1828			conf->fullsync = 1;
1829			rcu_assign_pointer(p->replacement, rdev);
1830			break;
1831		}
1832
1833		if (mddev->gendisk)
1834			disk_stack_limits(mddev->gendisk, rdev->bdev,
1835					  rdev->data_offset << 9);
1836
1837		p->head_position = 0;
1838		p->recovery_disabled = mddev->recovery_disabled - 1;
1839		rdev->raid_disk = mirror;
1840		err = 0;
1841		if (rdev->saved_raid_disk != mirror)
1842			conf->fullsync = 1;
1843		rcu_assign_pointer(p->rdev, rdev);
1844		break;
1845	}
1846	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1847		/* Some requests might not have seen this new
1848		 * merge_bvec_fn.  We must wait for them to complete
1849		 * before merging the device fully.
1850		 * First we make sure any code which has tested
1851		 * our function has submitted the request, then
1852		 * we wait for all outstanding requests to complete.
1853		 */
1854		synchronize_sched();
1855		freeze_array(conf, 0);
1856		unfreeze_array(conf);
1857		clear_bit(Unmerged, &rdev->flags);
1858	}
1859	md_integrity_add_rdev(rdev, mddev);
1860	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1861		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1862
1863	print_conf(conf);
1864	return err;
1865}
1866
1867static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1868{
1869	struct r10conf *conf = mddev->private;
1870	int err = 0;
1871	int number = rdev->raid_disk;
1872	struct md_rdev **rdevp;
1873	struct raid10_info *p = conf->mirrors + number;
1874
1875	print_conf(conf);
1876	if (rdev == p->rdev)
1877		rdevp = &p->rdev;
1878	else if (rdev == p->replacement)
1879		rdevp = &p->replacement;
1880	else
1881		return 0;
1882
1883	if (test_bit(In_sync, &rdev->flags) ||
1884	    atomic_read(&rdev->nr_pending)) {
1885		err = -EBUSY;
1886		goto abort;
1887	}
1888	/* Only remove faulty devices if recovery
1889	 * is not possible.
1890	 */
1891	if (!test_bit(Faulty, &rdev->flags) &&
1892	    mddev->recovery_disabled != p->recovery_disabled &&
1893	    (!p->replacement || p->replacement == rdev) &&
1894	    number < conf->geo.raid_disks &&
1895	    enough(conf, -1)) {
1896		err = -EBUSY;
1897		goto abort;
1898	}
1899	*rdevp = NULL;
1900	synchronize_rcu();
1901	if (atomic_read(&rdev->nr_pending)) {
1902		/* lost the race, try later */
1903		err = -EBUSY;
1904		*rdevp = rdev;
1905		goto abort;
1906	} else if (p->replacement) {
1907		/* We must have just cleared 'rdev' */
1908		p->rdev = p->replacement;
1909		clear_bit(Replacement, &p->replacement->flags);
1910		smp_mb(); /* Make sure other CPUs may see both as identical
1911			   * but will never see neither -- if they are careful.
1912			   */
1913		p->replacement = NULL;
1914		clear_bit(WantReplacement, &rdev->flags);
1915	} else
1916		/* We might have just remove the Replacement as faulty
1917		 * Clear the flag just in case
1918		 */
1919		clear_bit(WantReplacement, &rdev->flags);
1920
1921	err = md_integrity_register(mddev);
1922
1923abort:
1924
1925	print_conf(conf);
1926	return err;
1927}
1928
1929static void end_sync_read(struct bio *bio, int error)
1930{
1931	struct r10bio *r10_bio = bio->bi_private;
1932	struct r10conf *conf = r10_bio->mddev->private;
1933	int d;
1934
1935	if (bio == r10_bio->master_bio) {
1936		/* this is a reshape read */
1937		d = r10_bio->read_slot; /* really the read dev */
1938	} else
1939		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1940
1941	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1942		set_bit(R10BIO_Uptodate, &r10_bio->state);
1943	else
1944		/* The write handler will notice the lack of
1945		 * R10BIO_Uptodate and record any errors etc
1946		 */
1947		atomic_add(r10_bio->sectors,
1948			   &conf->mirrors[d].rdev->corrected_errors);
1949
1950	/* for reconstruct, we always reschedule after a read.
1951	 * for resync, only after all reads
1952	 */
1953	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1954	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1955	    atomic_dec_and_test(&r10_bio->remaining)) {
1956		/* we have read all the blocks,
1957		 * do the comparison in process context in raid10d
1958		 */
1959		reschedule_retry(r10_bio);
1960	}
1961}
1962
1963static void end_sync_request(struct r10bio *r10_bio)
1964{
1965	struct mddev *mddev = r10_bio->mddev;
1966
1967	while (atomic_dec_and_test(&r10_bio->remaining)) {
1968		if (r10_bio->master_bio == NULL) {
1969			/* the primary of several recovery bios */
1970			sector_t s = r10_bio->sectors;
1971			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972			    test_bit(R10BIO_WriteError, &r10_bio->state))
1973				reschedule_retry(r10_bio);
1974			else
1975				put_buf(r10_bio);
1976			md_done_sync(mddev, s, 1);
1977			break;
1978		} else {
1979			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1980			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1981			    test_bit(R10BIO_WriteError, &r10_bio->state))
1982				reschedule_retry(r10_bio);
1983			else
1984				put_buf(r10_bio);
1985			r10_bio = r10_bio2;
1986		}
1987	}
1988}
1989
1990static void end_sync_write(struct bio *bio, int error)
1991{
1992	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1993	struct r10bio *r10_bio = bio->bi_private;
1994	struct mddev *mddev = r10_bio->mddev;
1995	struct r10conf *conf = mddev->private;
1996	int d;
1997	sector_t first_bad;
1998	int bad_sectors;
1999	int slot;
2000	int repl;
2001	struct md_rdev *rdev = NULL;
2002
2003	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2004	if (repl)
2005		rdev = conf->mirrors[d].replacement;
2006	else
2007		rdev = conf->mirrors[d].rdev;
2008
2009	if (!uptodate) {
2010		if (repl)
2011			md_error(mddev, rdev);
2012		else {
2013			set_bit(WriteErrorSeen, &rdev->flags);
2014			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2015				set_bit(MD_RECOVERY_NEEDED,
2016					&rdev->mddev->recovery);
2017			set_bit(R10BIO_WriteError, &r10_bio->state);
2018		}
2019	} else if (is_badblock(rdev,
2020			     r10_bio->devs[slot].addr,
2021			     r10_bio->sectors,
2022			     &first_bad, &bad_sectors))
2023		set_bit(R10BIO_MadeGood, &r10_bio->state);
2024
2025	rdev_dec_pending(rdev, mddev);
2026
2027	end_sync_request(r10_bio);
2028}
2029
2030/*
2031 * Note: sync and recover and handled very differently for raid10
2032 * This code is for resync.
2033 * For resync, we read through virtual addresses and read all blocks.
2034 * If there is any error, we schedule a write.  The lowest numbered
2035 * drive is authoritative.
2036 * However requests come for physical address, so we need to map.
2037 * For every physical address there are raid_disks/copies virtual addresses,
2038 * which is always are least one, but is not necessarly an integer.
2039 * This means that a physical address can span multiple chunks, so we may
2040 * have to submit multiple io requests for a single sync request.
2041 */
2042/*
2043 * We check if all blocks are in-sync and only write to blocks that
2044 * aren't in sync
2045 */
2046static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2047{
2048	struct r10conf *conf = mddev->private;
2049	int i, first;
2050	struct bio *tbio, *fbio;
2051	int vcnt;
2052
2053	atomic_set(&r10_bio->remaining, 1);
2054
2055	/* find the first device with a block */
2056	for (i=0; i<conf->copies; i++)
2057		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2058			break;
2059
2060	if (i == conf->copies)
2061		goto done;
2062
2063	first = i;
2064	fbio = r10_bio->devs[i].bio;
2065
2066	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2067	/* now find blocks with errors */
2068	for (i=0 ; i < conf->copies ; i++) {
2069		int  j, d;
2070
2071		tbio = r10_bio->devs[i].bio;
2072
2073		if (tbio->bi_end_io != end_sync_read)
2074			continue;
2075		if (i == first)
2076			continue;
2077		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2078			/* We know that the bi_io_vec layout is the same for
2079			 * both 'first' and 'i', so we just compare them.
2080			 * All vec entries are PAGE_SIZE;
2081			 */
2082			int sectors = r10_bio->sectors;
2083			for (j = 0; j < vcnt; j++) {
2084				int len = PAGE_SIZE;
2085				if (sectors < (len / 512))
2086					len = sectors * 512;
2087				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2088					   page_address(tbio->bi_io_vec[j].bv_page),
2089					   len))
2090					break;
2091				sectors -= len/512;
2092			}
2093			if (j == vcnt)
2094				continue;
2095			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2096			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2097				/* Don't fix anything. */
2098				continue;
2099		}
2100		/* Ok, we need to write this bio, either to correct an
2101		 * inconsistency or to correct an unreadable block.
2102		 * First we need to fixup bv_offset, bv_len and
2103		 * bi_vecs, as the read request might have corrupted these
2104		 */
2105		bio_reset(tbio);
2106
2107		tbio->bi_vcnt = vcnt;
2108		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2109		tbio->bi_rw = WRITE;
2110		tbio->bi_private = r10_bio;
2111		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2112
2113		for (j=0; j < vcnt ; j++) {
2114			tbio->bi_io_vec[j].bv_offset = 0;
2115			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2116
2117			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2118			       page_address(fbio->bi_io_vec[j].bv_page),
2119			       PAGE_SIZE);
2120		}
2121		tbio->bi_end_io = end_sync_write;
2122
2123		d = r10_bio->devs[i].devnum;
2124		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2125		atomic_inc(&r10_bio->remaining);
2126		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2127
2128		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2129		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2130		generic_make_request(tbio);
2131	}
2132
2133	/* Now write out to any replacement devices
2134	 * that are active
2135	 */
2136	for (i = 0; i < conf->copies; i++) {
2137		int j, d;
2138
2139		tbio = r10_bio->devs[i].repl_bio;
2140		if (!tbio || !tbio->bi_end_io)
2141			continue;
2142		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2143		    && r10_bio->devs[i].bio != fbio)
2144			for (j = 0; j < vcnt; j++)
2145				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2146				       page_address(fbio->bi_io_vec[j].bv_page),
2147				       PAGE_SIZE);
2148		d = r10_bio->devs[i].devnum;
2149		atomic_inc(&r10_bio->remaining);
2150		md_sync_acct(conf->mirrors[d].replacement->bdev,
2151			     bio_sectors(tbio));
2152		generic_make_request(tbio);
2153	}
2154
2155done:
2156	if (atomic_dec_and_test(&r10_bio->remaining)) {
2157		md_done_sync(mddev, r10_bio->sectors, 1);
2158		put_buf(r10_bio);
2159	}
2160}
2161
2162/*
2163 * Now for the recovery code.
2164 * Recovery happens across physical sectors.
2165 * We recover all non-is_sync drives by finding the virtual address of
2166 * each, and then choose a working drive that also has that virt address.
2167 * There is a separate r10_bio for each non-in_sync drive.
2168 * Only the first two slots are in use. The first for reading,
2169 * The second for writing.
2170 *
2171 */
2172static void fix_recovery_read_error(struct r10bio *r10_bio)
2173{
2174	/* We got a read error during recovery.
2175	 * We repeat the read in smaller page-sized sections.
2176	 * If a read succeeds, write it to the new device or record
2177	 * a bad block if we cannot.
2178	 * If a read fails, record a bad block on both old and
2179	 * new devices.
