1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/module.h>
51#include <linux/async.h>
52#include <linux/seq_file.h>
53#include <linux/cpu.h>
54#include <linux/slab.h>
55#include <linux/ratelimit.h>
56#include <linux/nodemask.h>
57#include <trace/events/block.h>
58
59#include "md.h"
60#include "raid5.h"
61#include "raid0.h"
62#include "bitmap.h"
63
64#define cpu_to_group(cpu) cpu_to_node(cpu)
65#define ANY_GROUP NUMA_NO_NODE
66
67static bool devices_handle_discard_safely = false;
68module_param(devices_handle_discard_safely, bool, 0644);
69MODULE_PARM_DESC(devices_handle_discard_safely,
70		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71static struct workqueue_struct *raid5_wq;
72/*
73 * Stripe cache
74 */
75
76#define NR_STRIPES		256
77#define STRIPE_SIZE		PAGE_SIZE
78#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
79#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
80#define	IO_THRESHOLD		1
81#define BYPASS_THRESHOLD	1
82#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
83#define HASH_MASK		(NR_HASH - 1)
84#define MAX_STRIPE_BATCH	8
85
86static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87{
88	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89	return &conf->stripe_hashtbl[hash];
90}
91
92static inline int stripe_hash_locks_hash(sector_t sect)
93{
94	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95}
96
97static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98{
99	spin_lock_irq(conf->hash_locks + hash);
100	spin_lock(&conf->device_lock);
101}
102
103static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104{
105	spin_unlock(&conf->device_lock);
106	spin_unlock_irq(conf->hash_locks + hash);
107}
108
109static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110{
111	int i;
112	local_irq_disable();
113	spin_lock(conf->hash_locks);
114	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116	spin_lock(&conf->device_lock);
117}
118
119static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120{
121	int i;
122	spin_unlock(&conf->device_lock);
123	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124		spin_unlock(conf->hash_locks + i - 1);
125	local_irq_enable();
126}
127
128/* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap.  There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
133 * be valid.
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
136 */
137static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138{
139	int sectors = bio_sectors(bio);
140	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141		return bio->bi_next;
142	else
143		return NULL;
144}
145
146/*
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149 */
150static inline int raid5_bi_processed_stripes(struct bio *bio)
151{
152	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153	return (atomic_read(segments) >> 16) & 0xffff;
154}
155
156static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157{
158	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159	return atomic_sub_return(1, segments) & 0xffff;
160}
161
162static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163{
164	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165	atomic_inc(segments);
166}
167
168static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169	unsigned int cnt)
170{
171	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172	int old, new;
173
174	do {
175		old = atomic_read(segments);
176		new = (old & 0xffff) | (cnt << 16);
177	} while (atomic_cmpxchg(segments, old, new) != old);
178}
179
180static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181{
182	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183	atomic_set(segments, cnt);
184}
185
186/* Find first data disk in a raid6 stripe */
187static inline int raid6_d0(struct stripe_head *sh)
188{
189	if (sh->ddf_layout)
190		/* ddf always start from first device */
191		return 0;
192	/* md starts just after Q block */
193	if (sh->qd_idx == sh->disks - 1)
194		return 0;
195	else
196		return sh->qd_idx + 1;
197}
198static inline int raid6_next_disk(int disk, int raid_disks)
199{
200	disk++;
201	return (disk < raid_disks) ? disk : 0;
202}
203
204/* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1.  This help does that mapping.
208 */
209static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210			     int *count, int syndrome_disks)
211{
212	int slot = *count;
213
214	if (sh->ddf_layout)
215		(*count)++;
216	if (idx == sh->pd_idx)
217		return syndrome_disks;
218	if (idx == sh->qd_idx)
219		return syndrome_disks + 1;
220	if (!sh->ddf_layout)
221		(*count)++;
222	return slot;
223}
224
225static void return_io(struct bio *return_bi)
226{
227	struct bio *bi = return_bi;
228	while (bi) {
229
230		return_bi = bi->bi_next;
231		bi->bi_next = NULL;
232		bi->bi_iter.bi_size = 0;
233		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234					 bi, 0);
235		bio_endio(bi, 0);
236		bi = return_bi;
237	}
238}
239
240static void print_raid5_conf (struct r5conf *conf);
241
242static int stripe_operations_active(struct stripe_head *sh)
243{
244	return sh->check_state || sh->reconstruct_state ||
245	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247}
248
249static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250{
251	struct r5conf *conf = sh->raid_conf;
252	struct r5worker_group *group;
253	int thread_cnt;
254	int i, cpu = sh->cpu;
255
256	if (!cpu_online(cpu)) {
257		cpu = cpumask_any(cpu_online_mask);
258		sh->cpu = cpu;
259	}
260
261	if (list_empty(&sh->lru)) {
262		struct r5worker_group *group;
263		group = conf->worker_groups + cpu_to_group(cpu);
264		list_add_tail(&sh->lru, &group->handle_list);
265		group->stripes_cnt++;
266		sh->group = group;
267	}
268
269	if (conf->worker_cnt_per_group == 0) {
270		md_wakeup_thread(conf->mddev->thread);
271		return;
272	}
273
274	group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276	group->workers[0].working = true;
277	/* at least one worker should run to avoid race */
278	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281	/* wakeup more workers */
282	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283		if (group->workers[i].working == false) {
284			group->workers[i].working = true;
285			queue_work_on(sh->cpu, raid5_wq,
286				      &group->workers[i].work);
287			thread_cnt--;
288		}
289	}
290}
291
292static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293			      struct list_head *temp_inactive_list)
294{
295	BUG_ON(!list_empty(&sh->lru));
296	BUG_ON(atomic_read(&conf->active_stripes)==0);
297	if (test_bit(STRIPE_HANDLE, &sh->state)) {
298		if (test_bit(STRIPE_DELAYED, &sh->state) &&
299		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300			list_add_tail(&sh->lru, &conf->delayed_list);
301			if (atomic_read(&conf->preread_active_stripes)
302			    < IO_THRESHOLD)
303				md_wakeup_thread(conf->mddev->thread);
304		} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305			   sh->bm_seq - conf->seq_write > 0)
306			list_add_tail(&sh->lru, &conf->bitmap_list);
307		else {
308			clear_bit(STRIPE_DELAYED, &sh->state);
309			clear_bit(STRIPE_BIT_DELAY, &sh->state);
310			if (conf->worker_cnt_per_group == 0) {
311				list_add_tail(&sh->lru, &conf->handle_list);
312			} else {
313				raid5_wakeup_stripe_thread(sh);
314				return;
315			}
316		}
317		md_wakeup_thread(conf->mddev->thread);
318	} else {
319		BUG_ON(stripe_operations_active(sh));
320		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321			if (atomic_dec_return(&conf->preread_active_stripes)
322			    < IO_THRESHOLD)
323				md_wakeup_thread(conf->mddev->thread);
324		atomic_dec(&conf->active_stripes);
325		if (!test_bit(STRIPE_EXPANDING, &sh->state))
326			list_add_tail(&sh->lru, temp_inactive_list);
327	}
328}
329
330static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331			     struct list_head *temp_inactive_list)
332{
333	if (atomic_dec_and_test(&sh->count))
334		do_release_stripe(conf, sh, temp_inactive_list);
335}
336
337/*
338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
339 *
340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341 * given time. Adding stripes only takes device lock, while deleting stripes
342 * only takes hash lock.
343 */
344static void release_inactive_stripe_list(struct r5conf *conf,
345					 struct list_head *temp_inactive_list,
346					 int hash)
347{
348	int size;
349	bool do_wakeup = false;
350	unsigned long flags;
351
352	if (hash == NR_STRIPE_HASH_LOCKS) {
353		size = NR_STRIPE_HASH_LOCKS;
354		hash = NR_STRIPE_HASH_LOCKS - 1;
355	} else
356		size = 1;
357	while (size) {
358		struct list_head *list = &temp_inactive_list[size - 1];
359
360		/*
361		 * We don't hold any lock here yet, get_active_stripe() might
362		 * remove stripes from the list
363		 */
364		if (!list_empty_careful(list)) {
365			spin_lock_irqsave(conf->hash_locks + hash, flags);
366			if (list_empty(conf->inactive_list + hash) &&
367			    !list_empty(list))
368				atomic_dec(&conf->empty_inactive_list_nr);
369			list_splice_tail_init(list, conf->inactive_list + hash);
370			do_wakeup = true;
371			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
372		}
373		size--;
374		hash--;
375	}
376
377	if (do_wakeup) {
378		wake_up(&conf->wait_for_stripe);
379		if (conf->retry_read_aligned)
380			md_wakeup_thread(conf->mddev->thread);
381	}
382}
383
384/* should hold conf->device_lock already */
385static int release_stripe_list(struct r5conf *conf,
386			       struct list_head *temp_inactive_list)
387{
388	struct stripe_head *sh;
389	int count = 0;
390	struct llist_node *head;
391
392	head = llist_del_all(&conf->released_stripes);
393	head = llist_reverse_order(head);
394	while (head) {
395		int hash;
396
397		sh = llist_entry(head, struct stripe_head, release_list);
398		head = llist_next(head);
399		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400		smp_mb();
401		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402		/*
403		 * Don't worry the bit is set here, because if the bit is set
404		 * again, the count is always > 1. This is true for
405		 * STRIPE_ON_UNPLUG_LIST bit too.
406		 */
407		hash = sh->hash_lock_index;
408		__release_stripe(conf, sh, &temp_inactive_list[hash]);
409		count++;
410	}
411
412	return count;
413}
414
415static void release_stripe(struct stripe_head *sh)
416{
417	struct r5conf *conf = sh->raid_conf;
418	unsigned long flags;
419	struct list_head list;
420	int hash;
421	bool wakeup;
422
423	/* Avoid release_list until the last reference.
424	 */
425	if (atomic_add_unless(&sh->count, -1, 1))
426		return;
427
428	if (unlikely(!conf->mddev->thread) ||
429		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
430		goto slow_path;
431	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432	if (wakeup)
433		md_wakeup_thread(conf->mddev->thread);
434	return;
435slow_path:
436	local_irq_save(flags);
437	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439		INIT_LIST_HEAD(&list);
440		hash = sh->hash_lock_index;
441		do_release_stripe(conf, sh, &list);
442		spin_unlock(&conf->device_lock);
443		release_inactive_stripe_list(conf, &list, hash);
444	}
445	local_irq_restore(flags);
446}
447
448static inline void remove_hash(struct stripe_head *sh)
449{
450	pr_debug("remove_hash(), stripe %llu\n",
451		(unsigned long long)sh->sector);
452
453	hlist_del_init(&sh->hash);
454}
455
456static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
457{
458	struct hlist_head *hp = stripe_hash(conf, sh->sector);
459
460	pr_debug("insert_hash(), stripe %llu\n",
461		(unsigned long long)sh->sector);
462
463	hlist_add_head(&sh->hash, hp);
464}
465
466/* find an idle stripe, make sure it is unhashed, and return it. */
467static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
468{
469	struct stripe_head *sh = NULL;
470	struct list_head *first;
471
472	if (list_empty(conf->inactive_list + hash))
473		goto out;
474	first = (conf->inactive_list + hash)->next;
475	sh = list_entry(first, struct stripe_head, lru);
476	list_del_init(first);
477	remove_hash(sh);
478	atomic_inc(&conf->active_stripes);
479	BUG_ON(hash != sh->hash_lock_index);
480	if (list_empty(conf->inactive_list + hash))
481		atomic_inc(&conf->empty_inactive_list_nr);
482out:
483	return sh;
484}
485
486static void shrink_buffers(struct stripe_head *sh)
487{
488	struct page *p;
489	int i;
490	int num = sh->raid_conf->pool_size;
491
492	for (i = 0; i < num ; i++) {
493		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
494		p = sh->dev[i].page;
495		if (!p)
496			continue;
497		sh->dev[i].page = NULL;
498		put_page(p);
499	}
500}
501
502static int grow_buffers(struct stripe_head *sh)
503{
504	int i;
505	int num = sh->raid_conf->pool_size;
506
507	for (i = 0; i < num; i++) {
508		struct page *page;
509
510		if (!(page = alloc_page(GFP_KERNEL))) {
511			return 1;
512		}
513		sh->dev[i].page = page;
514		sh->dev[i].orig_page = page;
515	}
516	return 0;
517}
518
519static void raid5_build_block(struct stripe_head *sh, int i, int previous);
520static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
521			    struct stripe_head *sh);
522
523static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
524{
525	struct r5conf *conf = sh->raid_conf;
526	int i, seq;
527
528	BUG_ON(atomic_read(&sh->count) != 0);
529	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
530	BUG_ON(stripe_operations_active(sh));
531
532	pr_debug("init_stripe called, stripe %llu\n",
533		(unsigned long long)sector);
534retry:
535	seq = read_seqcount_begin(&conf->gen_lock);
536	sh->generation = conf->generation - previous;
537	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
538	sh->sector = sector;
539	stripe_set_idx(sector, conf, previous, sh);
540	sh->state = 0;
541
542	for (i = sh->disks; i--; ) {
543		struct r5dev *dev = &sh->dev[i];
544
545		if (dev->toread || dev->read || dev->towrite || dev->written ||
546		    test_bit(R5_LOCKED, &dev->flags)) {
547			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548			       (unsigned long long)sh->sector, i, dev->toread,
549			       dev->read, dev->towrite, dev->written,
550			       test_bit(R5_LOCKED, &dev->flags));
551			WARN_ON(1);
552		}
553		dev->flags = 0;
554		raid5_build_block(sh, i, previous);
555	}
556	if (read_seqcount_retry(&conf->gen_lock, seq))
557		goto retry;
558	insert_hash(conf, sh);
559	sh->cpu = smp_processor_id();
560}
561
562static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563					 short generation)
564{
565	struct stripe_head *sh;
566
567	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569		if (sh->sector == sector && sh->generation == generation)
570			return sh;
571	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572	return NULL;
573}
574
575/*
576 * Need to check if array has failed when deciding whether to:
577 *  - start an array
578 *  - remove non-faulty devices
579 *  - add a spare
580 *  - allow a reshape
581 * This determination is simple when no reshape is happening.
582 * However if there is a reshape, we need to carefully check
583 * both the before and after sections.
584 * This is because some failed devices may only affect one
585 * of the two sections, and some non-in_sync devices may
586 * be insync in the section most affected by failed devices.
587 */
588static int calc_degraded(struct r5conf *conf)
589{
590	int degraded, degraded2;
591	int i;
592
593	rcu_read_lock();
594	degraded = 0;
595	for (i = 0; i < conf->previous_raid_disks; i++) {
596		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597		if (rdev && test_bit(Faulty, &rdev->flags))
598			rdev = rcu_dereference(conf->disks[i].replacement);
599		if (!rdev || test_bit(Faulty, &rdev->flags))
600			degraded++;
601		else if (test_bit(In_sync, &rdev->flags))
602			;
603		else
604			/* not in-sync or faulty.
605			 * If the reshape increases the number of devices,
606			 * this is being recovered by the reshape, so
607			 * this 'previous' section is not in_sync.
608			 * If the number of devices is being reduced however,
609			 * the device can only be part of the array if
610			 * we are reverting a reshape, so this section will
611			 * be in-sync.