2180	 */
2181	struct mddev *mddev = r10_bio->mddev;
2182	struct r10conf *conf = mddev->private;
2183	struct bio *bio = r10_bio->devs[0].bio;
2184	sector_t sect = 0;
2185	int sectors = r10_bio->sectors;
2186	int idx = 0;
2187	int dr = r10_bio->devs[0].devnum;
2188	int dw = r10_bio->devs[1].devnum;
2189
2190	while (sectors) {
2191		int s = sectors;
2192		struct md_rdev *rdev;
2193		sector_t addr;
2194		int ok;
2195
2196		if (s > (PAGE_SIZE>>9))
2197			s = PAGE_SIZE >> 9;
2198
2199		rdev = conf->mirrors[dr].rdev;
2200		addr = r10_bio->devs[0].addr + sect,
2201		ok = sync_page_io(rdev,
2202				  addr,
2203				  s << 9,
2204				  bio->bi_io_vec[idx].bv_page,
2205				  READ, false);
2206		if (ok) {
2207			rdev = conf->mirrors[dw].rdev;
2208			addr = r10_bio->devs[1].addr + sect;
2209			ok = sync_page_io(rdev,
2210					  addr,
2211					  s << 9,
2212					  bio->bi_io_vec[idx].bv_page,
2213					  WRITE, false);
2214			if (!ok) {
2215				set_bit(WriteErrorSeen, &rdev->flags);
2216				if (!test_and_set_bit(WantReplacement,
2217						      &rdev->flags))
2218					set_bit(MD_RECOVERY_NEEDED,
2219						&rdev->mddev->recovery);
2220			}
2221		}
2222		if (!ok) {
2223			/* We don't worry if we cannot set a bad block -
2224			 * it really is bad so there is no loss in not
2225			 * recording it yet
2226			 */
2227			rdev_set_badblocks(rdev, addr, s, 0);
2228
2229			if (rdev != conf->mirrors[dw].rdev) {
2230				/* need bad block on destination too */
2231				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2232				addr = r10_bio->devs[1].addr + sect;
2233				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2234				if (!ok) {
2235					/* just abort the recovery */
2236					printk(KERN_NOTICE
2237					       "md/raid10:%s: recovery aborted"
2238					       " due to read error\n",
2239					       mdname(mddev));
2240
2241					conf->mirrors[dw].recovery_disabled
2242						= mddev->recovery_disabled;
2243					set_bit(MD_RECOVERY_INTR,
2244						&mddev->recovery);
2245					break;
2246				}
2247			}
2248		}
2249
2250		sectors -= s;
2251		sect += s;
2252		idx++;
2253	}
2254}
2255
2256static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257{
2258	struct r10conf *conf = mddev->private;
2259	int d;
2260	struct bio *wbio, *wbio2;
2261
2262	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263		fix_recovery_read_error(r10_bio);
2264		end_sync_request(r10_bio);
2265		return;
2266	}
2267
2268	/*
2269	 * share the pages with the first bio
2270	 * and submit the write request
2271	 */
2272	d = r10_bio->devs[1].devnum;
2273	wbio = r10_bio->devs[1].bio;
2274	wbio2 = r10_bio->devs[1].repl_bio;
2275	/* Need to test wbio2->bi_end_io before we call
2276	 * generic_make_request as if the former is NULL,
2277	 * the latter is free to free wbio2.
2278	 */
2279	if (wbio2 && !wbio2->bi_end_io)
2280		wbio2 = NULL;
2281	if (wbio->bi_end_io) {
2282		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284		generic_make_request(wbio);
2285	}
2286	if (wbio2) {
2287		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288		md_sync_acct(conf->mirrors[d].replacement->bdev,
2289			     bio_sectors(wbio2));
2290		generic_make_request(wbio2);
2291	}
2292}
2293
2294/*
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2298 *
2299 */
2300static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301{
2302	struct timespec cur_time_mon;
2303	unsigned long hours_since_last;
2304	unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306	ktime_get_ts(&cur_time_mon);
2307
2308	if (rdev->last_read_error.tv_sec == 0 &&
2309	    rdev->last_read_error.tv_nsec == 0) {
2310		/* first time we've seen a read error */
2311		rdev->last_read_error = cur_time_mon;
2312		return;
2313	}
2314
2315	hours_since_last = (cur_time_mon.tv_sec -
2316			    rdev->last_read_error.tv_sec) / 3600;
2317
2318	rdev->last_read_error = cur_time_mon;
2319
2320	/*
2321	 * if hours_since_last is > the number of bits in read_errors
2322	 * just set read errors to 0. We do this to avoid
2323	 * overflowing the shift of read_errors by hours_since_last.
2324	 */
2325	if (hours_since_last >= 8 * sizeof(read_errors))
2326		atomic_set(&rdev->read_errors, 0);
2327	else
2328		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329}
2330
2331static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332			    int sectors, struct page *page, int rw)
2333{
2334	sector_t first_bad;
2335	int bad_sectors;
2336
2337	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339		return -1;
2340	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2341		/* success */
2342		return 1;
2343	if (rw == WRITE) {
2344		set_bit(WriteErrorSeen, &rdev->flags);
2345		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346			set_bit(MD_RECOVERY_NEEDED,
2347				&rdev->mddev->recovery);
2348	}
2349	/* need to record an error - either for the block or the device */
2350	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351		md_error(rdev->mddev, rdev);
2352	return 0;
2353}
2354
2355/*
2356 * This is a kernel thread which:
2357 *
2358 *	1.	Retries failed read operations on working mirrors.
2359 *	2.	Updates the raid superblock when problems encounter.
2360 *	3.	Performs writes following reads for array synchronising.
2361 */
2362
2363static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364{
2365	int sect = 0; /* Offset from r10_bio->sector */
2366	int sectors = r10_bio->sectors;
2367	struct md_rdev*rdev;
2368	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370
2371	/* still own a reference to this rdev, so it cannot
2372	 * have been cleared recently.
2373	 */
2374	rdev = conf->mirrors[d].rdev;
2375
2376	if (test_bit(Faulty, &rdev->flags))
2377		/* drive has already been failed, just ignore any
2378		   more fix_read_error() attempts */
2379		return;
2380
2381	check_decay_read_errors(mddev, rdev);
2382	atomic_inc(&rdev->read_errors);
2383	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384		char b[BDEVNAME_SIZE];
2385		bdevname(rdev->bdev, b);
2386
2387		printk(KERN_NOTICE
2388		       "md/raid10:%s: %s: Raid device exceeded "
2389		       "read_error threshold [cur %d:max %d]\n",
2390		       mdname(mddev), b,
2391		       atomic_read(&rdev->read_errors), max_read_errors);
2392		printk(KERN_NOTICE
2393		       "md/raid10:%s: %s: Failing raid device\n",
2394		       mdname(mddev), b);
2395		md_error(mddev, conf->mirrors[d].rdev);
2396		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2397		return;
2398	}
2399
2400	while(sectors) {
2401		int s = sectors;
2402		int sl = r10_bio->read_slot;
2403		int success = 0;
2404		int start;
2405
2406		if (s > (PAGE_SIZE>>9))
2407			s = PAGE_SIZE >> 9;
2408
2409		rcu_read_lock();
2410		do {
2411			sector_t first_bad;
2412			int bad_sectors;
2413
2414			d = r10_bio->devs[sl].devnum;
2415			rdev = rcu_dereference(conf->mirrors[d].rdev);
2416			if (rdev &&
2417			    !test_bit(Unmerged, &rdev->flags) &&
2418			    test_bit(In_sync, &rdev->flags) &&
2419			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2420					&first_bad, &bad_sectors) == 0) {
2421				atomic_inc(&rdev->nr_pending);
2422				rcu_read_unlock();
2423				success = sync_page_io(rdev,
2424						       r10_bio->devs[sl].addr +
2425						       sect,
2426						       s<<9,
2427						       conf->tmppage, READ, false);
2428				rdev_dec_pending(rdev, mddev);
2429				rcu_read_lock();
2430				if (success)
2431					break;
2432			}
2433			sl++;
2434			if (sl == conf->copies)
2435				sl = 0;
2436		} while (!success && sl != r10_bio->read_slot);
2437		rcu_read_unlock();
2438
2439		if (!success) {
2440			/* Cannot read from anywhere, just mark the block
2441			 * as bad on the first device to discourage future
2442			 * reads.
2443			 */
2444			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445			rdev = conf->mirrors[dn].rdev;
2446
2447			if (!rdev_set_badblocks(
2448				    rdev,
2449				    r10_bio->devs[r10_bio->read_slot].addr
2450				    + sect,
2451				    s, 0)) {
2452				md_error(mddev, rdev);
2453				r10_bio->devs[r10_bio->read_slot].bio
2454					= IO_BLOCKED;
2455			}
2456			break;
2457		}
2458
2459		start = sl;
2460		/* write it back and re-read */
2461		rcu_read_lock();
2462		while (sl != r10_bio->read_slot) {
2463			char b[BDEVNAME_SIZE];
2464
2465			if (sl==0)
2466				sl = conf->copies;
2467			sl--;
2468			d = r10_bio->devs[sl].devnum;
2469			rdev = rcu_dereference(conf->mirrors[d].rdev);
2470			if (!rdev ||
2471			    test_bit(Unmerged, &rdev->flags) ||
2472			    !test_bit(In_sync, &rdev->flags))
2473				continue;
2474
2475			atomic_inc(&rdev->nr_pending);
2476			rcu_read_unlock();
2477			if (r10_sync_page_io(rdev,
2478					     r10_bio->devs[sl].addr +
2479					     sect,
2480					     s, conf->tmppage, WRITE)
2481			    == 0) {
2482				/* Well, this device is dead */
2483				printk(KERN_NOTICE
2484				       "md/raid10:%s: read correction "
2485				       "write failed"
2486				       " (%d sectors at %llu on %s)\n",
2487				       mdname(mddev), s,
2488				       (unsigned long long)(
2489					       sect +
2490					       choose_data_offset(r10_bio,
2491								  rdev)),
2492				       bdevname(rdev->bdev, b));
2493				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2494				       "drive\n",
2495				       mdname(mddev),
2496				       bdevname(rdev->bdev, b));
2497			}
2498			rdev_dec_pending(rdev, mddev);
2499			rcu_read_lock();
2500		}
2501		sl = start;
2502		while (sl != r10_bio->read_slot) {
2503			char b[BDEVNAME_SIZE];
2504
2505			if (sl==0)
2506				sl = conf->copies;
2507			sl--;
2508			d = r10_bio->devs[sl].devnum;
2509			rdev = rcu_dereference(conf->mirrors[d].rdev);
2510			if (!rdev ||
2511			    !test_bit(In_sync, &rdev->flags))
2512				continue;
2513
2514			atomic_inc(&rdev->nr_pending);
2515			rcu_read_unlock();
2516			switch (r10_sync_page_io(rdev,
2517					     r10_bio->devs[sl].addr +
2518					     sect,
2519					     s, conf->tmppage,
2520						 READ)) {
2521			case 0:
2522				/* Well, this device is dead */
2523				printk(KERN_NOTICE
2524				       "md/raid10:%s: unable to read back "
2525				       "corrected sectors"
2526				       " (%d sectors at %llu on %s)\n",
2527				       mdname(mddev), s,
2528				       (unsigned long long)(
2529					       sect +
2530					       choose_data_offset(r10_bio, rdev)),
2531				       bdevname(rdev->bdev, b));
2532				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2533				       "drive\n",
2534				       mdname(mddev),
2535				       bdevname(rdev->bdev, b));
2536				break;
2537			case 1:
2538				printk(KERN_INFO
2539				       "md/raid10:%s: read error corrected"
2540				       " (%d sectors at %llu on %s)\n",
2541				       mdname(mddev), s,
2542				       (unsigned long long)(
2543					       sect +
2544					       choose_data_offset(r10_bio, rdev)),
2545				       bdevname(rdev->bdev, b));
2546				atomic_add(s, &rdev->corrected_errors);
2547			}
2548
2549			rdev_dec_pending(rdev, mddev);
2550			rcu_read_lock();
2551		}
2552		rcu_read_unlock();
2553
2554		sectors -= s;
2555		sect += s;
2556	}
2557}
2558
2559static int narrow_write_error(struct r10bio *r10_bio, int i)
2560{
2561	struct bio *bio = r10_bio->master_bio;
2562	struct mddev *mddev = r10_bio->mddev;
2563	struct r10conf *conf = mddev->private;
2564	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2565	/* bio has the data to be written to slot 'i' where
2566	 * we just recently had a write error.
2567	 * We repeatedly clone the bio and trim down to one block,
2568	 * then try the write.  Where the write fails we record
2569	 * a bad block.
2570	 * It is conceivable that the bio doesn't exactly align with
2571	 * blocks.  We must handle this.
2572	 *
2573	 * We currently own a reference to the rdev.