612			 */
613			if (conf->raid_disks >= conf->previous_raid_disks)
614				degraded++;
615	}
616	rcu_read_unlock();
617	if (conf->raid_disks == conf->previous_raid_disks)
618		return degraded;
619	rcu_read_lock();
620	degraded2 = 0;
621	for (i = 0; i < conf->raid_disks; i++) {
622		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623		if (rdev && test_bit(Faulty, &rdev->flags))
624			rdev = rcu_dereference(conf->disks[i].replacement);
625		if (!rdev || test_bit(Faulty, &rdev->flags))
626			degraded2++;
627		else if (test_bit(In_sync, &rdev->flags))
628			;
629		else
630			/* not in-sync or faulty.
631			 * If reshape increases the number of devices, this
632			 * section has already been recovered, else it
633			 * almost certainly hasn't.
634			 */
635			if (conf->raid_disks <= conf->previous_raid_disks)
636				degraded2++;
637	}
638	rcu_read_unlock();
639	if (degraded2 > degraded)
640		return degraded2;
641	return degraded;
642}
643
644static int has_failed(struct r5conf *conf)
645{
646	int degraded;
647
648	if (conf->mddev->reshape_position == MaxSector)
649		return conf->mddev->degraded > conf->max_degraded;
650
651	degraded = calc_degraded(conf);
652	if (degraded > conf->max_degraded)
653		return 1;
654	return 0;
655}
656
657static struct stripe_head *
658get_active_stripe(struct r5conf *conf, sector_t sector,
659		  int previous, int noblock, int noquiesce)
660{
661	struct stripe_head *sh;
662	int hash = stripe_hash_locks_hash(sector);
663
664	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666	spin_lock_irq(conf->hash_locks + hash);
667
668	do {
669		wait_event_lock_irq(conf->wait_for_stripe,
670				    conf->quiesce == 0 || noquiesce,
671				    *(conf->hash_locks + hash));
672		sh = __find_stripe(conf, sector, conf->generation - previous);
673		if (!sh) {
674			if (!conf->inactive_blocked)
675				sh = get_free_stripe(conf, hash);
676			if (noblock && sh == NULL)
677				break;
678			if (!sh) {
679				conf->inactive_blocked = 1;
680				wait_event_lock_irq(
681					conf->wait_for_stripe,
682					!list_empty(conf->inactive_list + hash) &&
683					(atomic_read(&conf->active_stripes)
684					 < (conf->max_nr_stripes * 3 / 4)
685					 || !conf->inactive_blocked),
686					*(conf->hash_locks + hash));
687				conf->inactive_blocked = 0;
688			} else {
689				init_stripe(sh, sector, previous);
690				atomic_inc(&sh->count);
691			}
692		} else if (!atomic_inc_not_zero(&sh->count)) {
693			spin_lock(&conf->device_lock);
694			if (!atomic_read(&sh->count)) {
695				if (!test_bit(STRIPE_HANDLE, &sh->state))
696					atomic_inc(&conf->active_stripes);
697				BUG_ON(list_empty(&sh->lru) &&
698				       !test_bit(STRIPE_EXPANDING, &sh->state));
699				list_del_init(&sh->lru);
700				if (sh->group) {
701					sh->group->stripes_cnt--;
702					sh->group = NULL;
703				}
704			}
705			atomic_inc(&sh->count);
706			spin_unlock(&conf->device_lock);
707		}
708	} while (sh == NULL);
709
710	spin_unlock_irq(conf->hash_locks + hash);
711	return sh;
712}
713
714/* Determine if 'data_offset' or 'new_data_offset' should be used
715 * in this stripe_head.
716 */
717static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718{
719	sector_t progress = conf->reshape_progress;
720	/* Need a memory barrier to make sure we see the value
721	 * of conf->generation, or ->data_offset that was set before
722	 * reshape_progress was updated.
723	 */
724	smp_rmb();
725	if (progress == MaxSector)
726		return 0;
727	if (sh->generation == conf->generation - 1)
728		return 0;
729	/* We are in a reshape, and this is a new-generation stripe,
730	 * so use new_data_offset.
731	 */
732	return 1;
733}
734
735static void
736raid5_end_read_request(struct bio *bi, int error);
737static void
738raid5_end_write_request(struct bio *bi, int error);
739
740static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741{
742	struct r5conf *conf = sh->raid_conf;
743	int i, disks = sh->disks;
744
745	might_sleep();
746
747	for (i = disks; i--; ) {
748		int rw;
749		int replace_only = 0;
750		struct bio *bi, *rbi;
751		struct md_rdev *rdev, *rrdev = NULL;
752		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754				rw = WRITE_FUA;
755			else
756				rw = WRITE;
757			if (test_bit(R5_Discard, &sh->dev[i].flags))
758				rw |= REQ_DISCARD;
759		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760			rw = READ;
761		else if (test_and_clear_bit(R5_WantReplace,
762					    &sh->dev[i].flags)) {
763			rw = WRITE;
764			replace_only = 1;
765		} else
766			continue;
767		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768			rw |= REQ_SYNC;
769
770		bi = &sh->dev[i].req;
771		rbi = &sh->dev[i].rreq; /* For writing to replacement */
772
773		rcu_read_lock();
774		rrdev = rcu_dereference(conf->disks[i].replacement);
775		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776		rdev = rcu_dereference(conf->disks[i].rdev);
777		if (!rdev) {
778			rdev = rrdev;
779			rrdev = NULL;
780		}
781		if (rw & WRITE) {
782			if (replace_only)
783				rdev = NULL;
784			if (rdev == rrdev)
785				/* We raced and saw duplicates */
786				rrdev = NULL;
787		} else {
788			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789				rdev = rrdev;
790			rrdev = NULL;
791		}
792
793		if (rdev && test_bit(Faulty, &rdev->flags))
794			rdev = NULL;
795		if (rdev)
796			atomic_inc(&rdev->nr_pending);
797		if (rrdev && test_bit(Faulty, &rrdev->flags))
798			rrdev = NULL;
799		if (rrdev)
800			atomic_inc(&rrdev->nr_pending);
801		rcu_read_unlock();
802
803		/* We have already checked bad blocks for reads.  Now
804		 * need to check for writes.  We never accept write errors
805		 * on the replacement, so we don't to check rrdev.
806		 */
807		while ((rw & WRITE) && rdev &&
808		       test_bit(WriteErrorSeen, &rdev->flags)) {
809			sector_t first_bad;
810			int bad_sectors;
811			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812					      &first_bad, &bad_sectors);
813			if (!bad)
814				break;
815
816			if (bad < 0) {
817				set_bit(BlockedBadBlocks, &rdev->flags);
818				if (!conf->mddev->external &&
819				    conf->mddev->flags) {
820					/* It is very unlikely, but we might
821					 * still need to write out the
822					 * bad block log - better give it
823					 * a chance*/
824					md_check_recovery(conf->mddev);
825				}
826				/*
827				 * Because md_wait_for_blocked_rdev
828				 * will dec nr_pending, we must
829				 * increment it first.
830				 */
831				atomic_inc(&rdev->nr_pending);
832				md_wait_for_blocked_rdev(rdev, conf->mddev);
833			} else {
834				/* Acknowledged bad block - skip the write */
835				rdev_dec_pending(rdev, conf->mddev);
836				rdev = NULL;
837			}
838		}
839
840		if (rdev) {
841			if (s->syncing || s->expanding || s->expanded
842			    || s->replacing)
843				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844
845			set_bit(STRIPE_IO_STARTED, &sh->state);
846
847			bio_reset(bi);
848			bi->bi_bdev = rdev->bdev;
849			bi->bi_rw = rw;
850			bi->bi_end_io = (rw & WRITE)
851				? raid5_end_write_request
852				: raid5_end_read_request;
853			bi->bi_private = sh;
854
855			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856				__func__, (unsigned long long)sh->sector,
857				bi->bi_rw, i);
858			atomic_inc(&sh->count);
859			if (use_new_offset(conf, sh))
860				bi->bi_iter.bi_sector = (sh->sector
861						 + rdev->new_data_offset);
862			else
863				bi->bi_iter.bi_sector = (sh->sector
864						 + rdev->data_offset);
865			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866				bi->bi_rw |= REQ_NOMERGE;
867
868			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870			sh->dev[i].vec.bv_page = sh->dev[i].page;
871			bi->bi_vcnt = 1;
872			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873			bi->bi_io_vec[0].bv_offset = 0;
874			bi->bi_iter.bi_size = STRIPE_SIZE;
875			/*
876			 * If this is discard request, set bi_vcnt 0. We don't
877			 * want to confuse SCSI because SCSI will replace payload
878			 */
879			if (rw & REQ_DISCARD)
880				bi->bi_vcnt = 0;
881			if (rrdev)
882				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883
884			if (conf->mddev->gendisk)
885				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886						      bi, disk_devt(conf->mddev->gendisk),
887						      sh->dev[i].sector);
888			generic_make_request(bi);
889		}
890		if (rrdev) {
891			if (s->syncing || s->expanding || s->expanded
892			    || s->replacing)
893				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894
895			set_bit(STRIPE_IO_STARTED, &sh->state);
896
897			bio_reset(rbi);
898			rbi->bi_bdev = rrdev->bdev;
899			rbi->bi_rw = rw;
900			BUG_ON(!(rw & WRITE));
901			rbi->bi_end_io = raid5_end_write_request;
902			rbi->bi_private = sh;
903
904			pr_debug("%s: for %llu schedule op %ld on "
905				 "replacement disc %d\n",
906				__func__, (unsigned long long)sh->sector,
907				rbi->bi_rw, i);
908			atomic_inc(&sh->count);
909			if (use_new_offset(conf, sh))
910				rbi->bi_iter.bi_sector = (sh->sector
911						  + rrdev->new_data_offset);
912			else
913				rbi->bi_iter.bi_sector = (sh->sector
914						  + rrdev->data_offset);
915			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917			sh->dev[i].rvec.bv_page = sh->dev[i].page;
918			rbi->bi_vcnt = 1;
919			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920			rbi->bi_io_vec[0].bv_offset = 0;
921			rbi->bi_iter.bi_size = STRIPE_SIZE;
922			/*
923			 * If this is discard request, set bi_vcnt 0. We don't
924			 * want to confuse SCSI because SCSI will replace payload
925			 */
926			if (rw & REQ_DISCARD)
927				rbi->bi_vcnt = 0;
928			if (conf->mddev->gendisk)
929				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930						      rbi, disk_devt(conf->mddev->gendisk),
931						      sh->dev[i].sector);
932			generic_make_request(rbi);
933		}
934		if (!rdev && !rrdev) {
935			if (rw & WRITE)
936				set_bit(STRIPE_DEGRADED, &sh->state);
937			pr_debug("skip op %ld on disc %d for sector %llu\n",
938				bi->bi_rw, i, (unsigned long long)sh->sector);
939			clear_bit(R5_LOCKED, &sh->dev[i].flags);
940			set_bit(STRIPE_HANDLE, &sh->state);
941		}
942	}
943}
944
945static struct dma_async_tx_descriptor *
946async_copy_data(int frombio, struct bio *bio, struct page **page,
947	sector_t sector, struct dma_async_tx_descriptor *tx,
948	struct stripe_head *sh)
949{
950	struct bio_vec bvl;
951	struct bvec_iter iter;
952	struct page *bio_page;
953	int page_offset;
954	struct async_submit_ctl submit;
955	enum async_tx_flags flags = 0;
956
957	if (bio->bi_iter.bi_sector >= sector)
958		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959	else
960		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961
962	if (frombio)
963		flags |= ASYNC_TX_FENCE;
964	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965
966	bio_for_each_segment(bvl, bio, iter) {
967		int len = bvl.bv_len;
968		int clen;
969		int b_offset = 0;
970
971		if (page_offset < 0) {
972			b_offset = -page_offset;
973			page_offset += b_offset;
974			len -= b_offset;
975		}
976
977		if (len > 0 && page_offset + len > STRIPE_SIZE)
978			clen = STRIPE_SIZE - page_offset;
979		else
980			clen = len;
981
982		if (clen > 0) {
983			b_offset += bvl.bv_offset;
984			bio_page = bvl.bv_page;
985			if (frombio) {
986				if (sh->raid_conf->skip_copy &&
987				    b_offset == 0 && page_offset == 0 &&
988				    clen == STRIPE_SIZE)
989					*page = bio_page;
990				else
991					tx = async_memcpy(*page, bio_page, page_offset,
992						  b_offset, clen, &submit);
993			} else
994				tx = async_memcpy(bio_page, *page, b_offset,
995						  page_offset, clen, &submit);
996		}
997		/* chain the operations */
998		submit.depend_tx = tx;
999
1000		if (clen < len) /* hit end of page */
1001			break;
1002		page_offset +=  len;
1003	}
1004
1005	return tx;
1006}
1007
1008static void ops_complete_biofill(void *stripe_head_ref)
1009{
1010	struct stripe_head *sh = stripe_head_ref;
1011	struct bio *return_bi = NULL;
1012	int i;
1013
1014	pr_debug("%s: stripe %llu\n", __func__,
1015		(unsigned long long)sh->sector);
1016
1017	/* clear completed biofills */
1018	for (i = sh->disks; i--; ) {
1019		struct r5dev *dev = &sh->dev[i];
1020
1021		/* acknowledge completion of a biofill operation */
1022		/* and check if we need to reply to a read request,
1023		 * new R5_Wantfill requests are held off until
1024		 * !STRIPE_BIOFILL_RUN
1025		 */
1026		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027			struct bio *rbi, *rbi2;
1028
1029			BUG_ON(!dev->read);
1030			rbi = dev->read;
1031			dev->read = NULL;
1032			while (rbi && rbi->bi_iter.bi_sector <
1033				dev->sector + STRIPE_SECTORS) {
1034				rbi2 = r5_next_bio(rbi, dev->sector);
1035				if (!raid5_dec_bi_active_stripes(rbi)) {
1036					rbi->bi_next = return_bi;
1037					return_bi = rbi;
1038				}
1039				rbi = rbi2;
1040			}
1041		}
1042	}
1043	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044
1045	return_io(return_bi);
1046
1047	set_bit(STRIPE_HANDLE, &sh->state);
1048	release_stripe(sh);
1049}
1050
1051static void ops_run_biofill(struct stripe_head *sh)
1052{
1053	struct dma_async_tx_descriptor *tx = NULL;
1054	struct async_submit_ctl submit;
1055	int i;
1056
1057	pr_debug("%s: stripe %llu\n", __func__,
1058		(unsigned long long)sh->sector);
1059
1060	for (i = sh->disks; i--; ) {
1061		struct r5dev *dev = &sh->dev[i];
1062		if (test_bit(R5_Wantfill, &dev->flags)) {
1063			struct bio *rbi;
1064			spin_lock_irq(&sh->stripe_lock);
1065			dev->read = rbi = dev->toread;
1066			dev->toread = NULL;
1067			spin_unlock_irq(&sh->stripe_lock);
1068			while (rbi && rbi->bi_iter.bi_sector <
1069				dev->sector + STRIPE_SECTORS) {
1070				tx = async_copy_data(0, rbi, &dev->page,
1071					dev->sector, tx, sh);
1072				rbi = r5_next_bio(rbi, dev->sector);
1073			}
1074		}
1075	}
1076
1077	atomic_inc(&sh->count);
1078	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079	async_trigger_callback(&submit);
1080}
1081
1082static void mark_target_uptodate(struct stripe_head *sh, int target)
1083{
1084	struct r5dev *tgt;
1085
1086	if (target < 0)
1087		return;
1088
1089	tgt = &sh->dev[target];
1090	set_bit(R5_UPTODATE, &tgt->flags);
1091	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092	clear_bit(R5_Wantcompute, &tgt->flags);
1093}
1094
1095static void ops_complete_compute(void *stripe_head_ref)
1096{
1097	struct stripe_head *sh = stripe_head_ref;
1098
1099	pr_debug("%s: stripe %llu\n", __func__,
1100		(unsigned long long)sh->sector);
1101
1102	/* mark the computed target(s) as uptodate */
1103	mark_target_uptodate(sh, sh->ops.target);
1104	mark_target_uptodate(sh, sh->ops.target2);
1105
1106	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107	if (sh->check_state == check_state_compute_run)
1108		sh->check_state = check_state_compute_result;
1109	set_bit(STRIPE_HANDLE, &sh->state);
1110	release_stripe(sh);
1111}
1112
1113/* return a pointer to the address conversion region of the scribble buffer */
1114static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115				 struct raid5_percpu *percpu)
1116{
1117	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118}
1119
1120static struct dma_async_tx_descriptor *
1121ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122{
1123	int disks = sh->disks;
1124	struct page **xor_srcs = percpu->scribble;
1125	int target = sh->ops.target;
1126	struct r5dev *tgt = &sh->dev[target];
1127	struct page *xor_dest = tgt->page;
1128	int count = 0;
1129	struct dma_async_tx_descriptor *tx;
1130	struct async_submit_ctl submit;
1131	int i;
1132
1133	pr_debug("%s: stripe %llu block: %d\n",
1134		__func__, (unsigned long long)sh->sector, target);
1135	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136
1137	for (i = disks; i--; )
1138		if (i != target)
1139			xor_srcs[count++] = sh->dev[i].page;
1140
1141	atomic_inc(&sh->count);
1142
1143	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145	if (unlikely(count == 1))
1146		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147	else
1148		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149
1150	return tx;
1151}
1152
1153/* set_syndrome_sources - populate source buffers for gen_syndrome
1154 * @srcs - (struct page *) array of size sh->disks
1155 * @sh - stripe_head to parse
1156 *
1157 * Populates srcs in proper layout order for the stripe and returns the
1158 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159 * destination buffer is recorded in srcs[count] and the Q destination
1160 * is recorded in srcs[count+1]].