2574	 */
2575
2576	int block_sectors;
2577	sector_t sector;
2578	int sectors;
2579	int sect_to_write = r10_bio->sectors;
2580	int ok = 1;
2581
2582	if (rdev->badblocks.shift < 0)
2583		return 0;
2584
2585	block_sectors = 1 << rdev->badblocks.shift;
2586	sector = r10_bio->sector;
2587	sectors = ((r10_bio->sector + block_sectors)
2588		   & ~(sector_t)(block_sectors - 1))
2589		- sector;
2590
2591	while (sect_to_write) {
2592		struct bio *wbio;
2593		if (sectors > sect_to_write)
2594			sectors = sect_to_write;
2595		/* Write at 'sector' for 'sectors' */
2596		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2597		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2598		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2599				   choose_data_offset(r10_bio, rdev) +
2600				   (sector - r10_bio->sector));
2601		wbio->bi_bdev = rdev->bdev;
2602		if (submit_bio_wait(WRITE, wbio) == 0)
2603			/* Failure! */
2604			ok = rdev_set_badblocks(rdev, sector,
2605						sectors, 0)
2606				&& ok;
2607
2608		bio_put(wbio);
2609		sect_to_write -= sectors;
2610		sector += sectors;
2611		sectors = block_sectors;
2612	}
2613	return ok;
2614}
2615
2616static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2617{
2618	int slot = r10_bio->read_slot;
2619	struct bio *bio;
2620	struct r10conf *conf = mddev->private;
2621	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2622	char b[BDEVNAME_SIZE];
2623	unsigned long do_sync;
2624	int max_sectors;
2625
2626	/* we got a read error. Maybe the drive is bad.  Maybe just
2627	 * the block and we can fix it.
2628	 * We freeze all other IO, and try reading the block from
2629	 * other devices.  When we find one, we re-write
2630	 * and check it that fixes the read error.
2631	 * This is all done synchronously while the array is
2632	 * frozen.
2633	 */
2634	bio = r10_bio->devs[slot].bio;
2635	bdevname(bio->bi_bdev, b);
2636	bio_put(bio);
2637	r10_bio->devs[slot].bio = NULL;
2638
2639	if (mddev->ro == 0) {
2640		freeze_array(conf, 1);
2641		fix_read_error(conf, mddev, r10_bio);
2642		unfreeze_array(conf);
2643	} else
2644		r10_bio->devs[slot].bio = IO_BLOCKED;
2645
2646	rdev_dec_pending(rdev, mddev);
2647
2648read_more:
2649	rdev = read_balance(conf, r10_bio, &max_sectors);
2650	if (rdev == NULL) {
2651		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2652		       " read error for block %llu\n",
2653		       mdname(mddev), b,
2654		       (unsigned long long)r10_bio->sector);
2655		raid_end_bio_io(r10_bio);
2656		return;
2657	}
2658
2659	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2660	slot = r10_bio->read_slot;
2661	printk_ratelimited(
2662		KERN_ERR
2663		"md/raid10:%s: %s: redirecting "
2664		"sector %llu to another mirror\n",
2665		mdname(mddev),
2666		bdevname(rdev->bdev, b),
2667		(unsigned long long)r10_bio->sector);
2668	bio = bio_clone_mddev(r10_bio->master_bio,
2669			      GFP_NOIO, mddev);
2670	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2671	r10_bio->devs[slot].bio = bio;
2672	r10_bio->devs[slot].rdev = rdev;
2673	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2674		+ choose_data_offset(r10_bio, rdev);
2675	bio->bi_bdev = rdev->bdev;
2676	bio->bi_rw = READ | do_sync;
2677	bio->bi_private = r10_bio;
2678	bio->bi_end_io = raid10_end_read_request;
2679	if (max_sectors < r10_bio->sectors) {
2680		/* Drat - have to split this up more */
2681		struct bio *mbio = r10_bio->master_bio;
2682		int sectors_handled =
2683			r10_bio->sector + max_sectors
2684			- mbio->bi_iter.bi_sector;
2685		r10_bio->sectors = max_sectors;
2686		spin_lock_irq(&conf->device_lock);
2687		if (mbio->bi_phys_segments == 0)
2688			mbio->bi_phys_segments = 2;
2689		else
2690			mbio->bi_phys_segments++;
2691		spin_unlock_irq(&conf->device_lock);
2692		generic_make_request(bio);
2693
2694		r10_bio = mempool_alloc(conf->r10bio_pool,
2695					GFP_NOIO);
2696		r10_bio->master_bio = mbio;
2697		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2698		r10_bio->state = 0;
2699		set_bit(R10BIO_ReadError,
2700			&r10_bio->state);
2701		r10_bio->mddev = mddev;
2702		r10_bio->sector = mbio->bi_iter.bi_sector
2703			+ sectors_handled;
2704
2705		goto read_more;
2706	} else
2707		generic_make_request(bio);
2708}
2709
2710static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2711{
2712	/* Some sort of write request has finished and it
2713	 * succeeded in writing where we thought there was a
2714	 * bad block.  So forget the bad block.
2715	 * Or possibly if failed and we need to record
2716	 * a bad block.
2717	 */
2718	int m;
2719	struct md_rdev *rdev;
2720
2721	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2722	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2723		for (m = 0; m < conf->copies; m++) {
2724			int dev = r10_bio->devs[m].devnum;
2725			rdev = conf->mirrors[dev].rdev;
2726			if (r10_bio->devs[m].bio == NULL)
2727				continue;
2728			if (test_bit(BIO_UPTODATE,
2729				     &r10_bio->devs[m].bio->bi_flags)) {
2730				rdev_clear_badblocks(
2731					rdev,
2732					r10_bio->devs[m].addr,
2733					r10_bio->sectors, 0);
2734			} else {
2735				if (!rdev_set_badblocks(
2736					    rdev,
2737					    r10_bio->devs[m].addr,
2738					    r10_bio->sectors, 0))
2739					md_error(conf->mddev, rdev);
2740			}
2741			rdev = conf->mirrors[dev].replacement;
2742			if (r10_bio->devs[m].repl_bio == NULL)
2743				continue;
2744			if (test_bit(BIO_UPTODATE,
2745				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2746				rdev_clear_badblocks(
2747					rdev,
2748					r10_bio->devs[m].addr,
2749					r10_bio->sectors, 0);
2750			} else {
2751				if (!rdev_set_badblocks(
2752					    rdev,
2753					    r10_bio->devs[m].addr,
2754					    r10_bio->sectors, 0))
2755					md_error(conf->mddev, rdev);
2756			}
2757		}
2758		put_buf(r10_bio);
2759	} else {
2760		for (m = 0; m < conf->copies; m++) {
2761			int dev = r10_bio->devs[m].devnum;
2762			struct bio *bio = r10_bio->devs[m].bio;
2763			rdev = conf->mirrors[dev].rdev;
2764			if (bio == IO_MADE_GOOD) {
2765				rdev_clear_badblocks(
2766					rdev,
2767					r10_bio->devs[m].addr,
2768					r10_bio->sectors, 0);
2769				rdev_dec_pending(rdev, conf->mddev);
2770			} else if (bio != NULL &&
2771				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2772				if (!narrow_write_error(r10_bio, m)) {
2773					md_error(conf->mddev, rdev);
2774					set_bit(R10BIO_Degraded,
2775						&r10_bio->state);
2776				}
2777				rdev_dec_pending(rdev, conf->mddev);
2778			}
2779			bio = r10_bio->devs[m].repl_bio;
2780			rdev = conf->mirrors[dev].replacement;
2781			if (rdev && bio == IO_MADE_GOOD) {
2782				rdev_clear_badblocks(
2783					rdev,
2784					r10_bio->devs[m].addr,
2785					r10_bio->sectors, 0);
2786				rdev_dec_pending(rdev, conf->mddev);
2787			}
2788		}
2789		if (test_bit(R10BIO_WriteError,
2790			     &r10_bio->state))
2791			close_write(r10_bio);
2792		raid_end_bio_io(r10_bio);
2793	}
2794}
2795
2796static void raid10d(struct md_thread *thread)
2797{
2798	struct mddev *mddev = thread->mddev;
2799	struct r10bio *r10_bio;
2800	unsigned long flags;
2801	struct r10conf *conf = mddev->private;
2802	struct list_head *head = &conf->retry_list;
2803	struct blk_plug plug;
2804
2805	md_check_recovery(mddev);
2806
2807	blk_start_plug(&plug);
2808	for (;;) {
2809
2810		flush_pending_writes(conf);
2811
2812		spin_lock_irqsave(&conf->device_lock, flags);
2813		if (list_empty(head)) {
2814			spin_unlock_irqrestore(&conf->device_lock, flags);
2815			break;
2816		}
2817		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2818		list_del(head->prev);
2819		conf->nr_queued--;
2820		spin_unlock_irqrestore(&conf->device_lock, flags);
2821
2822		mddev = r10_bio->mddev;
2823		conf = mddev->private;
2824		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2825		    test_bit(R10BIO_WriteError, &r10_bio->state))
2826			handle_write_completed(conf, r10_bio);
2827		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2828			reshape_request_write(mddev, r10_bio);
2829		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2830			sync_request_write(mddev, r10_bio);
2831		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2832			recovery_request_write(mddev, r10_bio);
2833		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2834			handle_read_error(mddev, r10_bio);
2835		else {
2836			/* just a partial read to be scheduled from a
2837			 * separate context
2838			 */
2839			int slot = r10_bio->read_slot;
2840			generic_make_request(r10_bio->devs[slot].bio);
2841		}
2842
2843		cond_resched();
2844		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2845			md_check_recovery(mddev);
2846	}
2847	blk_finish_plug(&plug);
2848}
2849
2850static int init_resync(struct r10conf *conf)
2851{
2852	int buffs;
2853	int i;
2854
2855	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2856	BUG_ON(conf->r10buf_pool);
2857	conf->have_replacement = 0;
2858	for (i = 0; i < conf->geo.raid_disks; i++)
2859		if (conf->mirrors[i].replacement)
2860			conf->have_replacement = 1;
2861	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2862	if (!conf->r10buf_pool)
2863		return -ENOMEM;
2864	conf->next_resync = 0;
2865	return 0;
2866}
2867
2868/*
2869 * perform a "sync" on one "block"
2870 *
2871 * We need to make sure that no normal I/O request - particularly write
2872 * requests - conflict with active sync requests.
2873 *
2874 * This is achieved by tracking pending requests and a 'barrier' concept
2875 * that can be installed to exclude normal IO requests.
2876 *
2877 * Resync and recovery are handled very differently.
2878 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879 *
2880 * For resync, we iterate over virtual addresses, read all copies,
2881 * and update if there are differences.  If only one copy is live,
2882 * skip it.
2883 * For recovery, we iterate over physical addresses, read a good
2884 * value for each non-in_sync drive, and over-write.
2885 *
2886 * So, for recovery we may have several outstanding complex requests for a
2887 * given address, one for each out-of-sync device.  We model this by allocating
2888 * a number of r10_bio structures, one for each out-of-sync device.
2889 * As we setup these structures, we collect all bio's together into a list
2890 * which we then process collectively to add pages, and then process again
2891 * to pass to generic_make_request.
2892 *
2893 * The r10_bio structures are linked using a borrowed master_bio pointer.
2894 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895 * has its remaining count decremented to 0, the whole complex operation
2896 * is complete.
2897 *
2898 */
2899
2900static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2901			     int *skipped, int go_faster)
2902{
2903	struct r10conf *conf = mddev->private;
2904	struct r10bio *r10_bio;
2905	struct bio *biolist = NULL, *bio;
2906	sector_t max_sector, nr_sectors;
2907	int i;
2908	int max_sync;
2909	sector_t sync_blocks;
2910	sector_t sectors_skipped = 0;
2911	int chunks_skipped = 0;
2912	sector_t chunk_mask = conf->geo.chunk_mask;
2913
2914	if (!conf->r10buf_pool)
2915		if (init_resync(conf))
2916			return 0;
2917
2918	/*
2919	 * Allow skipping a full rebuild for incremental assembly
2920	 * of a clean array, like RAID1 does.
2921	 */
2922	if (mddev->bitmap == NULL &&
2923	    mddev->recovery_cp == MaxSector &&
2924	    mddev->reshape_position == MaxSector &&
2925	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2926	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2927	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2928	    conf->fullsync == 0) {
2929		*skipped = 1;
2930		return mddev->dev_sectors - sector_nr;
2931	}
2932
2933 skipped:
2934	max_sector = mddev->dev_sectors;
2935	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2936	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2937		max_sector = mddev->resync_max_sectors;
2938	if (sector_nr >= max_sector) {
2939		/* If we aborted, we need to abort the
2940		 * sync on the 'current' bitmap chucks (there can
2941		 * be several when recovering multiple devices).