1161 */
1162static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163{
1164	int disks = sh->disks;
1165	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166	int d0_idx = raid6_d0(sh);
1167	int count;
1168	int i;
1169
1170	for (i = 0; i < disks; i++)
1171		srcs[i] = NULL;
1172
1173	count = 0;
1174	i = d0_idx;
1175	do {
1176		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177
1178		srcs[slot] = sh->dev[i].page;
1179		i = raid6_next_disk(i, disks);
1180	} while (i != d0_idx);
1181
1182	return syndrome_disks;
1183}
1184
1185static struct dma_async_tx_descriptor *
1186ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187{
1188	int disks = sh->disks;
1189	struct page **blocks = percpu->scribble;
1190	int target;
1191	int qd_idx = sh->qd_idx;
1192	struct dma_async_tx_descriptor *tx;
1193	struct async_submit_ctl submit;
1194	struct r5dev *tgt;
1195	struct page *dest;
1196	int i;
1197	int count;
1198
1199	if (sh->ops.target < 0)
1200		target = sh->ops.target2;
1201	else if (sh->ops.target2 < 0)
1202		target = sh->ops.target;
1203	else
1204		/* we should only have one valid target */
1205		BUG();
1206	BUG_ON(target < 0);
1207	pr_debug("%s: stripe %llu block: %d\n",
1208		__func__, (unsigned long long)sh->sector, target);
1209
1210	tgt = &sh->dev[target];
1211	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212	dest = tgt->page;
1213
1214	atomic_inc(&sh->count);
1215
1216	if (target == qd_idx) {
1217		count = set_syndrome_sources(blocks, sh);
1218		blocks[count] = NULL; /* regenerating p is not necessary */
1219		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221				  ops_complete_compute, sh,
1222				  to_addr_conv(sh, percpu));
1223		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224	} else {
1225		/* Compute any data- or p-drive using XOR */
1226		count = 0;
1227		for (i = disks; i-- ; ) {
1228			if (i == target || i == qd_idx)
1229				continue;
1230			blocks[count++] = sh->dev[i].page;
1231		}
1232
1233		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234				  NULL, ops_complete_compute, sh,
1235				  to_addr_conv(sh, percpu));
1236		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237	}
1238
1239	return tx;
1240}
1241
1242static struct dma_async_tx_descriptor *
1243ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244{
1245	int i, count, disks = sh->disks;
1246	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247	int d0_idx = raid6_d0(sh);
1248	int faila = -1, failb = -1;
1249	int target = sh->ops.target;
1250	int target2 = sh->ops.target2;
1251	struct r5dev *tgt = &sh->dev[target];
1252	struct r5dev *tgt2 = &sh->dev[target2];
1253	struct dma_async_tx_descriptor *tx;
1254	struct page **blocks = percpu->scribble;
1255	struct async_submit_ctl submit;
1256
1257	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258		 __func__, (unsigned long long)sh->sector, target, target2);
1259	BUG_ON(target < 0 || target2 < 0);
1260	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262
1263	/* we need to open-code set_syndrome_sources to handle the
1264	 * slot number conversion for 'faila' and 'failb'
1265	 */
1266	for (i = 0; i < disks ; i++)
1267		blocks[i] = NULL;
1268	count = 0;
1269	i = d0_idx;
1270	do {
1271		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272
1273		blocks[slot] = sh->dev[i].page;
1274
1275		if (i == target)
1276			faila = slot;
1277		if (i == target2)
1278			failb = slot;
1279		i = raid6_next_disk(i, disks);
1280	} while (i != d0_idx);
1281
1282	BUG_ON(faila == failb);
1283	if (failb < faila)
1284		swap(faila, failb);
1285	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286		 __func__, (unsigned long long)sh->sector, faila, failb);
1287
1288	atomic_inc(&sh->count);
1289
1290	if (failb == syndrome_disks+1) {
1291		/* Q disk is one of the missing disks */
1292		if (faila == syndrome_disks) {
1293			/* Missing P+Q, just recompute */
1294			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295					  ops_complete_compute, sh,
1296					  to_addr_conv(sh, percpu));
1297			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298						  STRIPE_SIZE, &submit);
1299		} else {
1300			struct page *dest;
1301			int data_target;
1302			int qd_idx = sh->qd_idx;
1303
1304			/* Missing D+Q: recompute D from P, then recompute Q */
1305			if (target == qd_idx)
1306				data_target = target2;
1307			else
1308				data_target = target;
1309
1310			count = 0;
1311			for (i = disks; i-- ; ) {
1312				if (i == data_target || i == qd_idx)
1313					continue;
1314				blocks[count++] = sh->dev[i].page;
1315			}
1316			dest = sh->dev[data_target].page;
1317			init_async_submit(&submit,
1318					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319					  NULL, NULL, NULL,
1320					  to_addr_conv(sh, percpu));
1321			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322				       &submit);
1323
1324			count = set_syndrome_sources(blocks, sh);
1325			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326					  ops_complete_compute, sh,
1327					  to_addr_conv(sh, percpu));
1328			return async_gen_syndrome(blocks, 0, count+2,
1329						  STRIPE_SIZE, &submit);
1330		}
1331	} else {
1332		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333				  ops_complete_compute, sh,
1334				  to_addr_conv(sh, percpu));
1335		if (failb == syndrome_disks) {
1336			/* We're missing D+P. */
1337			return async_raid6_datap_recov(syndrome_disks+2,
1338						       STRIPE_SIZE, faila,
1339						       blocks, &submit);
1340		} else {
1341			/* We're missing D+D. */
1342			return async_raid6_2data_recov(syndrome_disks+2,
1343						       STRIPE_SIZE, faila, failb,
1344						       blocks, &submit);
1345		}
1346	}
1347}
1348
1349static void ops_complete_prexor(void *stripe_head_ref)
1350{
1351	struct stripe_head *sh = stripe_head_ref;
1352
1353	pr_debug("%s: stripe %llu\n", __func__,
1354		(unsigned long long)sh->sector);
1355}
1356
1357static struct dma_async_tx_descriptor *
1358ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359	       struct dma_async_tx_descriptor *tx)
1360{
1361	int disks = sh->disks;
1362	struct page **xor_srcs = percpu->scribble;
1363	int count = 0, pd_idx = sh->pd_idx, i;
1364	struct async_submit_ctl submit;
1365
1366	/* existing parity data subtracted */
1367	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
1369	pr_debug("%s: stripe %llu\n", __func__,
1370		(unsigned long long)sh->sector);
1371
1372	for (i = disks; i--; ) {
1373		struct r5dev *dev = &sh->dev[i];
1374		/* Only process blocks that are known to be uptodate */
1375		if (test_bit(R5_Wantdrain, &dev->flags))
1376			xor_srcs[count++] = dev->page;
1377	}
1378
1379	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382
1383	return tx;
1384}
1385
1386static struct dma_async_tx_descriptor *
1387ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388{
1389	int disks = sh->disks;
1390	int i;
1391
1392	pr_debug("%s: stripe %llu\n", __func__,
1393		(unsigned long long)sh->sector);
1394
1395	for (i = disks; i--; ) {
1396		struct r5dev *dev = &sh->dev[i];
1397		struct bio *chosen;
1398
1399		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400			struct bio *wbi;
1401
1402			spin_lock_irq(&sh->stripe_lock);
1403			chosen = dev->towrite;
1404			dev->towrite = NULL;
1405			BUG_ON(dev->written);
1406			wbi = dev->written = chosen;
1407			spin_unlock_irq(&sh->stripe_lock);
1408			WARN_ON(dev->page != dev->orig_page);
1409
1410			while (wbi && wbi->bi_iter.bi_sector <
1411				dev->sector + STRIPE_SECTORS) {
1412				if (wbi->bi_rw & REQ_FUA)
1413					set_bit(R5_WantFUA, &dev->flags);
1414				if (wbi->bi_rw & REQ_SYNC)
1415					set_bit(R5_SyncIO, &dev->flags);
1416				if (wbi->bi_rw & REQ_DISCARD)
1417					set_bit(R5_Discard, &dev->flags);
1418				else {
1419					tx = async_copy_data(1, wbi, &dev->page,
1420						dev->sector, tx, sh);
1421					if (dev->page != dev->orig_page) {
1422						set_bit(R5_SkipCopy, &dev->flags);
1423						clear_bit(R5_UPTODATE, &dev->flags);
1424						clear_bit(R5_OVERWRITE, &dev->flags);
1425					}
1426				}
1427				wbi = r5_next_bio(wbi, dev->sector);
1428			}
1429		}
1430	}
1431
1432	return tx;
1433}
1434
1435static void ops_complete_reconstruct(void *stripe_head_ref)
1436{
1437	struct stripe_head *sh = stripe_head_ref;
1438	int disks = sh->disks;
1439	int pd_idx = sh->pd_idx;
1440	int qd_idx = sh->qd_idx;
1441	int i;
1442	bool fua = false, sync = false, discard = false;
1443
1444	pr_debug("%s: stripe %llu\n", __func__,
1445		(unsigned long long)sh->sector);
1446
1447	for (i = disks; i--; ) {
1448		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1451	}
1452
1453	for (i = disks; i--; ) {
1454		struct r5dev *dev = &sh->dev[i];
1455
1456		if (dev->written || i == pd_idx || i == qd_idx) {
1457			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1458				set_bit(R5_UPTODATE, &dev->flags);
1459			if (fua)
1460				set_bit(R5_WantFUA, &dev->flags);
1461			if (sync)
1462				set_bit(R5_SyncIO, &dev->flags);
1463		}
1464	}
1465
1466	if (sh->reconstruct_state == reconstruct_state_drain_run)
1467		sh->reconstruct_state = reconstruct_state_drain_result;
1468	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1469		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1470	else {
1471		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1472		sh->reconstruct_state = reconstruct_state_result;
1473	}
1474
1475	set_bit(STRIPE_HANDLE, &sh->state);
1476	release_stripe(sh);
1477}
1478
1479static void
1480ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1481		     struct dma_async_tx_descriptor *tx)
1482{
1483	int disks = sh->disks;
1484	struct page **xor_srcs = percpu->scribble;
1485	struct async_submit_ctl submit;
1486	int count = 0, pd_idx = sh->pd_idx, i;
1487	struct page *xor_dest;
1488	int prexor = 0;
1489	unsigned long flags;
1490
1491	pr_debug("%s: stripe %llu\n", __func__,
1492		(unsigned long long)sh->sector);
1493
1494	for (i = 0; i < sh->disks; i++) {
1495		if (pd_idx == i)
1496			continue;
1497		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1498			break;
1499	}
1500	if (i >= sh->disks) {
1501		atomic_inc(&sh->count);
1502		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1503		ops_complete_reconstruct(sh);
1504		return;
1505	}
1506	/* check if prexor is active which means only process blocks
1507	 * that are part of a read-modify-write (written)
1508	 */
1509	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1510		prexor = 1;
1511		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1512		for (i = disks; i--; ) {
1513			struct r5dev *dev = &sh->dev[i];
1514			if (dev->written)
1515				xor_srcs[count++] = dev->page;
1516		}
1517	} else {
1518		xor_dest = sh->dev[pd_idx].page;
1519		for (i = disks; i--; ) {
1520			struct r5dev *dev = &sh->dev[i];
1521			if (i != pd_idx)
1522				xor_srcs[count++] = dev->page;
1523		}
1524	}
1525
1526	/* 1/ if we prexor'd then the dest is reused as a source
1527	 * 2/ if we did not prexor then we are redoing the parity
1528	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1529	 * for the synchronous xor case
1530	 */
1531	flags = ASYNC_TX_ACK |
1532		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1533
1534	atomic_inc(&sh->count);
1535
1536	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1537			  to_addr_conv(sh, percpu));
1538	if (unlikely(count == 1))
1539		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1540	else
1541		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1542}
1543
1544static void
1545ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1546		     struct dma_async_tx_descriptor *tx)
1547{
1548	struct async_submit_ctl submit;
1549	struct page **blocks = percpu->scribble;
1550	int count, i;
1551
1552	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1553
1554	for (i = 0; i < sh->disks; i++) {
1555		if (sh->pd_idx == i || sh->qd_idx == i)
1556			continue;
1557		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1558			break;
1559	}
1560	if (i >= sh->disks) {
1561		atomic_inc(&sh->count);
1562		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1563		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1564		ops_complete_reconstruct(sh);
1565		return;
1566	}
1567
1568	count = set_syndrome_sources(blocks, sh);
1569
1570	atomic_inc(&sh->count);
1571
1572	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1573			  sh, to_addr_conv(sh, percpu));
1574	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1575}
1576
1577static void ops_complete_check(void *stripe_head_ref)
1578{
1579	struct stripe_head *sh = stripe_head_ref;
1580
1581	pr_debug("%s: stripe %llu\n", __func__,
1582		(unsigned long long)sh->sector);
1583
1584	sh->check_state = check_state_check_result;
1585	set_bit(STRIPE_HANDLE, &sh->state);
1586	release_stripe(sh);
1587}
1588
1589static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1590{
1591	int disks = sh->disks;
1592	int pd_idx = sh->pd_idx;
1593	int qd_idx = sh->qd_idx;
1594	struct page *xor_dest;
1595	struct page **xor_srcs = percpu->scribble;
1596	struct dma_async_tx_descriptor *tx;
1597	struct async_submit_ctl submit;
1598	int count;
1599	int i;
1600
1601	pr_debug("%s: stripe %llu\n", __func__,
1602		(unsigned long long)sh->sector);
1603
1604	count = 0;
1605	xor_dest = sh->dev[pd_idx].page;
1606	xor_srcs[count++] = xor_dest;
1607	for (i = disks; i--; ) {
1608		if (i == pd_idx || i == qd_idx)
1609			continue;
1610		xor_srcs[count++] = sh->dev[i].page;
1611	}
1612
1613	init_async_submit(&submit, 0, NULL, NULL, NULL,
1614			  to_addr_conv(sh, percpu));
1615	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1616			   &sh->ops.zero_sum_result, &submit);
1617
1618	atomic_inc(&sh->count);
1619	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1620	tx = async_trigger_callback(&submit);
1621}
1622
1623static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1624{
1625	struct page **srcs = percpu->scribble;
1626	struct async_submit_ctl submit;
1627	int count;
1628
1629	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1630		(unsigned long long)sh->sector, checkp);
1631
1632	count = set_syndrome_sources(srcs, sh);
1633	if (!checkp)
1634		srcs[count] = NULL;
1635
1636	atomic_inc(&sh->count);
1637	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1638			  sh, to_addr_conv(sh, percpu));
1639	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1640			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1641}
1642
1643static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1644{
1645	int overlap_clear = 0, i, disks = sh->disks;
1646	struct dma_async_tx_descriptor *tx = NULL;
1647	struct r5conf *conf = sh->raid_conf;
1648	int level = conf->level;
1649	struct raid5_percpu *percpu;
1650	unsigned long cpu;
1651
1652	cpu = get_cpu();
1653	percpu = per_cpu_ptr(conf->percpu, cpu);
1654	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1655		ops_run_biofill(sh);
1656		overlap_clear++;
1657	}
1658
1659	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1660		if (level < 6)
1661			tx = ops_run_compute5(sh, percpu);
1662		else {
1663			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1664				tx = ops_run_compute6_1(sh, percpu);
1665			else
1666				tx = ops_run_compute6_2(sh, percpu);
1667		}
1668		/* terminate the chain if reconstruct is not set to be run */
1669		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1670			async_tx_ack(tx);
1671	}
1672
1673	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1674		tx = ops_run_prexor(sh, percpu, tx);
1675
1676	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1677		tx = ops_run_biodrain(sh, tx);
1678		overlap_clear++;
1679	}
1680
1681	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1682		if (level < 6)
1683			ops_run_reconstruct5(sh, percpu, tx);
1684		else
1685			ops_run_reconstruct6(sh, percpu, tx);
1686	}
1687
1688	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1689		if (sh->check_state == check_state_run)
1690			ops_run_check_p(sh, percpu);
1691		else if (sh->check_state == check_state_run_q)
1692			ops_run_check_pq(sh, percpu, 0);
1693		else if (sh->check_state == check_state_run_pq)
1694			ops_run_check_pq(sh, percpu, 1);
1695		else
1696			BUG();
1697	}
1698
1699	if (overlap_clear)
1700		for (i = disks; i--; ) {
1701			struct r5dev *dev = &sh->dev[i];
1702			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1703				wake_up(&sh->raid_conf->wait_for_overlap);
1704		}
1705	put_cpu();
1706}
1707
1708static int grow_one_stripe(struct r5conf *conf, int hash)
1709{
1710	struct stripe_head *sh;
1711	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1712	if (!sh)
1713		return 0;
1714
1715	sh->raid_conf = conf;
1716
1717	spin_lock_init(&sh->stripe_lock);
1718
1719	if (grow_buffers(sh)) {
1720		shrink_buffers(sh);
1721		kmem_cache_free(conf->slab_cache, sh);
1722		return 0;
1723	}
1724	sh->hash_lock_index = hash;
1725	/* we just created an active stripe so... */
1726	atomic_set(&sh->count, 1);
1727	atomic_inc(&conf->active_stripes);
1728	INIT_LIST_HEAD(&sh->lru);
1729	release_stripe(sh);
1730	return 1;
1731}
1732
1733static int grow_stripes(struct r5conf *conf, int num)
1734{
1735	struct kmem_cache *sc;
1736	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1737	int hash;
1738
1739	if (conf->mddev->gendisk)
1740		sprintf(conf->cache_name[0],
1741			"raid%d-%s", conf->level, mdname(conf->mddev));
1742	else
1743		sprintf(conf->cache_name[0],
1744			"raid%d-%p", conf->level, conf->mddev);
1745	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1746
1747	conf->active_name = 0;
1748	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1749			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1750			       0, 0, NULL);
1751	if (!sc)
1752		return 1;
1753	conf->slab_cache = sc;
1754	conf->pool_size = devs;
1755	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1756	while (num--) {
1757		if (!grow_one_stripe(conf, hash))
1758			return 1;
1759		conf->max_nr_stripes++;
1760		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1761	}
1762	return 0;
1763}
1764
1765/**
1766 * scribble_len - return the required size of the scribble region
1767 * @num - total number of disks in the array
1768 *
1769 * The size must be enough to contain:
1770 * 1/ a struct page pointer for each device in the array +2
1771 * 2/ room to convert each entry in (1) to its corresponding dma
1772 *    (dma_map_page()) or page (page_address()) address.
1773 *
1774 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1775 * calculate over all devices (not just the data blocks), using zeros in place
1776 * of the P and Q blocks.
1777 */
1778static size_t scribble_len(int num)
1779{
1780	size_t len;
1781
1782	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1783
1784	return len;
1785}
1786
1787static int resize_stripes(struct r5conf *conf, int newsize)
1788{
1789	/* Make all the stripes able to hold 'newsize' devices.
1790	 * New slots in each stripe get 'page' set to a new page.
1791	 *
1792	 * This happens in stages:
1793	 * 1/ create a new kmem_cache and allocate the required number of
1794	 *    stripe_heads.
1795	 * 2/ gather all the old stripe_heads and transfer the pages across
1796	 *    to the new stripe_heads.  This will have the side effect of
1797	 *    freezing the array as once all stripe_heads have been collected,
1798	 *    no IO will be possible.  Old stripe heads are freed once their
1799	 *    pages have been transferred over, and the old kmem_cache is
1800	 *    freed when all stripes are done.
1801	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1802	 *    we simple return a failre status - no need to clean anything up.
1803	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1804	 *    If this fails, we don't bother trying the shrink the
1805	 *    stripe_heads down again, we just leave them as they are.
1806	 *    As each stripe_head is processed the new one is released into
1807	 *    active service.
1808	 *
1809	 * Once step2 is started, we cannot afford to wait for a write,
1810	 * so we use GFP_NOIO allocations.
1811	 */
1812	struct stripe_head *osh, *nsh;
1813	LIST_HEAD(newstripes);
1814	struct disk_info *ndisks;
1815	unsigned long cpu;
1816	int err;
1817	struct kmem_cache *sc;
1818	int i;
1819	int hash, cnt;
1820
1821	if (newsize <= conf->pool_size)
1822		return 0; /* never bother to shrink */
1823
1824	err = md_allow_write(conf->mddev);
1825	if (err)
1826		return err;
1827
1828	/* Step 1 */
1829	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1830			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1831			       0, 0, NULL);
1832	if (!sc)
1833		return -ENOMEM;
1834
1835	for (i = conf->max_nr_stripes; i; i--) {
1836		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1837		if (!nsh)
1838			break;
1839
1840		nsh->raid_conf = conf;
1841		spin_lock_init(&nsh->stripe_lock);
1842
1843		list_add(&nsh->lru, &newstripes);
1844	}
1845	if (i) {
1846		/* didn't get enough, give up */
1847		while (!list_empty(&newstripes)) {
1848			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1849			list_del(&nsh->lru);
1850			kmem_cache_free(sc, nsh);
1851		}
1852		kmem_cache_destroy(sc);
1853		return -ENOMEM;
1854	}
1855	/* Step 2 - Must use GFP_NOIO now.
1856	 * OK, we have enough stripes, start collecting inactive
1857	 * stripes and copying them over
1858	 */
1859	hash = 0;
1860	cnt = 0;
1861	list_for_each_entry(nsh, &newstripes, lru) {
1862		lock_device_hash_lock(conf, hash);
1863		wait_event_cmd(conf->wait_for_stripe,
1864				    !list_empty(conf->inactive_list + hash),
1865				    unlock_device_hash_lock(conf, hash),
1866				    lock_device_hash_lock(conf, hash));
1867		osh = get_free_stripe(conf, hash);
1868		unlock_device_hash_lock(conf, hash);
1869		atomic_set(&nsh->count, 1);
1870		for(i=0; i<conf->pool_size; i++) {
1871			nsh->dev[i].page = osh->dev[i].page;
1872			nsh->dev[i].orig_page = osh->dev[i].page;
1873		}
1874		for( ; i<newsize; i++)
1875			nsh->dev[i].page = NULL;
1876		nsh->hash_lock_index = hash;
1877		kmem_cache_free(conf->slab_cache, osh);
1878		cnt++;
1879		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1880		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1881			hash++;
1882			cnt = 0;
1883		}
1884	}
1885	kmem_cache_destroy(conf->slab_cache);
1886
1887	/* Step 3.
1888	 * At this point, we are holding all the stripes so the array
1889	 * is completely stalled, so now is a good time to resize
1890	 * conf->disks and the scribble region
1891	 */
1892	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1893	if (ndisks) {
1894		for (i=0; i<conf->raid_disks; i++)
1895			ndisks[i] = conf->disks[i];
1896		kfree(conf->disks);
1897		conf->disks = ndisks;
1898	} else
1899		err = -ENOMEM;
1900
1901	get_online_cpus();
1902	conf->scribble_len = scribble_len(newsize);
1903	for_each_present_cpu(cpu) {
1904		struct raid5_percpu *percpu;
1905		void *scribble;
1906
1907		percpu = per_cpu_ptr(conf->percpu, cpu);
1908		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1909
1910		if (scribble) {
1911			kfree(percpu->scribble);
1912			percpu->scribble = scribble;
1913		} else {
1914			err = -ENOMEM;
1915			break;
1916		}
1917	}
1918	put_online_cpus();
1919
1920	/* Step 4, return new stripes to service */
1921	while(!list_empty(&newstripes)) {
1922		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1923		list_del_init(&nsh->lru);
1924
1925		for (i=conf->raid_disks; i < newsize; i++)
1926			if (nsh->dev[i].page == NULL) {
1927				struct page *p = alloc_page(GFP_NOIO);
1928				nsh->dev[i].page = p;
1929				nsh->dev[i].orig_page = p;
1930				if (!p)
1931					err = -ENOMEM;
1932			}
1933		release_stripe(nsh);
1934	}
1935	/* critical section pass, GFP_NOIO no longer needed */
1936
1937	conf->slab_cache = sc;
1938	conf->active_name = 1-conf->active_name;
1939	conf->pool_size = newsize;
1940	return err;
1941}
1942
1943static int drop_one_stripe(struct r5conf *conf, int hash)
1944{
1945	struct stripe_head *sh;
1946
1947	spin_lock_irq(conf->hash_locks + hash);
1948	sh = get_free_stripe(conf, hash);
1949	spin_unlock_irq(conf->hash_locks + hash);
1950	if (!sh)
1951		return 0;
1952	BUG_ON(atomic_read(&sh->count));
1953	shrink_buffers(sh);
1954	kmem_cache_free(conf->slab_cache, sh);
1955	atomic_dec(&conf->active_stripes);
1956	return 1;
1957}
1958
1959static void shrink_stripes(struct r5conf *conf)
1960{
1961	int hash;
1962	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1963		while (drop_one_stripe(conf, hash))
1964			;
1965
1966	if (conf->slab_cache)
1967		kmem_cache_destroy(conf->slab_cache);
1968	conf->slab_cache = NULL;
1969}
1970
1971static void raid5_end_read_request(struct bio * bi, int error)
1972{
1973	struct stripe_head *sh = bi->bi_private;
1974	struct r5conf *conf = sh->raid_conf;
1975	int disks = sh->disks, i;
1976	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1977	char b[BDEVNAME_SIZE];
1978	struct md_rdev *rdev = NULL;
1979	sector_t s;
1980
1981	for (i=0 ; i<disks; i++)
1982		if (bi == &sh->dev[i].req)
1983			break;
1984
1985	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1986		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1987		uptodate);
1988	if (i == disks) {
1989		BUG();
1990		return;
1991	}
1992	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1993		/* If replacement finished while this request was outstanding,
1994		 * 'replacement' might be NULL already.
1995		 * In that case it moved down to 'rdev'.
1996		 * rdev is not removed until all requests are finished.