2942		 * as we may have started syncing it but not finished.
2943		 * We can find the current address in
2944		 * mddev->curr_resync, but for recovery,
2945		 * we need to convert that to several
2946		 * virtual addresses.
2947		 */
2948		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2949			end_reshape(conf);
2950			close_sync(conf);
2951			return 0;
2952		}
2953
2954		if (mddev->curr_resync < max_sector) { /* aborted */
2955			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2956				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2957						&sync_blocks, 1);
2958			else for (i = 0; i < conf->geo.raid_disks; i++) {
2959				sector_t sect =
2960					raid10_find_virt(conf, mddev->curr_resync, i);
2961				bitmap_end_sync(mddev->bitmap, sect,
2962						&sync_blocks, 1);
2963			}
2964		} else {
2965			/* completed sync */
2966			if ((!mddev->bitmap || conf->fullsync)
2967			    && conf->have_replacement
2968			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2969				/* Completed a full sync so the replacements
2970				 * are now fully recovered.
2971				 */
2972				for (i = 0; i < conf->geo.raid_disks; i++)
2973					if (conf->mirrors[i].replacement)
2974						conf->mirrors[i].replacement
2975							->recovery_offset
2976							= MaxSector;
2977			}
2978			conf->fullsync = 0;
2979		}
2980		bitmap_close_sync(mddev->bitmap);
2981		close_sync(conf);
2982		*skipped = 1;
2983		return sectors_skipped;
2984	}
2985
2986	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2987		return reshape_request(mddev, sector_nr, skipped);
2988
2989	if (chunks_skipped >= conf->geo.raid_disks) {
2990		/* if there has been nothing to do on any drive,
2991		 * then there is nothing to do at all..
2992		 */
2993		*skipped = 1;
2994		return (max_sector - sector_nr) + sectors_skipped;
2995	}
2996
2997	if (max_sector > mddev->resync_max)
2998		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2999
3000	/* make sure whole request will fit in a chunk - if chunks
3001	 * are meaningful
3002	 */
3003	if (conf->geo.near_copies < conf->geo.raid_disks &&
3004	    max_sector > (sector_nr | chunk_mask))
3005		max_sector = (sector_nr | chunk_mask) + 1;
3006	/*
3007	 * If there is non-resync activity waiting for us then
3008	 * put in a delay to throttle resync.
3009	 */
3010	if (!go_faster && conf->nr_waiting)
3011		msleep_interruptible(1000);
3012
3013	/* Again, very different code for resync and recovery.
3014	 * Both must result in an r10bio with a list of bios that
3015	 * have bi_end_io, bi_sector, bi_bdev set,
3016	 * and bi_private set to the r10bio.
3017	 * For recovery, we may actually create several r10bios
3018	 * with 2 bios in each, that correspond to the bios in the main one.
3019	 * In this case, the subordinate r10bios link back through a
3020	 * borrowed master_bio pointer, and the counter in the master
3021	 * includes a ref from each subordinate.
3022	 */
3023	/* First, we decide what to do and set ->bi_end_io
3024	 * To end_sync_read if we want to read, and
3025	 * end_sync_write if we will want to write.
3026	 */
3027
3028	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3029	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3030		/* recovery... the complicated one */
3031		int j;
3032		r10_bio = NULL;
3033
3034		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3035			int still_degraded;
3036			struct r10bio *rb2;
3037			sector_t sect;
3038			int must_sync;
3039			int any_working;
3040			struct raid10_info *mirror = &conf->mirrors[i];
3041
3042			if ((mirror->rdev == NULL ||
3043			     test_bit(In_sync, &mirror->rdev->flags))
3044			    &&
3045			    (mirror->replacement == NULL ||
3046			     test_bit(Faulty,
3047				      &mirror->replacement->flags)))
3048				continue;
3049
3050			still_degraded = 0;
3051			/* want to reconstruct this device */
3052			rb2 = r10_bio;
3053			sect = raid10_find_virt(conf, sector_nr, i);
3054			if (sect >= mddev->resync_max_sectors) {
3055				/* last stripe is not complete - don't
3056				 * try to recover this sector.
3057				 */
3058				continue;
3059			}
3060			/* Unless we are doing a full sync, or a replacement
3061			 * we only need to recover the block if it is set in
3062			 * the bitmap
3063			 */
3064			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065						      &sync_blocks, 1);
3066			if (sync_blocks < max_sync)
3067				max_sync = sync_blocks;
3068			if (!must_sync &&
3069			    mirror->replacement == NULL &&
3070			    !conf->fullsync) {
3071				/* yep, skip the sync_blocks here, but don't assume
3072				 * that there will never be anything to do here
3073				 */
3074				chunks_skipped = -1;
3075				continue;
3076			}
3077
3078			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3079			r10_bio->state = 0;
3080			raise_barrier(conf, rb2 != NULL);
3081			atomic_set(&r10_bio->remaining, 0);
3082
3083			r10_bio->master_bio = (struct bio*)rb2;
3084			if (rb2)
3085				atomic_inc(&rb2->remaining);
3086			r10_bio->mddev = mddev;
3087			set_bit(R10BIO_IsRecover, &r10_bio->state);
3088			r10_bio->sector = sect;
3089
3090			raid10_find_phys(conf, r10_bio);
3091
3092			/* Need to check if the array will still be
3093			 * degraded
3094			 */
3095			for (j = 0; j < conf->geo.raid_disks; j++)
3096				if (conf->mirrors[j].rdev == NULL ||
3097				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3098					still_degraded = 1;
3099					break;
3100				}
3101
3102			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3103						      &sync_blocks, still_degraded);
3104
3105			any_working = 0;
3106			for (j=0; j<conf->copies;j++) {
3107				int k;
3108				int d = r10_bio->devs[j].devnum;
3109				sector_t from_addr, to_addr;
3110				struct md_rdev *rdev;
3111				sector_t sector, first_bad;
3112				int bad_sectors;
3113				if (!conf->mirrors[d].rdev ||
3114				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3115					continue;
3116				/* This is where we read from */
3117				any_working = 1;
3118				rdev = conf->mirrors[d].rdev;
3119				sector = r10_bio->devs[j].addr;
3120
3121				if (is_badblock(rdev, sector, max_sync,
3122						&first_bad, &bad_sectors)) {
3123					if (first_bad > sector)
3124						max_sync = first_bad - sector;
3125					else {
3126						bad_sectors -= (sector
3127								- first_bad);
3128						if (max_sync > bad_sectors)
3129							max_sync = bad_sectors;
3130						continue;
3131					}
3132				}
3133				bio = r10_bio->devs[0].bio;
3134				bio_reset(bio);
3135				bio->bi_next = biolist;
3136				biolist = bio;
3137				bio->bi_private = r10_bio;
3138				bio->bi_end_io = end_sync_read;
3139				bio->bi_rw = READ;
3140				from_addr = r10_bio->devs[j].addr;
3141				bio->bi_iter.bi_sector = from_addr +
3142					rdev->data_offset;
3143				bio->bi_bdev = rdev->bdev;
3144				atomic_inc(&rdev->nr_pending);
3145				/* and we write to 'i' (if not in_sync) */
3146
3147				for (k=0; k<conf->copies; k++)
3148					if (r10_bio->devs[k].devnum == i)
3149						break;
3150				BUG_ON(k == conf->copies);
3151				to_addr = r10_bio->devs[k].addr;
3152				r10_bio->devs[0].devnum = d;
3153				r10_bio->devs[0].addr = from_addr;
3154				r10_bio->devs[1].devnum = i;
3155				r10_bio->devs[1].addr = to_addr;
3156
3157				rdev = mirror->rdev;
3158				if (!test_bit(In_sync, &rdev->flags)) {
3159					bio = r10_bio->devs[1].bio;
3160					bio_reset(bio);
3161					bio->bi_next = biolist;
3162					biolist = bio;
3163					bio->bi_private = r10_bio;
3164					bio->bi_end_io = end_sync_write;
3165					bio->bi_rw = WRITE;
3166					bio->bi_iter.bi_sector = to_addr
3167						+ rdev->data_offset;
3168					bio->bi_bdev = rdev->bdev;
3169					atomic_inc(&r10_bio->remaining);
3170				} else
3171					r10_bio->devs[1].bio->bi_end_io = NULL;
3172
3173				/* and maybe write to replacement */
3174				bio = r10_bio->devs[1].repl_bio;
3175				if (bio)
3176					bio->bi_end_io = NULL;
3177				rdev = mirror->replacement;
3178				/* Note: if rdev != NULL, then bio
3179				 * cannot be NULL as r10buf_pool_alloc will
3180				 * have allocated it.
3181				 * So the second test here is pointless.
3182				 * But it keeps semantic-checkers happy, and
3183				 * this comment keeps human reviewers
3184				 * happy.