1997		 */
1998		rdev = conf->disks[i].replacement;
1999	if (!rdev)
2000		rdev = conf->disks[i].rdev;
2001
2002	if (use_new_offset(conf, sh))
2003		s = sh->sector + rdev->new_data_offset;
2004	else
2005		s = sh->sector + rdev->data_offset;
2006	if (uptodate) {
2007		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2008		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2009			/* Note that this cannot happen on a
2010			 * replacement device.  We just fail those on
2011			 * any error
2012			 */
2013			printk_ratelimited(
2014				KERN_INFO
2015				"md/raid:%s: read error corrected"
2016				" (%lu sectors at %llu on %s)\n",
2017				mdname(conf->mddev), STRIPE_SECTORS,
2018				(unsigned long long)s,
2019				bdevname(rdev->bdev, b));
2020			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2021			clear_bit(R5_ReadError, &sh->dev[i].flags);
2022			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2023		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2024			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2025
2026		if (atomic_read(&rdev->read_errors))
2027			atomic_set(&rdev->read_errors, 0);
2028	} else {
2029		const char *bdn = bdevname(rdev->bdev, b);
2030		int retry = 0;
2031		int set_bad = 0;
2032
2033		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2034		atomic_inc(&rdev->read_errors);
2035		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2036			printk_ratelimited(
2037				KERN_WARNING
2038				"md/raid:%s: read error on replacement device "
2039				"(sector %llu on %s).\n",
2040				mdname(conf->mddev),
2041				(unsigned long long)s,
2042				bdn);
2043		else if (conf->mddev->degraded >= conf->max_degraded) {
2044			set_bad = 1;
2045			printk_ratelimited(
2046				KERN_WARNING
2047				"md/raid:%s: read error not correctable "
2048				"(sector %llu on %s).\n",
2049				mdname(conf->mddev),
2050				(unsigned long long)s,
2051				bdn);
2052		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2053			/* Oh, no!!! */
2054			set_bad = 1;
2055			printk_ratelimited(
2056				KERN_WARNING
2057				"md/raid:%s: read error NOT corrected!! "
2058				"(sector %llu on %s).\n",
2059				mdname(conf->mddev),
2060				(unsigned long long)s,
2061				bdn);
2062		} else if (atomic_read(&rdev->read_errors)
2063			 > conf->max_nr_stripes)
2064			printk(KERN_WARNING
2065			       "md/raid:%s: Too many read errors, failing device %s.\n",
2066			       mdname(conf->mddev), bdn);
2067		else
2068			retry = 1;
2069		if (set_bad && test_bit(In_sync, &rdev->flags)
2070		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2071			retry = 1;
2072		if (retry)
2073			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2074				set_bit(R5_ReadError, &sh->dev[i].flags);
2075				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2076			} else
2077				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2078		else {
2079			clear_bit(R5_ReadError, &sh->dev[i].flags);
2080			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2081			if (!(set_bad
2082			      && test_bit(In_sync, &rdev->flags)
2083			      && rdev_set_badblocks(
2084				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2085				md_error(conf->mddev, rdev);
2086		}
2087	}
2088	rdev_dec_pending(rdev, conf->mddev);
2089	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2090	set_bit(STRIPE_HANDLE, &sh->state);
2091	release_stripe(sh);
2092}
2093
2094static void raid5_end_write_request(struct bio *bi, int error)
2095{
2096	struct stripe_head *sh = bi->bi_private;
2097	struct r5conf *conf = sh->raid_conf;
2098	int disks = sh->disks, i;
2099	struct md_rdev *uninitialized_var(rdev);
2100	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2101	sector_t first_bad;
2102	int bad_sectors;
2103	int replacement = 0;
2104
2105	for (i = 0 ; i < disks; i++) {
2106		if (bi == &sh->dev[i].req) {
2107			rdev = conf->disks[i].rdev;
2108			break;
2109		}
2110		if (bi == &sh->dev[i].rreq) {
2111			rdev = conf->disks[i].replacement;
2112			if (rdev)
2113				replacement = 1;
2114			else
2115				/* rdev was removed and 'replacement'
2116				 * replaced it.  rdev is not removed
2117				 * until all requests are finished.
2118				 */
2119				rdev = conf->disks[i].rdev;
2120			break;
2121		}
2122	}
2123	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2124		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2125		uptodate);
2126	if (i == disks) {
2127		BUG();
2128		return;
2129	}
2130
2131	if (replacement) {
2132		if (!uptodate)
2133			md_error(conf->mddev, rdev);
2134		else if (is_badblock(rdev, sh->sector,
2135				     STRIPE_SECTORS,
2136				     &first_bad, &bad_sectors))
2137			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2138	} else {
2139		if (!uptodate) {
2140			set_bit(STRIPE_DEGRADED, &sh->state);
2141			set_bit(WriteErrorSeen, &rdev->flags);
2142			set_bit(R5_WriteError, &sh->dev[i].flags);
2143			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2144				set_bit(MD_RECOVERY_NEEDED,
2145					&rdev->mddev->recovery);
2146		} else if (is_badblock(rdev, sh->sector,
2147				       STRIPE_SECTORS,
2148				       &first_bad, &bad_sectors)) {
2149			set_bit(R5_MadeGood, &sh->dev[i].flags);
2150			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2151				/* That was a successful write so make
2152				 * sure it looks like we already did
2153				 * a re-write.
2154				 */
2155				set_bit(R5_ReWrite, &sh->dev[i].flags);
2156		}
2157	}
2158	rdev_dec_pending(rdev, conf->mddev);
2159
2160	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2161		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2162	set_bit(STRIPE_HANDLE, &sh->state);
2163	release_stripe(sh);
2164}
2165
2166static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2167
2168static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2169{
2170	struct r5dev *dev = &sh->dev[i];
2171
2172	bio_init(&dev->req);
2173	dev->req.bi_io_vec = &dev->vec;
2174	dev->req.bi_max_vecs = 1;
2175	dev->req.bi_private = sh;
2176
2177	bio_init(&dev->rreq);
2178	dev->rreq.bi_io_vec = &dev->rvec;
2179	dev->rreq.bi_max_vecs = 1;
2180	dev->rreq.bi_private = sh;
2181
2182	dev->flags = 0;
2183	dev->sector = compute_blocknr(sh, i, previous);
2184}
2185
2186static void error(struct mddev *mddev, struct md_rdev *rdev)
2187{
2188	char b[BDEVNAME_SIZE];
2189	struct r5conf *conf = mddev->private;
2190	unsigned long flags;
2191	pr_debug("raid456: error called\n");
2192
2193	spin_lock_irqsave(&conf->device_lock, flags);
2194	clear_bit(In_sync, &rdev->flags);
2195	mddev->degraded = calc_degraded(conf);
2196	spin_unlock_irqrestore(&conf->device_lock, flags);
2197	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2198
2199	set_bit(Blocked, &rdev->flags);
2200	set_bit(Faulty, &rdev->flags);
2201	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2202	printk(KERN_ALERT
2203	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2204	       "md/raid:%s: Operation continuing on %d devices.\n",
2205	       mdname(mddev),
2206	       bdevname(rdev->bdev, b),
2207	       mdname(mddev),
2208	       conf->raid_disks - mddev->degraded);
2209}
2210
2211/*
2212 * Input: a 'big' sector number,
2213 * Output: index of the data and parity disk, and the sector # in them.
2214 */
2215static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2216				     int previous, int *dd_idx,
2217				     struct stripe_head *sh)
2218{
2219	sector_t stripe, stripe2;
2220	sector_t chunk_number;
2221	unsigned int chunk_offset;
2222	int pd_idx, qd_idx;
2223	int ddf_layout = 0;
2224	sector_t new_sector;
2225	int algorithm = previous ? conf->prev_algo
2226				 : conf->algorithm;
2227	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2228					 : conf->chunk_sectors;
2229	int raid_disks = previous ? conf->previous_raid_disks
2230				  : conf->raid_disks;
2231	int data_disks = raid_disks - conf->max_degraded;
2232
2233	/* First compute the information on this sector */
2234
2235	/*
2236	 * Compute the chunk number and the sector offset inside the chunk
2237	 */
2238	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2239	chunk_number = r_sector;
2240
2241	/*
2242	 * Compute the stripe number
2243	 */
2244	stripe = chunk_number;
2245	*dd_idx = sector_div(stripe, data_disks);
2246	stripe2 = stripe;
2247	/*
2248	 * Select the parity disk based on the user selected algorithm.
2249	 */
2250	pd_idx = qd_idx = -1;
2251	switch(conf->level) {
2252	case 4:
2253		pd_idx = data_disks;
2254		break;
2255	case 5:
2256		switch (algorithm) {
2257		case ALGORITHM_LEFT_ASYMMETRIC:
2258			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2259			if (*dd_idx >= pd_idx)
2260				(*dd_idx)++;
2261			break;
2262		case ALGORITHM_RIGHT_ASYMMETRIC:
2263			pd_idx = sector_div(stripe2, raid_disks);
2264			if (*dd_idx >= pd_idx)
2265				(*dd_idx)++;
2266			break;
2267		case ALGORITHM_LEFT_SYMMETRIC:
2268			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2269			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2270			break;
2271		case ALGORITHM_RIGHT_SYMMETRIC:
2272			pd_idx = sector_div(stripe2, raid_disks);
2273			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2274			break;
2275		case ALGORITHM_PARITY_0:
2276			pd_idx = 0;
2277			(*dd_idx)++;
2278			break;
2279		case ALGORITHM_PARITY_N:
2280			pd_idx = data_disks;
2281			break;
2282		default:
2283			BUG();
2284		}
2285		break;
2286	case 6:
2287
2288		switch (algorithm) {
2289		case ALGORITHM_LEFT_ASYMMETRIC:
2290			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2291			qd_idx = pd_idx + 1;
2292			if (pd_idx == raid_disks-1) {
2293				(*dd_idx)++;	/* Q D D D P */
2294				qd_idx = 0;
2295			} else if (*dd_idx >= pd_idx)
2296				(*dd_idx) += 2; /* D D P Q D */
2297			break;
2298		case ALGORITHM_RIGHT_ASYMMETRIC:
2299			pd_idx = sector_div(stripe2, raid_disks);
2300			qd_idx = pd_idx + 1;
2301			if (pd_idx == raid_disks-1) {
2302				(*dd_idx)++;	/* Q D D D P */
2303				qd_idx = 0;
2304			} else if (*dd_idx >= pd_idx)
2305				(*dd_idx) += 2; /* D D P Q D */
2306			break;
2307		case ALGORITHM_LEFT_SYMMETRIC:
2308			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309			qd_idx = (pd_idx + 1) % raid_disks;
2310			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2311			break;
2312		case ALGORITHM_RIGHT_SYMMETRIC:
2313			pd_idx = sector_div(stripe2, raid_disks);
2314			qd_idx = (pd_idx + 1) % raid_disks;
2315			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2316			break;
2317
2318		case ALGORITHM_PARITY_0:
2319			pd_idx = 0;
2320			qd_idx = 1;
2321			(*dd_idx) += 2;
2322			break;
2323		case ALGORITHM_PARITY_N:
2324			pd_idx = data_disks;
2325			qd_idx = data_disks + 1;
2326			break;
2327
2328		case ALGORITHM_ROTATING_ZERO_RESTART:
2329			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2330			 * of blocks for computing Q is different.
2331			 */
2332			pd_idx = sector_div(stripe2, raid_disks);
2333			qd_idx = pd_idx + 1;
2334			if (pd_idx == raid_disks-1) {
2335				(*dd_idx)++;	/* Q D D D P */
2336				qd_idx = 0;
2337			} else if (*dd_idx >= pd_idx)
2338				(*dd_idx) += 2; /* D D P Q D */
2339			ddf_layout = 1;
2340			break;
2341
2342		case ALGORITHM_ROTATING_N_RESTART:
2343			/* Same a left_asymmetric, by first stripe is
2344			 * D D D P Q  rather than
2345			 * Q D D D P
2346			 */
2347			stripe2 += 1;
2348			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2349			qd_idx = pd_idx + 1;
2350			if (pd_idx == raid_disks-1) {
2351				(*dd_idx)++;	/* Q D D D P */
2352				qd_idx = 0;
2353			} else if (*dd_idx >= pd_idx)
2354				(*dd_idx) += 2; /* D D P Q D */
2355			ddf_layout = 1;
2356			break;
2357
2358		case ALGORITHM_ROTATING_N_CONTINUE:
2359			/* Same as left_symmetric but Q is before P */
2360			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2361			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2362			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2363			ddf_layout = 1;
2364			break;
2365
2366		case ALGORITHM_LEFT_ASYMMETRIC_6:
2367			/* RAID5 left_asymmetric, with Q on last device */
2368			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2369			if (*dd_idx >= pd_idx)
2370				(*dd_idx)++;
2371			qd_idx = raid_disks - 1;
2372			break;
2373
2374		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2375			pd_idx = sector_div(stripe2, raid_disks-1);
2376			if (*dd_idx >= pd_idx)
2377				(*dd_idx)++;
2378			qd_idx = raid_disks - 1;
2379			break;
2380
2381		case ALGORITHM_LEFT_SYMMETRIC_6:
2382			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2383			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2384			qd_idx = raid_disks - 1;
2385			break;
2386
2387		case ALGORITHM_RIGHT_SYMMETRIC_6:
2388			pd_idx = sector_div(stripe2, raid_disks-1);
2389			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2390			qd_idx = raid_disks - 1;
2391			break;
2392
2393		case ALGORITHM_PARITY_0_6:
2394			pd_idx = 0;
2395			(*dd_idx)++;
2396			qd_idx = raid_disks - 1;
2397			break;
2398
2399		default:
2400			BUG();
2401		}
2402		break;
2403	}
2404
2405	if (sh) {
2406		sh->pd_idx = pd_idx;
2407		sh->qd_idx = qd_idx;
2408		sh->ddf_layout = ddf_layout;
2409	}
2410	/*
2411	 * Finally, compute the new sector number
2412	 */
2413	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2414	return new_sector;
2415}
2416
2417static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2418{
2419	struct r5conf *conf = sh->raid_conf;
2420	int raid_disks = sh->disks;
2421	int data_disks = raid_disks - conf->max_degraded;
2422	sector_t new_sector = sh->sector, check;
2423	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2424					 : conf->chunk_sectors;
2425	int algorithm = previous ? conf->prev_algo
2426				 : conf->algorithm;
2427	sector_t stripe;
2428	int chunk_offset;
2429	sector_t chunk_number;
2430	int dummy1, dd_idx = i;
2431	sector_t r_sector;
2432	struct stripe_head sh2;
2433
2434	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2435	stripe = new_sector;
2436
2437	if (i == sh->pd_idx)
2438		return 0;
2439	switch(conf->level) {
2440	case 4: break;
2441	case 5:
2442		switch (algorithm) {
2443		case ALGORITHM_LEFT_ASYMMETRIC:
2444		case ALGORITHM_RIGHT_ASYMMETRIC:
2445			if (i > sh->pd_idx)
2446				i--;
2447			break;
2448		case ALGORITHM_LEFT_SYMMETRIC:
2449		case ALGORITHM_RIGHT_SYMMETRIC:
2450			if (i < sh->pd_idx)
2451				i += raid_disks;
2452			i -= (sh->pd_idx + 1);
2453			break;
2454		case ALGORITHM_PARITY_0:
2455			i -= 1;
2456			break;
2457		case ALGORITHM_PARITY_N:
2458			break;
2459		default:
2460			BUG();
2461		}
2462		break;
2463	case 6:
2464		if (i == sh->qd_idx)
2465			return 0; /* It is the Q disk */
2466		switch (algorithm) {
2467		case ALGORITHM_LEFT_ASYMMETRIC:
2468		case ALGORITHM_RIGHT_ASYMMETRIC:
2469		case ALGORITHM_ROTATING_ZERO_RESTART:
2470		case ALGORITHM_ROTATING_N_RESTART:
2471			if (sh->pd_idx == raid_disks-1)
2472				i--;	/* Q D D D P */
2473			else if (i > sh->pd_idx)
2474				i -= 2; /* D D P Q D */
2475			break;
2476		case ALGORITHM_LEFT_SYMMETRIC:
2477		case ALGORITHM_RIGHT_SYMMETRIC:
2478			if (sh->pd_idx == raid_disks-1)
2479				i--; /* Q D D D P */
2480			else {
2481				/* D D P Q D */
2482				if (i < sh->pd_idx)
2483					i += raid_disks;
2484				i -= (sh->pd_idx + 2);
2485			}
2486			break;
2487		case ALGORITHM_PARITY_0:
2488			i -= 2;
2489			break;
2490		case ALGORITHM_PARITY_N:
2491			break;
2492		case ALGORITHM_ROTATING_N_CONTINUE:
2493			/* Like left_symmetric, but P is before Q */
2494			if (sh->pd_idx == 0)
2495				i--;	/* P D D D Q */
2496			else {
2497				/* D D Q P D */
2498				if (i < sh->pd_idx)
2499					i += raid_disks;
2500				i -= (sh->pd_idx + 1);
2501			}
2502			break;
2503		case ALGORITHM_LEFT_ASYMMETRIC_6:
2504		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2505			if (i > sh->pd_idx)
2506				i--;
2507			break;
2508		case ALGORITHM_LEFT_SYMMETRIC_6:
2509		case ALGORITHM_RIGHT_SYMMETRIC_6:
2510			if (i < sh->pd_idx)
2511				i += data_disks + 1;
2512			i -= (sh->pd_idx + 1);
2513			break;
2514		case ALGORITHM_PARITY_0_6:
2515			i -= 1;
2516			break;
2517		default:
2518			BUG();
2519		}
2520		break;
2521	}
2522
2523	chunk_number = stripe * data_disks + i;
2524	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2525
2526	check = raid5_compute_sector(conf, r_sector,
2527				     previous, &dummy1, &sh2);
2528	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2529		|| sh2.qd_idx != sh->qd_idx) {
2530		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2531		       mdname(conf->mddev));
2532		return 0;
2533	}
2534	return r_sector;
2535}
2536
2537static void
2538schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2539			 int rcw, int expand)
2540{
2541	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2542	struct r5conf *conf = sh->raid_conf;
2543	int level = conf->level;
2544
2545	if (rcw) {
2546
2547		for (i = disks; i--; ) {
2548			struct r5dev *dev = &sh->dev[i];
2549
2550			if (dev->towrite) {
2551				set_bit(R5_LOCKED, &dev->flags);
2552				set_bit(R5_Wantdrain, &dev->flags);
2553				if (!expand)
2554					clear_bit(R5_UPTODATE, &dev->flags);
2555				s->locked++;
2556			}
2557		}
2558		/* if we are not expanding this is a proper write request, and
2559		 * there will be bios with new data to be drained into the
2560		 * stripe cache
2561		 */
2562		if (!expand) {
2563			if (!s->locked)
2564				/* False alarm, nothing to do */
2565				return;
2566			sh->reconstruct_state = reconstruct_state_drain_run;
2567			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2568		} else
2569			sh->reconstruct_state = reconstruct_state_run;
2570
2571		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2572
2573		if (s->locked + conf->max_degraded == disks)
2574			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2575				atomic_inc(&conf->pending_full_writes);
2576	} else {
2577		BUG_ON(level == 6);
2578		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2579			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2580
2581		for (i = disks; i--; ) {
2582			struct r5dev *dev = &sh->dev[i];
2583			if (i == pd_idx)
2584				continue;
2585
2586			if (dev->towrite &&
2587			    (test_bit(R5_UPTODATE, &dev->flags) ||
2588			     test_bit(R5_Wantcompute, &dev->flags))) {
2589				set_bit(R5_Wantdrain, &dev->flags);
2590				set_bit(R5_LOCKED, &dev->flags);
2591				clear_bit(R5_UPTODATE, &dev->flags);
2592				s->locked++;
2593			}
2594		}
2595		if (!s->locked)
2596			/* False alarm - nothing to do */
2597			return;
2598		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2599		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2600		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2601		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2602	}
2603
2604	/* keep the parity disk(s) locked while asynchronous operations
2605	 * are in flight
2606	 */
2607	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2608	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2609	s->locked++;
2610
2611	if (level == 6) {
2612		int qd_idx = sh->qd_idx;
2613		struct r5dev *dev = &sh->dev[qd_idx];
2614
2615		set_bit(R5_LOCKED, &dev->flags);
2616		clear_bit(R5_UPTODATE, &dev->flags);
2617		s->locked++;
2618	}
2619
2620	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2621		__func__, (unsigned long long)sh->sector,
2622		s->locked, s->ops_request);
2623}
2624
2625/*
2626 * Each stripe/dev can have one or more bion attached.