3185				 */
3186				if (rdev == NULL || bio == NULL ||
3187				    test_bit(Faulty, &rdev->flags))
3188					break;
3189				bio_reset(bio);
3190				bio->bi_next = biolist;
3191				biolist = bio;
3192				bio->bi_private = r10_bio;
3193				bio->bi_end_io = end_sync_write;
3194				bio->bi_rw = WRITE;
3195				bio->bi_iter.bi_sector = to_addr +
3196					rdev->data_offset;
3197				bio->bi_bdev = rdev->bdev;
3198				atomic_inc(&r10_bio->remaining);
3199				break;
3200			}
3201			if (j == conf->copies) {
3202				/* Cannot recover, so abort the recovery or
3203				 * record a bad block */
3204				if (any_working) {
3205					/* problem is that there are bad blocks
3206					 * on other device(s)
3207					 */
3208					int k;
3209					for (k = 0; k < conf->copies; k++)
3210						if (r10_bio->devs[k].devnum == i)
3211							break;
3212					if (!test_bit(In_sync,
3213						      &mirror->rdev->flags)
3214					    && !rdev_set_badblocks(
3215						    mirror->rdev,
3216						    r10_bio->devs[k].addr,
3217						    max_sync, 0))
3218						any_working = 0;
3219					if (mirror->replacement &&
3220					    !rdev_set_badblocks(
3221						    mirror->replacement,
3222						    r10_bio->devs[k].addr,
3223						    max_sync, 0))
3224						any_working = 0;
3225				}
3226				if (!any_working)  {
3227					if (!test_and_set_bit(MD_RECOVERY_INTR,
3228							      &mddev->recovery))
3229						printk(KERN_INFO "md/raid10:%s: insufficient "
3230						       "working devices for recovery.\n",
3231						       mdname(mddev));
3232					mirror->recovery_disabled
3233						= mddev->recovery_disabled;
3234				}
3235				put_buf(r10_bio);
3236				if (rb2)
3237					atomic_dec(&rb2->remaining);
3238				r10_bio = rb2;
3239				break;
3240			}
3241		}
3242		if (biolist == NULL) {
3243			while (r10_bio) {
3244				struct r10bio *rb2 = r10_bio;
3245				r10_bio = (struct r10bio*) rb2->master_bio;
3246				rb2->master_bio = NULL;
3247				put_buf(rb2);
3248			}
3249			goto giveup;
3250		}
3251	} else {
3252		/* resync. Schedule a read for every block at this virt offset */
3253		int count = 0;
3254
3255		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3256
3257		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3258				       &sync_blocks, mddev->degraded) &&
3259		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3260						 &mddev->recovery)) {
3261			/* We can skip this block */
3262			*skipped = 1;
3263			return sync_blocks + sectors_skipped;
3264		}
3265		if (sync_blocks < max_sync)
3266			max_sync = sync_blocks;
3267		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3268		r10_bio->state = 0;
3269
3270		r10_bio->mddev = mddev;
3271		atomic_set(&r10_bio->remaining, 0);
3272		raise_barrier(conf, 0);
3273		conf->next_resync = sector_nr;
3274
3275		r10_bio->master_bio = NULL;
3276		r10_bio->sector = sector_nr;
3277		set_bit(R10BIO_IsSync, &r10_bio->state);
3278		raid10_find_phys(conf, r10_bio);
3279		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3280
3281		for (i = 0; i < conf->copies; i++) {
3282			int d = r10_bio->devs[i].devnum;
3283			sector_t first_bad, sector;
3284			int bad_sectors;
3285
3286			if (r10_bio->devs[i].repl_bio)
3287				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288
3289			bio = r10_bio->devs[i].bio;
3290			bio_reset(bio);
3291			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3292			if (conf->mirrors[d].rdev == NULL ||
3293			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3294				continue;
3295			sector = r10_bio->devs[i].addr;
3296			if (is_badblock(conf->mirrors[d].rdev,
3297					sector, max_sync,
3298					&first_bad, &bad_sectors)) {
3299				if (first_bad > sector)
3300					max_sync = first_bad - sector;
3301				else {
3302					bad_sectors -= (sector - first_bad);
3303					if (max_sync > bad_sectors)
3304						max_sync = bad_sectors;
3305					continue;
3306				}
3307			}
3308			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3309			atomic_inc(&r10_bio->remaining);
3310			bio->bi_next = biolist;
3311			biolist = bio;
3312			bio->bi_private = r10_bio;
3313			bio->bi_end_io = end_sync_read;
3314			bio->bi_rw = READ;
3315			bio->bi_iter.bi_sector = sector +
3316				conf->mirrors[d].rdev->data_offset;
3317			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3318			count++;
3319
3320			if (conf->mirrors[d].replacement == NULL ||
3321			    test_bit(Faulty,
3322				     &conf->mirrors[d].replacement->flags))
3323				continue;
3324
3325			/* Need to set up for writing to the replacement */
3326			bio = r10_bio->devs[i].repl_bio;
3327			bio_reset(bio);
3328			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3329
3330			sector = r10_bio->devs[i].addr;
3331			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3332			bio->bi_next = biolist;
3333			biolist = bio;
3334			bio->bi_private = r10_bio;
3335			bio->bi_end_io = end_sync_write;
3336			bio->bi_rw = WRITE;
3337			bio->bi_iter.bi_sector = sector +
3338				conf->mirrors[d].replacement->data_offset;
3339			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3340			count++;
3341		}
3342
3343		if (count < 2) {
3344			for (i=0; i<conf->copies; i++) {
3345				int d = r10_bio->devs[i].devnum;
3346				if (r10_bio->devs[i].bio->bi_end_io)
3347					rdev_dec_pending(conf->mirrors[d].rdev,
3348							 mddev);
3349				if (r10_bio->devs[i].repl_bio &&
3350				    r10_bio->devs[i].repl_bio->bi_end_io)
3351					rdev_dec_pending(
3352						conf->mirrors[d].replacement,
3353						mddev);
3354			}
3355			put_buf(r10_bio);
3356			biolist = NULL;
3357			goto giveup;
3358		}
3359	}
3360
3361	nr_sectors = 0;
3362	if (sector_nr + max_sync < max_sector)
3363		max_sector = sector_nr + max_sync;
3364	do {
3365		struct page *page;
3366		int len = PAGE_SIZE;
3367		if (sector_nr + (len>>9) > max_sector)
3368			len = (max_sector - sector_nr) << 9;
3369		if (len == 0)
3370			break;
3371		for (bio= biolist ; bio ; bio=bio->bi_next) {
3372			struct bio *bio2;
3373			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3374			if (bio_add_page(bio, page, len, 0))
3375				continue;
3376
3377			/* stop here */
3378			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3379			for (bio2 = biolist;
3380			     bio2 && bio2 != bio;
3381			     bio2 = bio2->bi_next) {
3382				/* remove last page from this bio */
3383				bio2->bi_vcnt--;
3384				bio2->bi_iter.bi_size -= len;
3385				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3386			}
3387			goto bio_full;
3388		}
3389		nr_sectors += len>>9;
3390		sector_nr += len>>9;
3391	} while (biolist->bi_vcnt < RESYNC_PAGES);
3392 bio_full:
3393	r10_bio->sectors = nr_sectors;
3394
3395	while (biolist) {
3396		bio = biolist;
3397		biolist = biolist->bi_next;
3398
3399		bio->bi_next = NULL;
3400		r10_bio = bio->bi_private;
3401		r10_bio->sectors = nr_sectors;
3402
3403		if (bio->bi_end_io == end_sync_read) {
3404			md_sync_acct(bio->bi_bdev, nr_sectors);
3405			set_bit(BIO_UPTODATE, &bio->bi_flags);
3406			generic_make_request(bio);
3407		}
3408	}
3409
3410	if (sectors_skipped)
3411		/* pretend they weren't skipped, it makes
3412		 * no important difference in this case
3413		 */
3414		md_done_sync(mddev, sectors_skipped, 1);
3415
3416	return sectors_skipped + nr_sectors;
3417 giveup:
3418	/* There is nowhere to write, so all non-sync
3419	 * drives must be failed or in resync, all drives
3420	 * have a bad block, so try the next chunk...
3421	 */
3422	if (sector_nr + max_sync < max_sector)
3423		max_sector = sector_nr + max_sync;
3424
3425	sectors_skipped += (max_sector - sector_nr);
3426	chunks_skipped ++;
3427	sector_nr = max_sector;
3428	goto skipped;
3429}
3430
3431static sector_t
3432raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3433{
3434	sector_t size;
3435	struct r10conf *conf = mddev->private;
3436
3437	if (!raid_disks)
3438		raid_disks = min(conf->geo.raid_disks,
3439				 conf->prev.raid_disks);
3440	if (!sectors)
3441		sectors = conf->dev_sectors;
3442
3443	size = sectors >> conf->geo.chunk_shift;
3444	sector_div(size, conf->geo.far_copies);
3445	size = size * raid_disks;
3446	sector_div(size, conf->geo.near_copies);
3447
3448	return size << conf->geo.chunk_shift;
3449}
3450
3451static void calc_sectors(struct r10conf *conf, sector_t size)
3452{
3453	/* Calculate the number of sectors-per-device that will
3454	 * actually be used, and set conf->dev_sectors and
3455	 * conf->stride
3456	 */
3457
3458	size = size >> conf->geo.chunk_shift;
3459	sector_div(size, conf->geo.far_copies);
3460	size = size * conf->geo.raid_disks;
3461	sector_div(size, conf->geo.near_copies);
3462	/* 'size' is now the number of chunks in the array */
3463	/* calculate "used chunks per device" */
3464	size = size * conf->copies;
3465
3466	/* We need to round up when dividing by raid_disks to
3467	 * get the stride size.
3468	 */
3469	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3470
3471	conf->dev_sectors = size << conf->geo.chunk_shift;
3472
3473	if (conf->geo.far_offset)
3474		conf->geo.stride = 1 << conf->geo.chunk_shift;
3475	else {
3476		sector_div(size, conf->geo.far_copies);
3477		conf->geo.stride = size << conf->geo.chunk_shift;
3478	}
3479}
3480
3481enum geo_type {geo_new, geo_old, geo_start};
3482static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3483{
3484	int nc, fc, fo;
3485	int layout, chunk, disks;
3486	switch (new) {
3487	case geo_old:
3488		layout = mddev->layout;
3489		chunk = mddev->chunk_sectors;
3490		disks = mddev->raid_disks - mddev->delta_disks;
3491		break;
3492	case geo_new:
3493		layout = mddev->new_layout;
3494		chunk = mddev->new_chunk_sectors;
3495		disks = mddev->raid_disks;
3496		break;
3497	default: /* avoid 'may be unused' warnings */
3498	case geo_start: /* new when starting reshape - raid_disks not
3499			 * updated yet. */
3500		layout = mddev->new_layout;
3501		chunk = mddev->new_chunk_sectors;
3502		disks = mddev->raid_disks + mddev->delta_disks;
3503		break;
3504	}
3505	if (layout >> 18)
3506		return -1;
3507	if (chunk < (PAGE_SIZE >> 9) ||
3508	    !is_power_of_2(chunk))
3509		return -2;
3510	nc = layout & 255;
3511	fc = (layout >> 8) & 255;
3512	fo = layout & (1<<16);
3513	geo->raid_disks = disks;
3514	geo->near_copies = nc;
3515	geo->far_copies = fc;
3516	geo->far_offset = fo;
3517	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3518	geo->chunk_mask = chunk - 1;
3519	geo->chunk_shift = ffz(~chunk);
3520	return nc*fc;
3521}
3522
3523static struct r10conf *setup_conf(struct mddev *mddev)
3524{
3525	struct r10conf *conf = NULL;
3526	int err = -EINVAL;
3527	struct geom geo;
3528	int copies;
3529
3530	copies = setup_geo(&geo, mddev, geo_new);
3531
3532	if (copies == -2) {
3533		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3534		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3535		       mdname(mddev), PAGE_SIZE);
3536		goto out;
3537	}
3538
3539	if (copies < 2 || copies > mddev->raid_disks) {
3540		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3541		       mdname(mddev), mddev->new_layout);
3542		goto out;
3543	}
3544
3545	err = -ENOMEM;
3546	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3547	if (!conf)
3548		goto out;
3549
3550	/* FIXME calc properly */
3551	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3552							    max(0,-mddev->delta_disks)),
3553				GFP_KERNEL);
3554	if (!conf->mirrors)
3555		goto out;
3556
3557	conf->tmppage = alloc_page(GFP_KERNEL);
3558	if (!conf->tmppage)
3559		goto out;
3560
3561	conf->geo = geo;
3562	conf->copies = copies;
3563	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3564					   r10bio_pool_free, conf);
3565	if (!conf->r10bio_pool)
3566		goto out;
3567
3568	calc_sectors(conf, mddev->dev_sectors);
3569	if (mddev->reshape_position == MaxSector) {
3570		conf->prev = conf->geo;
3571		conf->reshape_progress = MaxSector;
3572	} else {
3573		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3574			err = -EINVAL;
3575			goto out;
3576		}
3577		conf->reshape_progress = mddev->reshape_position;
3578		if (conf->prev.far_offset)
3579			conf->prev.stride = 1 << conf->prev.chunk_shift;
3580		else
3581			/* far_copies must be 1 */
3582			conf->prev.stride = conf->dev_sectors;
3583	}
3584	spin_lock_init(&conf->device_lock);
3585	INIT_LIST_HEAD(&conf->retry_list);
3586
3587	spin_lock_init(&conf->resync_lock);
3588	init_waitqueue_head(&conf->wait_barrier);
3589
3590	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3591	if (!conf->thread)
3592		goto out;
3593
3594	conf->mddev = mddev;
3595	return conf;
3596
3597 out:
3598	if (err == -ENOMEM)
3599		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3600		       mdname(mddev));