2627 * toread/towrite point to the first in a chain.
2628 * The bi_next chain must be in order.
2629 */
2630static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2631{
2632	struct bio **bip;
2633	struct r5conf *conf = sh->raid_conf;
2634	int firstwrite=0;
2635
2636	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2637		(unsigned long long)bi->bi_iter.bi_sector,
2638		(unsigned long long)sh->sector);
2639
2640	/*
2641	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2642	 * reference count to avoid race. The reference count should already be
2643	 * increased before this function is called (for example, in
2644	 * make_request()), so other bio sharing this stripe will not free the
2645	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2646	 * protect it.
2647	 */
2648	spin_lock_irq(&sh->stripe_lock);
2649	if (forwrite) {
2650		bip = &sh->dev[dd_idx].towrite;
2651		if (*bip == NULL)
2652			firstwrite = 1;
2653	} else
2654		bip = &sh->dev[dd_idx].toread;
2655	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2656		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2657			goto overlap;
2658		bip = & (*bip)->bi_next;
2659	}
2660	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2661		goto overlap;
2662
2663	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2664	if (*bip)
2665		bi->bi_next = *bip;
2666	*bip = bi;
2667	raid5_inc_bi_active_stripes(bi);
2668
2669	if (forwrite) {
2670		/* check if page is covered */
2671		sector_t sector = sh->dev[dd_idx].sector;
2672		for (bi=sh->dev[dd_idx].towrite;
2673		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2674			     bi && bi->bi_iter.bi_sector <= sector;
2675		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2676			if (bio_end_sector(bi) >= sector)
2677				sector = bio_end_sector(bi);
2678		}
2679		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2680			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2681	}
2682
2683	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2684		(unsigned long long)(*bip)->bi_iter.bi_sector,
2685		(unsigned long long)sh->sector, dd_idx);
2686	spin_unlock_irq(&sh->stripe_lock);
2687
2688	if (conf->mddev->bitmap && firstwrite) {
2689		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2690				  STRIPE_SECTORS, 0);
2691		sh->bm_seq = conf->seq_flush+1;
2692		set_bit(STRIPE_BIT_DELAY, &sh->state);
2693	}
2694	return 1;
2695
2696 overlap:
2697	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2698	spin_unlock_irq(&sh->stripe_lock);
2699	return 0;
2700}
2701
2702static void end_reshape(struct r5conf *conf);
2703
2704static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2705			    struct stripe_head *sh)
2706{
2707	int sectors_per_chunk =
2708		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2709	int dd_idx;
2710	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2711	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2712
2713	raid5_compute_sector(conf,
2714			     stripe * (disks - conf->max_degraded)
2715			     *sectors_per_chunk + chunk_offset,
2716			     previous,
2717			     &dd_idx, sh);
2718}
2719
2720static void
2721handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2722				struct stripe_head_state *s, int disks,
2723				struct bio **return_bi)
2724{
2725	int i;
2726	for (i = disks; i--; ) {
2727		struct bio *bi;
2728		int bitmap_end = 0;
2729
2730		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2731			struct md_rdev *rdev;
2732			rcu_read_lock();
2733			rdev = rcu_dereference(conf->disks[i].rdev);
2734			if (rdev && test_bit(In_sync, &rdev->flags))
2735				atomic_inc(&rdev->nr_pending);
2736			else
2737				rdev = NULL;
2738			rcu_read_unlock();
2739			if (rdev) {
2740				if (!rdev_set_badblocks(
2741					    rdev,
2742					    sh->sector,
2743					    STRIPE_SECTORS, 0))
2744					md_error(conf->mddev, rdev);
2745				rdev_dec_pending(rdev, conf->mddev);
2746			}
2747		}
2748		spin_lock_irq(&sh->stripe_lock);
2749		/* fail all writes first */
2750		bi = sh->dev[i].towrite;
2751		sh->dev[i].towrite = NULL;
2752		spin_unlock_irq(&sh->stripe_lock);
2753		if (bi)
2754			bitmap_end = 1;
2755
2756		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2757			wake_up(&conf->wait_for_overlap);
2758
2759		while (bi && bi->bi_iter.bi_sector <
2760			sh->dev[i].sector + STRIPE_SECTORS) {
2761			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2762			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763			if (!raid5_dec_bi_active_stripes(bi)) {
2764				md_write_end(conf->mddev);
2765				bi->bi_next = *return_bi;
2766				*return_bi = bi;
2767			}
2768			bi = nextbi;
2769		}
2770		if (bitmap_end)
2771			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2772				STRIPE_SECTORS, 0, 0);
2773		bitmap_end = 0;
2774		/* and fail all 'written' */
2775		bi = sh->dev[i].written;
2776		sh->dev[i].written = NULL;
2777		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2778			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2779			sh->dev[i].page = sh->dev[i].orig_page;
2780		}
2781
2782		if (bi) bitmap_end = 1;
2783		while (bi && bi->bi_iter.bi_sector <
2784		       sh->dev[i].sector + STRIPE_SECTORS) {
2785			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2786			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787			if (!raid5_dec_bi_active_stripes(bi)) {
2788				md_write_end(conf->mddev);
2789				bi->bi_next = *return_bi;
2790				*return_bi = bi;
2791			}
2792			bi = bi2;
2793		}
2794
2795		/* fail any reads if this device is non-operational and
2796		 * the data has not reached the cache yet.
2797		 */
2798		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2799		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2800		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2801			spin_lock_irq(&sh->stripe_lock);
2802			bi = sh->dev[i].toread;
2803			sh->dev[i].toread = NULL;
2804			spin_unlock_irq(&sh->stripe_lock);
2805			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2806				wake_up(&conf->wait_for_overlap);
2807			while (bi && bi->bi_iter.bi_sector <
2808			       sh->dev[i].sector + STRIPE_SECTORS) {
2809				struct bio *nextbi =
2810					r5_next_bio(bi, sh->dev[i].sector);
2811				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2812				if (!raid5_dec_bi_active_stripes(bi)) {
2813					bi->bi_next = *return_bi;
2814					*return_bi = bi;
2815				}
2816				bi = nextbi;
2817			}
2818		}
2819		if (bitmap_end)
2820			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2821					STRIPE_SECTORS, 0, 0);
2822		/* If we were in the middle of a write the parity block might
2823		 * still be locked - so just clear all R5_LOCKED flags
2824		 */
2825		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2826	}
2827
2828	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2829		if (atomic_dec_and_test(&conf->pending_full_writes))
2830			md_wakeup_thread(conf->mddev->thread);
2831}
2832
2833static void
2834handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2835		   struct stripe_head_state *s)
2836{
2837	int abort = 0;
2838	int i;
2839
2840	clear_bit(STRIPE_SYNCING, &sh->state);
2841	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2842		wake_up(&conf->wait_for_overlap);
2843	s->syncing = 0;
2844	s->replacing = 0;
2845	/* There is nothing more to do for sync/check/repair.
2846	 * Don't even need to abort as that is handled elsewhere
2847	 * if needed, and not always wanted e.g. if there is a known
2848	 * bad block here.
2849	 * For recover/replace we need to record a bad block on all
2850	 * non-sync devices, or abort the recovery
2851	 */
2852	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2853		/* During recovery devices cannot be removed, so
2854		 * locking and refcounting of rdevs is not needed
2855		 */
2856		for (i = 0; i < conf->raid_disks; i++) {
2857			struct md_rdev *rdev = conf->disks[i].rdev;
2858			if (rdev
2859			    && !test_bit(Faulty, &rdev->flags)
2860			    && !test_bit(In_sync, &rdev->flags)
2861			    && !rdev_set_badblocks(rdev, sh->sector,
2862						   STRIPE_SECTORS, 0))
2863				abort = 1;
2864			rdev = conf->disks[i].replacement;
2865			if (rdev
2866			    && !test_bit(Faulty, &rdev->flags)
2867			    && !test_bit(In_sync, &rdev->flags)
2868			    && !rdev_set_badblocks(rdev, sh->sector,
2869						   STRIPE_SECTORS, 0))
2870				abort = 1;
2871		}
2872		if (abort)
2873			conf->recovery_disabled =
2874				conf->mddev->recovery_disabled;
2875	}
2876	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2877}
2878
2879static int want_replace(struct stripe_head *sh, int disk_idx)
2880{
2881	struct md_rdev *rdev;
2882	int rv = 0;
2883	/* Doing recovery so rcu locking not required */
2884	rdev = sh->raid_conf->disks[disk_idx].replacement;
2885	if (rdev
2886	    && !test_bit(Faulty, &rdev->flags)
2887	    && !test_bit(In_sync, &rdev->flags)
2888	    && (rdev->recovery_offset <= sh->sector
2889		|| rdev->mddev->recovery_cp <= sh->sector))
2890		rv = 1;
2891
2892	return rv;
2893}
2894
2895/* fetch_block - checks the given member device to see if its data needs
2896 * to be read or computed to satisfy a request.
2897 *
2898 * Returns 1 when no more member devices need to be checked, otherwise returns
2899 * 0 to tell the loop in handle_stripe_fill to continue
2900 */
2901static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2902		       int disk_idx, int disks)
2903{
2904	struct r5dev *dev = &sh->dev[disk_idx];
2905	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2906				  &sh->dev[s->failed_num[1]] };
2907
2908	/* is the data in this block needed, and can we get it? */
2909	if (!test_bit(R5_LOCKED, &dev->flags) &&
2910	    !test_bit(R5_UPTODATE, &dev->flags) &&
2911	    (dev->toread ||
2912	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2913	     s->syncing || s->expanding ||
2914	     (s->replacing && want_replace(sh, disk_idx)) ||
2915	     (s->failed >= 1 && fdev[0]->toread) ||
2916	     (s->failed >= 2 && fdev[1]->toread) ||
2917	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2918	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2919	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2920	     (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2921	      s->to_write - s->non_overwrite < sh->raid_conf->raid_disks - 2 &&
2922	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2923		/* we would like to get this block, possibly by computing it,
2924		 * otherwise read it if the backing disk is insync
2925		 */
2926		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2927		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2928		if ((s->uptodate == disks - 1) &&
2929		    (s->failed && (disk_idx == s->failed_num[0] ||
2930				   disk_idx == s->failed_num[1]))) {
2931			/* have disk failed, and we're requested to fetch it;
2932			 * do compute it
2933			 */
2934			pr_debug("Computing stripe %llu block %d\n",
2935			       (unsigned long long)sh->sector, disk_idx);
2936			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938			set_bit(R5_Wantcompute, &dev->flags);
2939			sh->ops.target = disk_idx;
2940			sh->ops.target2 = -1; /* no 2nd target */
2941			s->req_compute = 1;
2942			/* Careful: from this point on 'uptodate' is in the eye
2943			 * of raid_run_ops which services 'compute' operations
2944			 * before writes. R5_Wantcompute flags a block that will
2945			 * be R5_UPTODATE by the time it is needed for a
2946			 * subsequent operation.
2947			 */
2948			s->uptodate++;
2949			return 1;
2950		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2951			/* Computing 2-failure is *very* expensive; only
2952			 * do it if failed >= 2
2953			 */
2954			int other;
2955			for (other = disks; other--; ) {
2956				if (other == disk_idx)
2957					continue;
2958				if (!test_bit(R5_UPTODATE,
2959				      &sh->dev[other].flags))
2960					break;
2961			}
2962			BUG_ON(other < 0);
2963			pr_debug("Computing stripe %llu blocks %d,%d\n",
2964			       (unsigned long long)sh->sector,
2965			       disk_idx, other);
2966			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2967			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2968			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2969			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2970			sh->ops.target = disk_idx;
2971			sh->ops.target2 = other;
2972			s->uptodate += 2;
2973			s->req_compute = 1;
2974			return 1;
2975		} else if (test_bit(R5_Insync, &dev->flags)) {
2976			set_bit(R5_LOCKED, &dev->flags);
2977			set_bit(R5_Wantread, &dev->flags);
2978			s->locked++;
2979			pr_debug("Reading block %d (sync=%d)\n",
2980				disk_idx, s->syncing);
2981		}
2982	}
2983
2984	return 0;
2985}
2986
2987/**
2988 * handle_stripe_fill - read or compute data to satisfy pending requests.
2989 */
2990static void handle_stripe_fill(struct stripe_head *sh,
2991			       struct stripe_head_state *s,
2992			       int disks)
2993{
2994	int i;
2995
2996	/* look for blocks to read/compute, skip this if a compute
2997	 * is already in flight, or if the stripe contents are in the
2998	 * midst of changing due to a write
2999	 */
3000	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3001	    !sh->reconstruct_state)
3002		for (i = disks; i--; )
3003			if (fetch_block(sh, s, i, disks))
3004				break;
3005	set_bit(STRIPE_HANDLE, &sh->state);
3006}
3007
3008/* handle_stripe_clean_event
3009 * any written block on an uptodate or failed drive can be returned.
3010 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3011 * never LOCKED, so we don't need to test 'failed' directly.
3012 */
3013static void handle_stripe_clean_event(struct r5conf *conf,
3014	struct stripe_head *sh, int disks, struct bio **return_bi)
3015{
3016	int i;
3017	struct r5dev *dev;
3018	int discard_pending = 0;
3019
3020	for (i = disks; i--; )
3021		if (sh->dev[i].written) {
3022			dev = &sh->dev[i];
3023			if (!test_bit(R5_LOCKED, &dev->flags) &&
3024			    (test_bit(R5_UPTODATE, &dev->flags) ||
3025			     test_bit(R5_Discard, &dev->flags) ||
3026			     test_bit(R5_SkipCopy, &dev->flags))) {
3027				/* We can return any write requests */
3028				struct bio *wbi, *wbi2;
3029				pr_debug("Return write for disc %d\n", i);
3030				if (test_and_clear_bit(R5_Discard, &dev->flags))
3031					clear_bit(R5_UPTODATE, &dev->flags);
3032				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3033					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3034					dev->page = dev->orig_page;
3035				}
3036				wbi = dev->written;
3037				dev->written = NULL;
3038				while (wbi && wbi->bi_iter.bi_sector <
3039					dev->sector + STRIPE_SECTORS) {
3040					wbi2 = r5_next_bio(wbi, dev->sector);
3041					if (!raid5_dec_bi_active_stripes(wbi)) {
3042						md_write_end(conf->mddev);
3043						wbi->bi_next = *return_bi;
3044						*return_bi = wbi;
3045					}
3046					wbi = wbi2;
3047				}
3048				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3049						STRIPE_SECTORS,
3050					 !test_bit(STRIPE_DEGRADED, &sh->state),
3051						0);
3052			} else if (test_bit(R5_Discard, &dev->flags))
3053				discard_pending = 1;
3054			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3055			WARN_ON(dev->page != dev->orig_page);
3056		}
3057	if (!discard_pending &&
3058	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3059		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3060		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3061		if (sh->qd_idx >= 0) {
3062			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3063			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3064		}
3065		/* now that discard is done we can proceed with any sync */
3066		clear_bit(STRIPE_DISCARD, &sh->state);
3067		/*
3068		 * SCSI discard will change some bio fields and the stripe has
3069		 * no updated data, so remove it from hash list and the stripe
3070		 * will be reinitialized
3071		 */
3072		spin_lock_irq(&conf->device_lock);
3073		remove_hash(sh);
3074		spin_unlock_irq(&conf->device_lock);
3075		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3076			set_bit(STRIPE_HANDLE, &sh->state);
3077
3078	}
3079
3080	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3081		if (atomic_dec_and_test(&conf->pending_full_writes))
3082			md_wakeup_thread(conf->mddev->thread);
3083}
3084
3085static void handle_stripe_dirtying(struct r5conf *conf,
3086				   struct stripe_head *sh,
3087				   struct stripe_head_state *s,
3088				   int disks)
3089{
3090	int rmw = 0, rcw = 0, i;
3091	sector_t recovery_cp = conf->mddev->recovery_cp;
3092
3093	/* RAID6 requires 'rcw' in current implementation.
3094	 * Otherwise, check whether resync is now happening or should start.
3095	 * If yes, then the array is dirty (after unclean shutdown or
3096	 * initial creation), so parity in some stripes might be inconsistent.
3097	 * In this case, we need to always do reconstruct-write, to ensure
3098	 * that in case of drive failure or read-error correction, we
3099	 * generate correct data from the parity.
3100	 */
3101	if (conf->max_degraded == 2 ||
3102	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3103		/* Calculate the real rcw later - for now make it
3104		 * look like rcw is cheaper
3105		 */
3106		rcw = 1; rmw = 2;
3107		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3108			 conf->max_degraded, (unsigned long long)recovery_cp,
3109			 (unsigned long long)sh->sector);
3110	} else for (i = disks; i--; ) {
3111		/* would I have to read this buffer for read_modify_write */
3112		struct r5dev *dev = &sh->dev[i];
3113		if ((dev->towrite || i == sh->pd_idx) &&
3114		    !test_bit(R5_LOCKED, &dev->flags) &&
3115		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3116		      test_bit(R5_Wantcompute, &dev->flags))) {
3117			if (test_bit(R5_Insync, &dev->flags))
3118				rmw++;
3119			else
3120				rmw += 2*disks;  /* cannot read it */
3121		}
3122		/* Would I have to read this buffer for reconstruct_write */
3123		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3124		    !test_bit(R5_LOCKED, &dev->flags) &&
3125		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3126		    test_bit(R5_Wantcompute, &dev->flags))) {
3127			if (test_bit(R5_Insync, &dev->flags))
3128				rcw++;
3129			else
3130				rcw += 2*disks;
3131		}
3132	}
3133	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3134		(unsigned long long)sh->sector, rmw, rcw);
3135	set_bit(STRIPE_HANDLE, &sh->state);
3136	if (rmw < rcw && rmw > 0) {
3137		/* prefer read-modify-write, but need to get some data */
3138		if (conf->mddev->queue)
3139			blk_add_trace_msg(conf->mddev->queue,
3140					  "raid5 rmw %llu %d",
3141					  (unsigned long long)sh->sector, rmw);
3142		for (i = disks; i--; ) {
3143			struct r5dev *dev = &sh->dev[i];
3144			if ((dev->towrite || i == sh->pd_idx) &&
3145			    !test_bit(R5_LOCKED, &dev->flags) &&
3146			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3147			    test_bit(R5_Wantcompute, &dev->flags)) &&
3148			    test_bit(R5_Insync, &dev->flags)) {
3149				if (test_bit(STRIPE_PREREAD_ACTIVE,
3150					     &sh->state)) {
3151					pr_debug("Read_old block %d for r-m-w\n",
3152						 i);
3153					set_bit(R5_LOCKED, &dev->flags);
3154					set_bit(R5_Wantread, &dev->flags);
3155					s->locked++;
3156				} else {
3157					set_bit(STRIPE_DELAYED, &sh->state);
3158					set_bit(STRIPE_HANDLE, &sh->state);
3159				}
3160			}
3161		}
3162	}
3163	if (rcw <= rmw && rcw > 0) {
3164		/* want reconstruct write, but need to get some data */
3165		int qread =0;
3166		rcw = 0;
3167		for (i = disks; i--; ) {
3168			struct r5dev *dev = &sh->dev[i];
3169			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3170			    i != sh->pd_idx && i != sh->qd_idx &&
3171			    !test_bit(R5_LOCKED, &dev->flags) &&
3172			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3173			      test_bit(R5_Wantcompute, &dev->flags))) {
3174				rcw++;
3175				if (test_bit(R5_Insync, &dev->flags) &&
3176				    test_bit(STRIPE_PREREAD_ACTIVE,
3177					     &sh->state)) {
3178					pr_debug("Read_old block "
3179						"%d for Reconstruct\n", i);
3180					set_bit(R5_LOCKED, &dev->flags);
3181					set_bit(R5_Wantread, &dev->flags);
3182					s->locked++;
3183					qread++;
3184				} else {
3185					set_bit(STRIPE_DELAYED, &sh->state);
3186					set_bit(STRIPE_HANDLE, &sh->state);
3187				}
3188			}
3189		}
3190		if (rcw && conf->mddev->queue)
3191			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3192					  (unsigned long long)sh->sector,
3193					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3194	}
3195	/* now if nothing is locked, and if we have enough data,
3196	 * we can start a write request
3197	 */
3198	/* since handle_stripe can be called at any time we need to handle the
3199	 * case where a compute block operation has been submitted and then a
3200	 * subsequent call wants to start a write request.  raid_run_ops only
3201	 * handles the case where compute block and reconstruct are requested
3202	 * simultaneously.  If this is not the case then new writes need to be
3203	 * held off until the compute completes.
3204	 */
3205	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3206	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3207	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3208		schedule_reconstruction(sh, s, rcw == 0, 0);
3209}
3210
3211static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3212				struct stripe_head_state *s, int disks)
3213{
3214	struct r5dev *dev = NULL;
3215
3216	set_bit(STRIPE_HANDLE, &sh->state);
3217
3218	switch (sh->check_state) {
3219	case check_state_idle:
3220		/* start a new check operation if there are no failures */
3221		if (s->failed == 0) {
3222			BUG_ON(s->uptodate != disks);
3223			sh->check_state = check_state_run;
3224			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3225			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3226			s->uptodate--;
3227			break;
3228		}
3229		dev = &sh->dev[s->failed_num[0]];
3230		/* fall through */
3231	case check_state_compute_result:
3232		sh->check_state = check_state_idle;
3233		if (!dev)
3234			dev = &sh->dev[sh->pd_idx];
3235
3236		/* check that a write has not made the stripe insync */
3237		if (test_bit(STRIPE_INSYNC, &sh->state))
3238			break;
3239
3240		/* either failed parity check, or recovery is happening */
3241		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3242		BUG_ON(s->uptodate != disks);
3243
3244		set_bit(R5_LOCKED, &dev->flags);
3245		s->locked++;
3246		set_bit(R5_Wantwrite, &dev->flags);
3247
3248		clear_bit(STRIPE_DEGRADED, &sh->state);
3249		set_bit(STRIPE_INSYNC, &sh->state);
3250		break;
3251	case check_state_run:
3252		break; /* we will be called again upon completion */
3253	case check_state_check_result:
3254		sh->check_state = check_state_idle;
3255
3256		/* if a failure occurred during the check operation, leave
3257		 * STRIPE_INSYNC not set and let the stripe be handled again
3258		 */
3259		if (s->failed)
3260			break;
3261
3262		/* handle a successful check operation, if parity is correct
3263		 * we are done.  Otherwise update the mismatch count and repair
3264		 * parity if !MD_RECOVERY_CHECK
3265		 */
3266		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3267			/* parity is correct (on disc,
3268			 * not in buffer any more)
3269			 */
3270			set_bit(STRIPE_INSYNC, &sh->state);
3271		else {
3272			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3273			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3274				/* don't try to repair!! */
3275				set_bit(STRIPE_INSYNC, &sh->state);
3276			else {
3277				sh->check_state = check_state_compute_run;
3278				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3279				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3280				set_bit(R5_Wantcompute,
3281					&sh->dev[sh->pd_idx].flags);
3282				sh->ops.target = sh->pd_idx;
3283				sh->ops.target2 = -1;
3284				s->uptodate++;
3285			}
3286		}
3287		break;
3288	case check_state_compute_run:
3289		break;
3290	default:
3291		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3292		       __func__, sh->check_state,
3293		       (unsigned long long) sh->sector);
3294		BUG();
3295	}
3296}
3297
3298static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3299				  struct stripe_head_state *s,
3300				  int disks)
3301{
3302	int pd_idx = sh->pd_idx;
3303	int qd_idx = sh->qd_idx;
3304	struct r5dev *dev;
3305
3306	set_bit(STRIPE_HANDLE, &sh->state);
3307
3308	BUG_ON(s->failed > 2);
3309
3310	/* Want to check and possibly repair P and Q.
3311	 * However there could be one 'failed' device, in which
3312	 * case we can only check one of them, possibly using the
3313	 * other to generate missing data
3314	 */
3315
3316	switch (sh->check_state) {
3317	case check_state_idle:
3318		/* start a new check operation if there are < 2 failures */
3319		if (s->failed == s->q_failed) {
3320			/* The only possible failed device holds Q, so it
3321			 * makes sense to check P (If anything else were failed,
3322			 * we would have used P to recreate it).