3601	if (conf) {
3602		if (conf->r10bio_pool)
3603			mempool_destroy(conf->r10bio_pool);
3604		kfree(conf->mirrors);
3605		safe_put_page(conf->tmppage);
3606		kfree(conf);
3607	}
3608	return ERR_PTR(err);
3609}
3610
3611static int run(struct mddev *mddev)
3612{
3613	struct r10conf *conf;
3614	int i, disk_idx, chunk_size;
3615	struct raid10_info *disk;
3616	struct md_rdev *rdev;
3617	sector_t size;
3618	sector_t min_offset_diff = 0;
3619	int first = 1;
3620	bool discard_supported = false;
3621
3622	if (mddev->private == NULL) {
3623		conf = setup_conf(mddev);
3624		if (IS_ERR(conf))
3625			return PTR_ERR(conf);
3626		mddev->private = conf;
3627	}
3628	conf = mddev->private;
3629	if (!conf)
3630		goto out;
3631
3632	mddev->thread = conf->thread;
3633	conf->thread = NULL;
3634
3635	chunk_size = mddev->chunk_sectors << 9;
3636	if (mddev->queue) {
3637		blk_queue_max_discard_sectors(mddev->queue,
3638					      mddev->chunk_sectors);
3639		blk_queue_max_write_same_sectors(mddev->queue, 0);
3640		blk_queue_io_min(mddev->queue, chunk_size);
3641		if (conf->geo.raid_disks % conf->geo.near_copies)
3642			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3643		else
3644			blk_queue_io_opt(mddev->queue, chunk_size *
3645					 (conf->geo.raid_disks / conf->geo.near_copies));
3646	}
3647
3648	rdev_for_each(rdev, mddev) {
3649		long long diff;
3650		struct request_queue *q;
3651
3652		disk_idx = rdev->raid_disk;
3653		if (disk_idx < 0)
3654			continue;
3655		if (disk_idx >= conf->geo.raid_disks &&
3656		    disk_idx >= conf->prev.raid_disks)
3657			continue;
3658		disk = conf->mirrors + disk_idx;
3659
3660		if (test_bit(Replacement, &rdev->flags)) {
3661			if (disk->replacement)
3662				goto out_free_conf;
3663			disk->replacement = rdev;
3664		} else {
3665			if (disk->rdev)
3666				goto out_free_conf;
3667			disk->rdev = rdev;
3668		}
3669		q = bdev_get_queue(rdev->bdev);
3670		if (q->merge_bvec_fn)
3671			mddev->merge_check_needed = 1;
3672		diff = (rdev->new_data_offset - rdev->data_offset);
3673		if (!mddev->reshape_backwards)
3674			diff = -diff;
3675		if (diff < 0)
3676			diff = 0;
3677		if (first || diff < min_offset_diff)
3678			min_offset_diff = diff;
3679
3680		if (mddev->gendisk)
3681			disk_stack_limits(mddev->gendisk, rdev->bdev,
3682					  rdev->data_offset << 9);
3683
3684		disk->head_position = 0;
3685
3686		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3687			discard_supported = true;
3688	}
3689
3690	if (mddev->queue) {
3691		if (discard_supported)
3692			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3693						mddev->queue);
3694		else
3695			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3696						  mddev->queue);
3697	}
3698	/* need to check that every block has at least one working mirror */
3699	if (!enough(conf, -1)) {
3700		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3701		       mdname(mddev));
3702		goto out_free_conf;
3703	}
3704
3705	if (conf->reshape_progress != MaxSector) {
3706		/* must ensure that shape change is supported */
3707		if (conf->geo.far_copies != 1 &&
3708		    conf->geo.far_offset == 0)
3709			goto out_free_conf;
3710		if (conf->prev.far_copies != 1 &&
3711		    conf->prev.far_offset == 0)
3712			goto out_free_conf;
3713	}
3714
3715	mddev->degraded = 0;
3716	for (i = 0;
3717	     i < conf->geo.raid_disks
3718		     || i < conf->prev.raid_disks;
3719	     i++) {
3720
3721		disk = conf->mirrors + i;
3722
3723		if (!disk->rdev && disk->replacement) {
3724			/* The replacement is all we have - use it */
3725			disk->rdev = disk->replacement;
3726			disk->replacement = NULL;
3727			clear_bit(Replacement, &disk->rdev->flags);
3728		}
3729
3730		if (!disk->rdev ||
3731		    !test_bit(In_sync, &disk->rdev->flags)) {
3732			disk->head_position = 0;
3733			mddev->degraded++;
3734			if (disk->rdev &&
3735			    disk->rdev->saved_raid_disk < 0)
3736				conf->fullsync = 1;
3737		}
3738		disk->recovery_disabled = mddev->recovery_disabled - 1;
3739	}
3740
3741	if (mddev->recovery_cp != MaxSector)
3742		printk(KERN_NOTICE "md/raid10:%s: not clean"
3743		       " -- starting background reconstruction\n",
3744		       mdname(mddev));
3745	printk(KERN_INFO
3746		"md/raid10:%s: active with %d out of %d devices\n",
3747		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3748		conf->geo.raid_disks);
3749	/*
3750	 * Ok, everything is just fine now
3751	 */
3752	mddev->dev_sectors = conf->dev_sectors;
3753	size = raid10_size(mddev, 0, 0);
3754	md_set_array_sectors(mddev, size);
3755	mddev->resync_max_sectors = size;
3756
3757	if (mddev->queue) {
3758		int stripe = conf->geo.raid_disks *
3759			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3760		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3761		mddev->queue->backing_dev_info.congested_data = mddev;
3762
3763		/* Calculate max read-ahead size.
3764		 * We need to readahead at least twice a whole stripe....
3765		 * maybe...
3766		 */
3767		stripe /= conf->geo.near_copies;
3768		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3769			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3770		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3771	}
3772
3773	if (md_integrity_register(mddev))
3774		goto out_free_conf;
3775
3776	if (conf->reshape_progress != MaxSector) {
3777		unsigned long before_length, after_length;
3778
3779		before_length = ((1 << conf->prev.chunk_shift) *
3780				 conf->prev.far_copies);
3781		after_length = ((1 << conf->geo.chunk_shift) *
3782				conf->geo.far_copies);
3783
3784		if (max(before_length, after_length) > min_offset_diff) {
3785			/* This cannot work */
3786			printk("md/raid10: offset difference not enough to continue reshape\n");
3787			goto out_free_conf;
3788		}
3789		conf->offset_diff = min_offset_diff;
3790
3791		conf->reshape_safe = conf->reshape_progress;
3792		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3793		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3794		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3795		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3796		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3797							"reshape");
3798	}
3799
3800	return 0;
3801
3802out_free_conf:
3803	md_unregister_thread(&mddev->thread);
3804	if (conf->r10bio_pool)
3805		mempool_destroy(conf->r10bio_pool);
3806	safe_put_page(conf->tmppage);
3807	kfree(conf->mirrors);
3808	kfree(conf);
3809	mddev->private = NULL;
3810out:
3811	return -EIO;
3812}
3813
3814static int stop(struct mddev *mddev)
3815{
3816	struct r10conf *conf = mddev->private;
3817
3818	raise_barrier(conf, 0);
3819	lower_barrier(conf);
3820
3821	md_unregister_thread(&mddev->thread);
3822	if (mddev->queue)
3823		/* the unplug fn references 'conf'*/
3824		blk_sync_queue(mddev->queue);
3825
3826	if (conf->r10bio_pool)
3827		mempool_destroy(conf->r10bio_pool);
3828	safe_put_page(conf->tmppage);
3829	kfree(conf->mirrors);
3830	kfree(conf->mirrors_old);
3831	kfree(conf->mirrors_new);
3832	kfree(conf);
3833	mddev->private = NULL;
3834	return 0;
3835}
3836
3837static void raid10_quiesce(struct mddev *mddev, int state)
3838{
3839	struct r10conf *conf = mddev->private;
3840
3841	switch(state) {
3842	case 1:
3843		raise_barrier(conf, 0);
3844		break;
3845	case 0:
3846		lower_barrier(conf);
3847		break;
3848	}
3849}
3850
3851static int raid10_resize(struct mddev *mddev, sector_t sectors)
3852{
3853	/* Resize of 'far' arrays is not supported.
3854	 * For 'near' and 'offset' arrays we can set the
3855	 * number of sectors used to be an appropriate multiple
3856	 * of the chunk size.
3857	 * For 'offset', this is far_copies*chunksize.
3858	 * For 'near' the multiplier is the LCM of
3859	 * near_copies and raid_disks.
3860	 * So if far_copies > 1 && !far_offset, fail.
3861	 * Else find LCM(raid_disks, near_copy)*far_copies and
3862	 * multiply by chunk_size.  Then round to this number.
3863	 * This is mostly done by raid10_size()
3864	 */
3865	struct r10conf *conf = mddev->private;
3866	sector_t oldsize, size;
3867
3868	if (mddev->reshape_position != MaxSector)
3869		return -EBUSY;
3870
3871	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3872		return -EINVAL;
3873
3874	oldsize = raid10_size(mddev, 0, 0);
3875	size = raid10_size(mddev, sectors, 0);
3876	if (mddev->external_size &&
3877	    mddev->array_sectors > size)
3878		return -EINVAL;
3879	if (mddev->bitmap) {
3880		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3881		if (ret)
3882			return ret;
3883	}
3884	md_set_array_sectors(mddev, size);
3885	set_capacity(mddev->gendisk, mddev->array_sectors);
3886	revalidate_disk(mddev->gendisk);
3887	if (sectors > mddev->dev_sectors &&
3888	    mddev->recovery_cp > oldsize) {
3889		mddev->recovery_cp = oldsize;
3890		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891	}
3892	calc_sectors(conf, sectors);
3893	mddev->dev_sectors = conf->dev_sectors;
3894	mddev->resync_max_sectors = size;
3895	return 0;
3896}
3897
3898static void *raid10_takeover_raid0(struct mddev *mddev)
3899{
3900	struct md_rdev *rdev;
3901	struct r10conf *conf;
3902
3903	if (mddev->degraded > 0) {
3904		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3905		       mdname(mddev));
3906		return ERR_PTR(-EINVAL);
3907	}
3908
3909	/* Set new parameters */
3910	mddev->new_level = 10;
3911	/* new layout: far_copies = 1, near_copies = 2 */
3912	mddev->new_layout = (1<<8) + 2;
3913	mddev->new_chunk_sectors = mddev->chunk_sectors;
3914	mddev->delta_disks = mddev->raid_disks;
3915	mddev->raid_disks *= 2;
3916	/* make sure it will be not marked as dirty */
3917	mddev->recovery_cp = MaxSector;
3918
3919	conf = setup_conf(mddev);
3920	if (!IS_ERR(conf)) {
3921		rdev_for_each(rdev, mddev)
3922			if (rdev->raid_disk >= 0)
3923				rdev->new_raid_disk = rdev->raid_disk * 2;
3924		conf->barrier = 1;
3925	}
3926
3927	return conf;
3928}
3929
3930static void *raid10_takeover(struct mddev *mddev)
3931{
3932	struct r0conf *raid0_conf;
3933
3934	/* raid10 can take over:
3935	 *  raid0 - providing it has only two drives
3936	 */
3937	if (mddev->level == 0) {
3938		/* for raid0 takeover only one zone is supported */
3939		raid0_conf = mddev->private;
3940		if (raid0_conf->nr_strip_zones > 1) {
3941			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3942			       " with more than one zone.\n",
3943			       mdname(mddev));
3944			return ERR_PTR(-EINVAL);
3945		}
3946		return raid10_takeover_raid0(mddev);
3947	}
3948	return ERR_PTR(-EINVAL);
3949}
3950
3951static int raid10_check_reshape(struct mddev *mddev)
3952{
3953	/* Called when there is a request to change
3954	 * - layout (to ->new_layout)
3955	 * - chunk size (to ->new_chunk_sectors)
3956	 * - raid_disks (by delta_disks)
3957	 * or when trying to restart a reshape that was ongoing.
3958	 *
3959	 * We need to validate the request and possibly allocate
3960	 * space if that might be an issue later.
3961	 *
3962	 * Currently we reject any reshape of a 'far' mode array,
3963	 * allow chunk size to change if new is generally acceptable,
3964	 * allow raid_disks to increase, and allow
3965	 * a switch between 'near' mode and 'offset' mode.
3966	 */
3967	struct r10conf *conf = mddev->private;
3968	struct geom geo;
3969
3970	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3971		return -EINVAL;
3972
3973	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3974		/* mustn't change number of copies */
3975		return -EINVAL;
3976	if (geo.far_copies > 1 && !geo.far_offset)
3977		/* Cannot switch to 'far' mode */
3978		return -EINVAL;
3979
3980	if (mddev->array_sectors & geo.chunk_mask)
3981			/* not factor of array size */
3982			return -EINVAL;
3983
3984	if (!enough(conf, -1))
3985		return -EINVAL;
3986
3987	kfree(conf->mirrors_new);
3988	conf->mirrors_new = NULL;
3989	if (mddev->delta_disks > 0) {
3990		/* allocate new 'mirrors' list */
3991		conf->mirrors_new = kzalloc(
3992			sizeof(struct raid10_info)
3993			*(mddev->raid_disks +
3994			  mddev->delta_disks),
3995			GFP_KERNEL);
3996		if (!conf->mirrors_new)
3997			return -ENOMEM;
3998	}
3999	return 0;
4000}
4001
4002/*
4003 * Need to check if array has failed when deciding whether to:
4004 *  - start an array
4005 *  - remove non-faulty devices
4006 *  - add a spare
4007 *  - allow a reshape
4008 * This determination is simple when no reshape is happening.
4009 * However if there is a reshape, we need to carefully check
4010 * both the before and after sections.
4011 * This is because some failed devices may only affect one
4012 * of the two sections, and some non-in_sync devices may
4013 * be insync in the section most affected by failed devices.
4014 */
4015static int calc_degraded(struct r10conf *conf)
4016{
4017	int degraded, degraded2;
4018	int i;
4019
4020	rcu_read_lock();
4021	degraded = 0;
4022	/* 'prev' section first */
4023	for (i = 0; i < conf->prev.raid_disks; i++) {
4024		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4025		if (!rdev || test_bit(Faulty, &rdev->flags))
4026			degraded++;
4027		else if (!test_bit(In_sync, &rdev->flags))
4028			/* When we can reduce the number of devices in
4029			 * an array, this might not contribute to
4030			 * 'degraded'.  It does now.
4031			 */
4032			degraded++;
4033	}
4034	rcu_read_unlock();
4035	if (conf->geo.raid_disks == conf->prev.raid_disks)
4036		return degraded;
4037	rcu_read_lock();
4038	degraded2 = 0;
4039	for (i = 0; i < conf->geo.raid_disks; i++) {
4040		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041		if (!rdev || test_bit(Faulty, &rdev->flags))
4042			degraded2++;
4043		else if (!test_bit(In_sync, &rdev->flags)) {
4044			/* If reshape is increasing the number of devices,
4045			 * this section has already been recovered, so
4046			 * it doesn't contribute to degraded.
4047			 * else it does.
4048			 */
4049			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4050				degraded2++;
4051		}
4052	}
4053	rcu_read_unlock();
4054	if (degraded2 > degraded)
4055		return degraded2;
4056	return degraded;
4057}
4058
4059static int raid10_start_reshape(struct mddev *mddev)
4060{
4061	/* A 'reshape' has been requested. This commits
4062	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4063	 * This also checks if there are enough spares and adds them
4064	 * to the array.
4065	 * We currently require enough spares to make the final
4066	 * array non-degraded.  We also require that the difference
4067	 * between old and new data_offset - on each device - is
4068	 * enough that we never risk over-writing.
4069	 */
4070
4071	unsigned long before_length, after_length;
4072	sector_t min_offset_diff = 0;
4073	int first = 1;
4074	struct geom new;
4075	struct r10conf *conf = mddev->private;
4076	struct md_rdev *rdev;
4077	int spares = 0;
4078	int ret;
4079
4080	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4081		return -EBUSY;
4082
4083	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4084		return -EINVAL;
4085
4086	before_length = ((1 << conf->prev.chunk_shift) *
4087			 conf->prev.far_copies);
4088	after_length = ((1 << conf->geo.chunk_shift) *
4089			conf->geo.far_copies);
4090
4091	rdev_for_each(rdev, mddev) {
4092		if (!test_bit(In_sync, &rdev->flags)
4093		    && !test_bit(Faulty, &rdev->flags))
4094			spares++;
4095		if (rdev->raid_disk >= 0) {
4096			long long diff = (rdev->new_data_offset
4097					  - rdev->data_offset);
4098			if (!mddev->reshape_backwards)
4099				diff = -diff;
4100			if (diff < 0)
4101				diff = 0;
4102			if (first || diff < min_offset_diff)
4103				min_offset_diff = diff;
4104		}
4105	}
4106
4107	if (max(before_length, after_length) > min_offset_diff)
4108		return -EINVAL;
4109
4110	if (spares < mddev->delta_disks)
4111		return -EINVAL;
4112
4113	conf->offset_diff = min_offset_diff;
4114	spin_lock_irq(&conf->device_lock);
4115	if (conf->mirrors_new) {
4116		memcpy(conf->mirrors_new, conf->mirrors,
4117		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4118		smp_mb();
4119		kfree(conf->mirrors_old);
4120		conf->mirrors_old = conf->mirrors;
4121		conf->mirrors = conf->mirrors_new;
4122		conf->mirrors_new = NULL;
4123	}
4124	setup_geo(&conf->geo, mddev, geo_start);
4125	smp_mb();
4126	if (mddev->reshape_backwards) {
4127		sector_t size = raid10_size(mddev, 0, 0);
4128		if (size < mddev->array_sectors) {
4129			spin_unlock_irq(&conf->device_lock);
4130			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4131			       mdname(mddev));
4132			return -EINVAL;
4133		}
4134		mddev->resync_max_sectors = size;
4135		conf->reshape_progress = size;
4136	} else
4137		conf->reshape_progress = 0;
4138	spin_unlock_irq(&conf->device_lock);
4139
4140	if (mddev->delta_disks && mddev->bitmap) {
4141		ret = bitmap_resize(mddev->bitmap,
4142				    raid10_size(mddev, 0,
4143						conf->geo.raid_disks),
4144				    0, 0);
4145		if (ret)
4146			goto abort;
4147	}
4148	if (mddev->delta_disks > 0) {
4149		rdev_for_each(rdev, mddev)
4150			if (rdev->raid_disk < 0 &&
4151			    !test_bit(Faulty, &rdev->flags)) {
4152				if (raid10_add_disk(mddev, rdev) == 0) {
4153					if (rdev->raid_disk >=
4154					    conf->prev.raid_disks)
4155						set_bit(In_sync, &rdev->flags);
4156					else
4157						rdev->recovery_offset = 0;
4158
4159					if (sysfs_link_rdev(mddev, rdev))
4160						/* Failure here  is OK */;
4161				}
4162			} else if (rdev->raid_disk >= conf->prev.raid_disks
4163				   && !test_bit(Faulty, &rdev->flags)) {
4164				/* This is a spare that was manually added */
4165				set_bit(In_sync, &rdev->flags);
4166			}
4167	}
4168	/* When a reshape changes the number of devices,
4169	 * ->degraded is measured against the larger of the
4170	 * pre and  post numbers.
4171	 */
4172	spin_lock_irq(&conf->device_lock);
4173	mddev->degraded = calc_degraded(conf);
4174	spin_unlock_irq(&conf->device_lock);
4175	mddev->raid_disks = conf->geo.raid_disks;
4176	mddev->reshape_position = conf->reshape_progress;
4177	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4178
4179	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4180	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4181	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4182	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4183
4184	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4185						"reshape");
4186	if (!mddev->sync_thread) {
4187		ret = -EAGAIN;
4188		goto abort;
4189	}
4190	conf->reshape_checkpoint = jiffies;
4191	md_wakeup_thread(mddev->sync_thread);
4192	md_new_event(mddev);
4193	return 0;
4194
4195abort:
4196	mddev->recovery = 0;
4197	spin_lock_irq(&conf->device_lock);
4198	conf->geo = conf->prev;
4199	mddev->raid_disks = conf->geo.raid_disks;
4200	rdev_for_each(rdev, mddev)
4201		rdev->new_data_offset = rdev->data_offset;
4202	smp_wmb();
4203	conf->reshape_progress = MaxSector;
4204	mddev->reshape_position = MaxSector;
4205	spin_unlock_irq(&conf->device_lock);
4206	return ret;
4207}
4208
4209/* Calculate the last device-address that could contain
4210 * any block from the chunk that includes the array-address 's'
4211 * and report the next address.
4212 * i.e. the address returned will be chunk-aligned and after
4213 * any data that is in the chunk containing 's'.
4214 */
4215static sector_t last_dev_address(sector_t s, struct geom *geo)
4216{
4217	s = (s | geo->chunk_mask) + 1;
4218	s >>= geo->chunk_shift;
4219	s *= geo->near_copies;
4220	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4221	s *= geo->far_copies;
4222	s <<= geo->chunk_shift;
4223	return s;
4224}
4225
4226/* Calculate the first device-address that could contain
4227 * any block from the chunk that includes the array-address 's'.
4228 * This too will be the start of a chunk
4229 */
4230static sector_t first_dev_address(sector_t s, struct geom *geo)
4231{
4232	s >>= geo->chunk_shift;
4233	s *= geo->near_copies;
4234	sector_div(s, geo->raid_disks);
4235	s *= geo->far_copies;
4236	s <<= geo->chunk_shift;
4237	return s;
4238}
4239
4240static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4241				int *skipped)
4242{
4243	/* We simply copy at most one chunk (smallest of old and new)
4244	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4245	 * or we hit a bad block or something.
4246	 * This might mean we pause for normal IO in the middle of
4247	 * a chunk, but that is not a problem was mddev->reshape_position
4248	 * can record any location.
4249	 *
4250	 * If we will want to write to a location that isn't
4251	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4252	 * we need to flush all reshape requests and update the metadata.
4253	 *
4254	 * When reshaping forwards (e.g. to more devices), we interpret
4255	 * 'safe' as the earliest block which might not have been copied
4256	 * down yet.  We divide this by previous stripe size and multiply
4257	 * by previous stripe length to get lowest device offset that we
4258	 * cannot write to yet.
4259	 * We interpret 'sector_nr' as an address that we want to write to.
4260	 * From this we use last_device_address() to find where we might
4261	 * write to, and first_device_address on the  'safe' position.
4262	 * If this 'next' write position is after the 'safe' position,
4263	 * we must update the metadata to increase the 'safe' position.
4264	 *
4265	 * When reshaping backwards, we round in the opposite direction
4266	 * and perform the reverse test:  next write position must not be
4267	 * less than current safe position.
4268	 *
4269	 * In all this the minimum difference in data offsets
4270	 * (conf->offset_diff - always positive) allows a bit of slack,
4271	 * so next can be after 'safe', but not by more than offset_disk
4272	 *
4273	 * We need to prepare all the bios here before we start any IO
4274	 * to ensure the size we choose is acceptable to all devices.
4275	 * The means one for each copy for write-out and an extra one for
4276	 * read-in.
4277	 * We store the read-in bio in ->master_bio and the others in
4278	 * ->devs[x].bio and ->devs[x].repl_bio.
4279	 */
4280	struct r10conf *conf = mddev->private;
4281	struct r10bio *r10_bio;
4282	sector_t next, safe, last;
4283	int max_sectors;
4284	int nr_sectors;
4285	int s;
4286	struct md_rdev *rdev;
4287	int need_flush = 0;
4288	struct bio *blist;
4289	struct bio *bio, *read_bio;
4290	int sectors_done = 0;
4291
4292	if (sector_nr == 0) {
4293		/* If restarting in the middle, skip the initial sectors */
4294		if (mddev->reshape_backwards &&
4295		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4296			sector_nr = (raid10_size(mddev, 0, 0)
4297				     - conf->reshape_progress);
4298		} else if (!mddev->reshape_backwards &&
4299			   conf->reshape_progress > 0)
4300			sector_nr = conf->reshape_progress;
4301		if (sector_nr) {
4302			mddev->curr_resync_completed = sector_nr;
4303			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4304			*skipped = 1;
4305			return sector_nr;
4306		}
4307	}
4308
4309	/* We don't use sector_nr to track where we are up to
4310	 * as that doesn't work well for ->reshape_backwards.
4311	 * So just use ->reshape_progress.
4312	 */
4313	if (mddev->reshape_backwards) {
4314		/* 'next' is the earliest device address that we might
4315		 * write to for this chunk in the new layout
4316		 */
4317		next = first_dev_address(conf->reshape_progress - 1,
4318					 &conf->geo);
4319
4320		/* 'safe' is the last device address that we might read from
4321		 * in the old layout after a restart
4322		 */
4323		safe = last_dev_address(conf->reshape_safe - 1,
4324					&conf->prev);
4325
4326		if (next + conf->offset_diff < safe)
4327			need_flush = 1;
4328
4329		last = conf->reshape_progress - 1;
4330		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4331					       & conf->prev.chunk_mask);
4332		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4333			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4334	} else {
4335		/* 'next' is after the last device address that we
4336		 * might write to for this chunk in the new layout
4337		 */
4338		next = last_dev_address(conf->reshape_progress, &conf->geo);
4339
4340		/* 'safe' is the earliest device address that we might
4341		 * read from in the old layout after a restart
4342		 */
4343		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4344
4345		/* Need to update metadata if 'next' might be beyond 'safe'
4346		 * as that would possibly corrupt data
4347		 */
4348		if (next > safe + conf->offset_diff)
4349			need_flush = 1;
4350
4351		sector_nr = conf->reshape_progress;
4352		last  = sector_nr | (conf->geo.chunk_mask
4353				     & conf->prev.chunk_mask);
4354
4355		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4356			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4357	}
4358
4359	if (need_flush ||
4360	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4361		/* Need to update reshape_position in metadata */
4362		wait_barrier(conf);
4363		mddev->reshape_position = conf->reshape_progress;
4364		if (mddev->reshape_backwards)
4365			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4366				- conf->reshape_progress;
4367		else
4368			mddev->curr_resync_completed = conf->reshape_progress;
4369		conf->reshape_checkpoint = jiffies;
4370		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4371		md_wakeup_thread(mddev->thread);
4372		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4373			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4374		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4375			allow_barrier(conf);
4376			return sectors_done;
4377		}
4378		conf->reshape_safe = mddev->reshape_position;
4379		allow_barrier(conf);
4380	}
4381
4382read_more:
4383	/* Now schedule reads for blocks from sector_nr to last */
4384	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385	r10_bio->state = 0;
4386	raise_barrier(conf, sectors_done != 0);
4387	atomic_set(&r10_bio->remaining, 0);
4388	r10_bio->mddev = mddev;
4389	r10_bio->sector = sector_nr;
4390	set_bit(R10BIO_IsReshape, &r10_bio->state);
4391	r10_bio->sectors = last - sector_nr + 1;
4392	rdev = read_balance(conf, r10_bio, &max_sectors);
4393	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4394
4395	if (!rdev) {
4396		/* Cannot read from here, so need to record bad blocks
4397		 * on all the target devices.
4398		 */
4399		// FIXME
4400		mempool_free(r10_bio, conf->r10buf_pool);
4401		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402		return sectors_done;
4403	}
4404
4405	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407	read_bio->bi_bdev = rdev->bdev;
4408	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409			       + rdev->data_offset);
4410	read_bio->bi_private = r10_bio;
4411	read_bio->bi_end_io = end_sync_read;
4412	read_bio->bi_rw = READ;
4413	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4414	__set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4415	read_bio->bi_vcnt = 0;
4416	read_bio->bi_iter.bi_size = 0;
4417	r10_bio->master_bio = read_bio;
4418	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420	/* Now find the locations in the new layout */
4421	__raid10_find_phys(&conf->geo, r10_bio);
4422
4423	blist = read_bio;
4424	read_bio->bi_next = NULL;
4425
4426	for (s = 0; s < conf->copies*2; s++) {
4427		struct bio *b;
4428		int d = r10_bio->devs[s/2].devnum;
4429		struct md_rdev *rdev2;
4430		if (s&1) {
4431			rdev2 = conf->mirrors[d].replacement;
4432			b = r10_bio->devs[s/2].repl_bio;
4433		} else {
4434			rdev2 = conf->mirrors[d].rdev;
4435			b = r10_bio->devs[s/2].bio;
4436		}
4437		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438			continue;
4439
4440		bio_reset(b);
4441		b->bi_bdev = rdev2->bdev;
4442		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443			rdev2->new_data_offset;
4444		b->bi_private = r10_bio;
4445		b->bi_end_io = end_reshape_write;
4446		b->bi_rw = WRITE;
4447		b->bi_next = blist;
4448		blist = b;
4449	}
4450
4451	/* Now add as many pages as possible to all of these bios. */
4452
4453	nr_sectors = 0;
4454	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456		int len = (max_sectors - s) << 9;
4457		if (len > PAGE_SIZE)
4458			len = PAGE_SIZE;
4459		for (bio = blist; bio ; bio = bio->bi_next) {
4460			struct bio *bio2;
4461			if (bio_add_page(bio, page, len, 0))
4462				continue;
4463
4464			/* Didn't fit, must stop */
4465			for (bio2 = blist;
4466			     bio2 && bio2 != bio;
4467			     bio2 = bio2->bi_next) {
4468				/* Remove last page from this bio */
4469				bio2->bi_vcnt--;
4470				bio2->bi_iter.bi_size -= len;
4471				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4472			}
4473			goto bio_full;
4474		}
4475		sector_nr += len >> 9;
4476		nr_sectors += len >> 9;
4477	}
4478bio_full:
4479	r10_bio->sectors = nr_sectors;
4480
4481	/* Now submit the read */
4482	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483	atomic_inc(&r10_bio->remaining);
4484	read_bio->bi_next = NULL;
4485	generic_make_request(read_bio);
4486	sector_nr += nr_sectors;
4487	sectors_done += nr_sectors;
4488	if (sector_nr <= last)
4489		goto read_more;
4490
4491	/* Now that we have done the whole section we can
4492	 * update reshape_progress
4493	 */
4494	if (mddev->reshape_backwards)
4495		conf->reshape_progress -= sectors_done;
4496	else
4497		conf->reshape_progress += sectors_done;
4498
4499	return sectors_done;
4500}
4501
4502static void end_reshape_request(struct r10bio *r10_bio);
4503static int handle_reshape_read_error(struct mddev *mddev,
4504				     struct r10bio *r10_bio);
4505static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506{
4507	/* Reshape read completed.  Hopefully we have a block
4508	 * to write out.
4509	 * If we got a read error then we do sync 1-page reads from
4510	 * elsewhere until we find the data - or give up.
4511	 */
4512	struct r10conf *conf = mddev->private;
4513	int s;
4514
4515	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517			/* Reshape has been aborted */
4518			md_done_sync(mddev, r10_bio->sectors, 0);
4519			return;
4520		}
4521
4522	/* We definitely have the data in the pages, schedule the
4523	 * writes.
4524	 */
4525	atomic_set(&r10_bio->remaining, 1);
4526	for (s = 0; s < conf->copies*2; s++) {
4527		struct bio *b;
4528		int d = r10_bio->devs[s/2].devnum;
4529		struct md_rdev *rdev;
4530		if (s&1) {
4531			rdev = conf->mirrors[d].replacement;
4532			b = r10_bio->devs[s/2].repl_bio;
4533		} else {
4534			rdev = conf->mirrors[d].rdev;
4535			b = r10_bio->devs[s/2].bio;
4536		}
4537		if (!rdev || test_bit(Faulty, &rdev->flags))
4538			continue;
4539		atomic_inc(&rdev->nr_pending);
4540		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541		atomic_inc(&r10_bio->remaining);
4542		b->bi_next = NULL;
4543		generic_make_request(b);
4544	}
4545	end_reshape_request(r10_bio);
4546}
4547
4548static void end_reshape(struct r10conf *conf)
4549{
4550	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551		return;
4552
4553	spin_lock_irq(&conf->device_lock);
4554	conf->prev = conf->geo;
4555	md_finish_reshape(conf->mddev);
4556	smp_wmb();
4557	conf->reshape_progress = MaxSector;
4558	spin_unlock_irq(&conf->device_lock);
4559
4560	/* read-ahead size must cover two whole stripes, which is
4561	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562	 */
4563	if (conf->mddev->queue) {
4564		int stripe = conf->geo.raid_disks *
4565			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566		stripe /= conf->geo.near_copies;
4567		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569	}
4570	conf->fullsync = 0;
4571}
4572
4573static int handle_reshape_read_error(struct mddev *mddev,
4574				     struct r10bio *r10_bio)
4575{
4576	/* Use sync reads to get the blocks from somewhere else */
4577	int sectors = r10_bio->sectors;
4578	struct r10conf *conf = mddev->private;
4579	struct {
4580		struct r10bio r10_bio;
4581		struct r10dev devs[conf->copies];
4582	} on_stack;
4583	struct r10bio *r10b = &on_stack.r10_bio;
4584	int slot = 0;
4585	int idx = 0;
4586	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4587
4588	r10b->sector = r10_bio->sector;
4589	__raid10_find_phys(&conf->prev, r10b);
4590
4591	while (sectors) {
4592		int s = sectors;
4593		int success = 0;
4594		int first_slot = slot;
4595
4596		if (s > (PAGE_SIZE >> 9))
4597			s = PAGE_SIZE >> 9;
4598
4599		while (!success) {
4600			int d = r10b->devs[slot].devnum;
4601			struct md_rdev *rdev = conf->mirrors[d].rdev;
4602			sector_t addr;
4603			if (rdev == NULL ||
4604			    test_bit(Faulty, &rdev->flags) ||
4605			    !test_bit(In_sync, &rdev->flags))
4606				goto failed;
4607
4608			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4609			success = sync_page_io(rdev,
4610					       addr,
4611					       s << 9,
4612					       bvec[idx].bv_page,
4613					       READ, false);
4614			if (success)
4615				break;
4616		failed:
4617			slot++;
4618			if (slot >= conf->copies)
4619				slot = 0;
4620			if (slot == first_slot)
4621				break;
4622		}
4623		if (!success) {
4624			/* couldn't read this block, must give up */
4625			set_bit(MD_RECOVERY_INTR,
4626				&mddev->recovery);
4627			return -EIO;
4628		}
4629		sectors -= s;
4630		idx++;
4631	}
4632	return 0;
4633}
4634
4635static void end_reshape_write(struct bio *bio, int error)
4636{
4637	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4638	struct r10bio *r10_bio = bio->bi_private;
4639	struct mddev *mddev = r10_bio->mddev;
4640	struct r10conf *conf = mddev->private;
4641	int d;
4642	int slot;
4643	int repl;
4644	struct md_rdev *rdev = NULL;
4645
4646	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4647	if (repl)
4648		rdev = conf->mirrors[d].replacement;
4649	if (!rdev) {
4650		smp_mb();
4651		rdev = conf->mirrors[d].rdev;
4652	}
4653
4654	if (!uptodate) {
4655		/* FIXME should record badblock */
4656		md_error(mddev, rdev);
4657	}
4658
4659	rdev_dec_pending(rdev, mddev);
4660	end_reshape_request(r10_bio);
4661}
4662
4663static void end_reshape_request(struct r10bio *r10_bio)
4664{
4665	if (!atomic_dec_and_test(&r10_bio->remaining))
4666		return;
4667	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4668	bio_put(r10_bio->master_bio);
4669	put_buf(r10_bio);
4670}
4671
4672static void raid10_finish_reshape(struct mddev *mddev)
4673{
4674	struct r10conf *conf = mddev->private;
4675
4676	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4677		return;
4678
4679	if (mddev->delta_disks > 0) {
4680		sector_t size = raid10_size(mddev, 0, 0);
4681		md_set_array_sectors(mddev, size);
4682		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4683			mddev->recovery_cp = mddev->resync_max_sectors;
4684			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4685		}
4686		mddev->resync_max_sectors = size;
4687		set_capacity(mddev->gendisk, mddev->array_sectors);
4688		revalidate_disk(mddev->gendisk);
4689	} else {
4690		int d;
4691		for (d = conf->geo.raid_disks ;
4692		     d < conf->geo.raid_disks - mddev->delta_disks;
4693		     d++) {
4694			struct md_rdev *rdev = conf->mirrors[d].rdev;
4695			if (rdev)
4696				clear_bit(In_sync, &rdev->flags);
4697			rdev = conf->mirrors[d].replacement;
4698			if (rdev)
4699				clear_bit(In_sync, &rdev->flags);
4700		}
4701	}
4702	mddev->layout = mddev->new_layout;
4703	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4704	mddev->reshape_position = MaxSector;
4705	mddev->delta_disks = 0;
4706	mddev->reshape_backwards = 0;
4707}
4708
4709static struct md_personality raid10_personality =
4710{
4711	.name		= "raid10",
4712	.level		= 10,
4713	.owner		= THIS_MODULE,
4714	.make_request	= make_request,
4715	.run		= run,
4716	.stop		= stop,
4717	.status		= status,
4718	.error_handler	= error,
4719	.hot_add_disk	= raid10_add_disk,
4720	.hot_remove_disk= raid10_remove_disk,
4721	.spare_active	= raid10_spare_active,
4722	.sync_request	= sync_request,
4723	.quiesce	= raid10_quiesce,
4724	.size		= raid10_size,
4725	.resize		= raid10_resize,
4726	.takeover	= raid10_takeover,
4727	.check_reshape	= raid10_check_reshape,
4728	.start_reshape	= raid10_start_reshape,
4729	.finish_reshape	= raid10_finish_reshape,
4730};
4731
4732static int __init raid_init(void)
4733{
4734	return register_md_personality(&raid10_personality);
4735}
4736
4737static void raid_exit(void)
4738{
4739	unregister_md_personality(&raid10_personality);
4740}
4741
4742module_init(raid_init);
4743module_exit(raid_exit);
4744MODULE_LICENSE("GPL");
4745MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4746MODULE_ALIAS("md-personality-9"); /* RAID10 */
4747MODULE_ALIAS("md-raid10");
4748MODULE_ALIAS("md-level-10");
4749
4750module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4751