3323			 */
3324			sh->check_state = check_state_run;
3325		}
3326		if (!s->q_failed && s->failed < 2) {
3327			/* Q is not failed, and we didn't use it to generate
3328			 * anything, so it makes sense to check it
3329			 */
3330			if (sh->check_state == check_state_run)
3331				sh->check_state = check_state_run_pq;
3332			else
3333				sh->check_state = check_state_run_q;
3334		}
3335
3336		/* discard potentially stale zero_sum_result */
3337		sh->ops.zero_sum_result = 0;
3338
3339		if (sh->check_state == check_state_run) {
3340			/* async_xor_zero_sum destroys the contents of P */
3341			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3342			s->uptodate--;
3343		}
3344		if (sh->check_state >= check_state_run &&
3345		    sh->check_state <= check_state_run_pq) {
3346			/* async_syndrome_zero_sum preserves P and Q, so
3347			 * no need to mark them !uptodate here
3348			 */
3349			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3350			break;
3351		}
3352
3353		/* we have 2-disk failure */
3354		BUG_ON(s->failed != 2);
3355		/* fall through */
3356	case check_state_compute_result:
3357		sh->check_state = check_state_idle;
3358
3359		/* check that a write has not made the stripe insync */
3360		if (test_bit(STRIPE_INSYNC, &sh->state))
3361			break;
3362
3363		/* now write out any block on a failed drive,
3364		 * or P or Q if they were recomputed
3365		 */
3366		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3367		if (s->failed == 2) {
3368			dev = &sh->dev[s->failed_num[1]];
3369			s->locked++;
3370			set_bit(R5_LOCKED, &dev->flags);
3371			set_bit(R5_Wantwrite, &dev->flags);
3372		}
3373		if (s->failed >= 1) {
3374			dev = &sh->dev[s->failed_num[0]];
3375			s->locked++;
3376			set_bit(R5_LOCKED, &dev->flags);
3377			set_bit(R5_Wantwrite, &dev->flags);
3378		}
3379		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3380			dev = &sh->dev[pd_idx];
3381			s->locked++;
3382			set_bit(R5_LOCKED, &dev->flags);
3383			set_bit(R5_Wantwrite, &dev->flags);
3384		}
3385		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3386			dev = &sh->dev[qd_idx];
3387			s->locked++;
3388			set_bit(R5_LOCKED, &dev->flags);
3389			set_bit(R5_Wantwrite, &dev->flags);
3390		}
3391		clear_bit(STRIPE_DEGRADED, &sh->state);
3392
3393		set_bit(STRIPE_INSYNC, &sh->state);
3394		break;
3395	case check_state_run:
3396	case check_state_run_q:
3397	case check_state_run_pq:
3398		break; /* we will be called again upon completion */
3399	case check_state_check_result:
3400		sh->check_state = check_state_idle;
3401
3402		/* handle a successful check operation, if parity is correct
3403		 * we are done.  Otherwise update the mismatch count and repair
3404		 * parity if !MD_RECOVERY_CHECK
3405		 */
3406		if (sh->ops.zero_sum_result == 0) {
3407			/* both parities are correct */
3408			if (!s->failed)
3409				set_bit(STRIPE_INSYNC, &sh->state);
3410			else {
3411				/* in contrast to the raid5 case we can validate
3412				 * parity, but still have a failure to write
3413				 * back
3414				 */
3415				sh->check_state = check_state_compute_result;
3416				/* Returning at this point means that we may go
3417				 * off and bring p and/or q uptodate again so
3418				 * we make sure to check zero_sum_result again
3419				 * to verify if p or q need writeback
3420				 */
3421			}
3422		} else {
3423			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3424			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3425				/* don't try to repair!! */
3426				set_bit(STRIPE_INSYNC, &sh->state);
3427			else {
3428				int *target = &sh->ops.target;
3429
3430				sh->ops.target = -1;
3431				sh->ops.target2 = -1;
3432				sh->check_state = check_state_compute_run;
3433				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3434				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3435				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3436					set_bit(R5_Wantcompute,
3437						&sh->dev[pd_idx].flags);
3438					*target = pd_idx;
3439					target = &sh->ops.target2;
3440					s->uptodate++;
3441				}
3442				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3443					set_bit(R5_Wantcompute,
3444						&sh->dev[qd_idx].flags);
3445					*target = qd_idx;
3446					s->uptodate++;
3447				}
3448			}
3449		}
3450		break;
3451	case check_state_compute_run:
3452		break;
3453	default:
3454		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3455		       __func__, sh->check_state,
3456		       (unsigned long long) sh->sector);
3457		BUG();
3458	}
3459}
3460
3461static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3462{
3463	int i;
3464
3465	/* We have read all the blocks in this stripe and now we need to
3466	 * copy some of them into a target stripe for expand.
3467	 */
3468	struct dma_async_tx_descriptor *tx = NULL;
3469	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3470	for (i = 0; i < sh->disks; i++)
3471		if (i != sh->pd_idx && i != sh->qd_idx) {
3472			int dd_idx, j;
3473			struct stripe_head *sh2;
3474			struct async_submit_ctl submit;
3475
3476			sector_t bn = compute_blocknr(sh, i, 1);
3477			sector_t s = raid5_compute_sector(conf, bn, 0,
3478							  &dd_idx, NULL);
3479			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3480			if (sh2 == NULL)
3481				/* so far only the early blocks of this stripe
3482				 * have been requested.  When later blocks
3483				 * get requested, we will try again
3484				 */
3485				continue;
3486			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3487			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3488				/* must have already done this block */
3489				release_stripe(sh2);
3490				continue;
3491			}
3492
3493			/* place all the copies on one channel */
3494			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3495			tx = async_memcpy(sh2->dev[dd_idx].page,
3496					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3497					  &submit);
3498
3499			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3500			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3501			for (j = 0; j < conf->raid_disks; j++)
3502				if (j != sh2->pd_idx &&
3503				    j != sh2->qd_idx &&
3504				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3505					break;
3506			if (j == conf->raid_disks) {
3507				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3508				set_bit(STRIPE_HANDLE, &sh2->state);
3509			}
3510			release_stripe(sh2);
3511
3512		}
3513	/* done submitting copies, wait for them to complete */
3514	async_tx_quiesce(&tx);
3515}
3516
3517/*
3518 * handle_stripe - do things to a stripe.
3519 *
3520 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3521 * state of various bits to see what needs to be done.
3522 * Possible results:
3523 *    return some read requests which now have data
3524 *    return some write requests which are safely on storage
3525 *    schedule a read on some buffers
3526 *    schedule a write of some buffers
3527 *    return confirmation of parity correctness
3528 *
3529 */
3530
3531static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3532{
3533	struct r5conf *conf = sh->raid_conf;
3534	int disks = sh->disks;
3535	struct r5dev *dev;
3536	int i;
3537	int do_recovery = 0;
3538
3539	memset(s, 0, sizeof(*s));
3540
3541	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3542	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3543	s->failed_num[0] = -1;
3544	s->failed_num[1] = -1;
3545
3546	/* Now to look around and see what can be done */
3547	rcu_read_lock();
3548	for (i=disks; i--; ) {
3549		struct md_rdev *rdev;
3550		sector_t first_bad;
3551		int bad_sectors;
3552		int is_bad = 0;
3553
3554		dev = &sh->dev[i];
3555
3556		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3557			 i, dev->flags,
3558			 dev->toread, dev->towrite, dev->written);
3559		/* maybe we can reply to a read
3560		 *
3561		 * new wantfill requests are only permitted while
3562		 * ops_complete_biofill is guaranteed to be inactive
3563		 */
3564		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3565		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3566			set_bit(R5_Wantfill, &dev->flags);
3567
3568		/* now count some things */
3569		if (test_bit(R5_LOCKED, &dev->flags))
3570			s->locked++;
3571		if (test_bit(R5_UPTODATE, &dev->flags))
3572			s->uptodate++;
3573		if (test_bit(R5_Wantcompute, &dev->flags)) {
3574			s->compute++;
3575			BUG_ON(s->compute > 2);
3576		}
3577
3578		if (test_bit(R5_Wantfill, &dev->flags))
3579			s->to_fill++;
3580		else if (dev->toread)
3581			s->to_read++;
3582		if (dev->towrite) {
3583			s->to_write++;
3584			if (!test_bit(R5_OVERWRITE, &dev->flags))
3585				s->non_overwrite++;
3586		}
3587		if (dev->written)
3588			s->written++;
3589		/* Prefer to use the replacement for reads, but only
3590		 * if it is recovered enough and has no bad blocks.
3591		 */
3592		rdev = rcu_dereference(conf->disks[i].replacement);
3593		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3594		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3595		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3596				 &first_bad, &bad_sectors))
3597			set_bit(R5_ReadRepl, &dev->flags);
3598		else {
3599			if (rdev)
3600				set_bit(R5_NeedReplace, &dev->flags);
3601			rdev = rcu_dereference(conf->disks[i].rdev);
3602			clear_bit(R5_ReadRepl, &dev->flags);
3603		}
3604		if (rdev && test_bit(Faulty, &rdev->flags))
3605			rdev = NULL;
3606		if (rdev) {
3607			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3608					     &first_bad, &bad_sectors);
3609			if (s->blocked_rdev == NULL
3610			    && (test_bit(Blocked, &rdev->flags)
3611				|| is_bad < 0)) {
3612				if (is_bad < 0)
3613					set_bit(BlockedBadBlocks,
3614						&rdev->flags);
3615				s->blocked_rdev = rdev;
3616				atomic_inc(&rdev->nr_pending);
3617			}
3618		}
3619		clear_bit(R5_Insync, &dev->flags);
3620		if (!rdev)
3621			/* Not in-sync */;
3622		else if (is_bad) {
3623			/* also not in-sync */
3624			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3625			    test_bit(R5_UPTODATE, &dev->flags)) {
3626				/* treat as in-sync, but with a read error
3627				 * which we can now try to correct
3628				 */
3629				set_bit(R5_Insync, &dev->flags);
3630				set_bit(R5_ReadError, &dev->flags);
3631			}
3632		} else if (test_bit(In_sync, &rdev->flags))
3633			set_bit(R5_Insync, &dev->flags);
3634		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3635			/* in sync if before recovery_offset */
3636			set_bit(R5_Insync, &dev->flags);
3637		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3638			 test_bit(R5_Expanded, &dev->flags))
3639			/* If we've reshaped into here, we assume it is Insync.
3640			 * We will shortly update recovery_offset to make
3641			 * it official.
3642			 */
3643			set_bit(R5_Insync, &dev->flags);
3644
3645		if (test_bit(R5_WriteError, &dev->flags)) {
3646			/* This flag does not apply to '.replacement'
3647			 * only to .rdev, so make sure to check that*/
3648			struct md_rdev *rdev2 = rcu_dereference(
3649				conf->disks[i].rdev);
3650			if (rdev2 == rdev)
3651				clear_bit(R5_Insync, &dev->flags);
3652			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3653				s->handle_bad_blocks = 1;
3654				atomic_inc(&rdev2->nr_pending);
3655			} else
3656				clear_bit(R5_WriteError, &dev->flags);
3657		}
3658		if (test_bit(R5_MadeGood, &dev->flags)) {
3659			/* This flag does not apply to '.replacement'
3660			 * only to .rdev, so make sure to check that*/
3661			struct md_rdev *rdev2 = rcu_dereference(
3662				conf->disks[i].rdev);
3663			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3664				s->handle_bad_blocks = 1;
3665				atomic_inc(&rdev2->nr_pending);
3666			} else
3667				clear_bit(R5_MadeGood, &dev->flags);
3668		}
3669		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3670			struct md_rdev *rdev2 = rcu_dereference(
3671				conf->disks[i].replacement);
3672			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3673				s->handle_bad_blocks = 1;
3674				atomic_inc(&rdev2->nr_pending);
3675			} else
3676				clear_bit(R5_MadeGoodRepl, &dev->flags);
3677		}
3678		if (!test_bit(R5_Insync, &dev->flags)) {
3679			/* The ReadError flag will just be confusing now */
3680			clear_bit(R5_ReadError, &dev->flags);
3681			clear_bit(R5_ReWrite, &dev->flags);
3682		}
3683		if (test_bit(R5_ReadError, &dev->flags))
3684			clear_bit(R5_Insync, &dev->flags);
3685		if (!test_bit(R5_Insync, &dev->flags)) {
3686			if (s->failed < 2)
3687				s->failed_num[s->failed] = i;
3688			s->failed++;
3689			if (rdev && !test_bit(Faulty, &rdev->flags))
3690				do_recovery = 1;
3691		}
3692	}
3693	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3694		/* If there is a failed device being replaced,
3695		 *     we must be recovering.
3696		 * else if we are after recovery_cp, we must be syncing
3697		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3698		 * else we can only be replacing
3699		 * sync and recovery both need to read all devices, and so
3700		 * use the same flag.
3701		 */
3702		if (do_recovery ||
3703		    sh->sector >= conf->mddev->recovery_cp ||
3704		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3705			s->syncing = 1;
3706		else
3707			s->replacing = 1;
3708	}
3709	rcu_read_unlock();
3710}
3711
3712static void handle_stripe(struct stripe_head *sh)
3713{
3714	struct stripe_head_state s;
3715	struct r5conf *conf = sh->raid_conf;
3716	int i;
3717	int prexor;
3718	int disks = sh->disks;
3719	struct r5dev *pdev, *qdev;
3720
3721	clear_bit(STRIPE_HANDLE, &sh->state);
3722	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3723		/* already being handled, ensure it gets handled
3724		 * again when current action finishes */
3725		set_bit(STRIPE_HANDLE, &sh->state);
3726		return;
3727	}
3728
3729	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3730		spin_lock(&sh->stripe_lock);
3731		/* Cannot process 'sync' concurrently with 'discard' */
3732		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3733		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3734			set_bit(STRIPE_SYNCING, &sh->state);
3735			clear_bit(STRIPE_INSYNC, &sh->state);
3736			clear_bit(STRIPE_REPLACED, &sh->state);
3737		}
3738		spin_unlock(&sh->stripe_lock);
3739	}
3740	clear_bit(STRIPE_DELAYED, &sh->state);
3741
3742	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3743		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3744	       (unsigned long long)sh->sector, sh->state,
3745	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3746	       sh->check_state, sh->reconstruct_state);
3747
3748	analyse_stripe(sh, &s);
3749
3750	if (s.handle_bad_blocks) {
3751		set_bit(STRIPE_HANDLE, &sh->state);
3752		goto finish;
3753	}
3754
3755	if (unlikely(s.blocked_rdev)) {
3756		if (s.syncing || s.expanding || s.expanded ||
3757		    s.replacing || s.to_write || s.written) {
3758			set_bit(STRIPE_HANDLE, &sh->state);
3759			goto finish;
3760		}
3761		/* There is nothing for the blocked_rdev to block */
3762		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3763		s.blocked_rdev = NULL;
3764	}
3765
3766	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3767		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3768		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3769	}
3770
3771	pr_debug("locked=%d uptodate=%d to_read=%d"
3772	       " to_write=%d failed=%d failed_num=%d,%d\n",
3773	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3774	       s.failed_num[0], s.failed_num[1]);
3775	/* check if the array has lost more than max_degraded devices and,
3776	 * if so, some requests might need to be failed.
3777	 */
3778	if (s.failed > conf->max_degraded) {
3779		sh->check_state = 0;
3780		sh->reconstruct_state = 0;
3781		if (s.to_read+s.to_write+s.written)
3782			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3783		if (s.syncing + s.replacing)
3784			handle_failed_sync(conf, sh, &s);
3785	}
3786
3787	/* Now we check to see if any write operations have recently
3788	 * completed
3789	 */
3790	prexor = 0;
3791	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3792		prexor = 1;
3793	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3794	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3795		sh->reconstruct_state = reconstruct_state_idle;
3796
3797		/* All the 'written' buffers and the parity block are ready to
3798		 * be written back to disk
3799		 */
3800		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3801		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3802		BUG_ON(sh->qd_idx >= 0 &&
3803		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3804		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3805		for (i = disks; i--; ) {
3806			struct r5dev *dev = &sh->dev[i];
3807			if (test_bit(R5_LOCKED, &dev->flags) &&
3808				(i == sh->pd_idx || i == sh->qd_idx ||
3809				 dev->written)) {
3810				pr_debug("Writing block %d\n", i);
3811				set_bit(R5_Wantwrite, &dev->flags);
3812				if (prexor)
3813					continue;
3814				if (s.failed > 1)
3815					continue;
3816				if (!test_bit(R5_Insync, &dev->flags) ||
3817				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3818				     s.failed == 0))
3819					set_bit(STRIPE_INSYNC, &sh->state);
3820			}
3821		}
3822		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3823			s.dec_preread_active = 1;
3824	}
3825
3826	/*
3827	 * might be able to return some write requests if the parity blocks
3828	 * are safe, or on a failed drive
3829	 */
3830	pdev = &sh->dev[sh->pd_idx];
3831	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3832		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3833	qdev = &sh->dev[sh->qd_idx];
3834	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3835		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3836		|| conf->level < 6;
3837
3838	if (s.written &&
3839	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3840			     && !test_bit(R5_LOCKED, &pdev->flags)
3841			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3842				 test_bit(R5_Discard, &pdev->flags))))) &&
3843	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3844			     && !test_bit(R5_LOCKED, &qdev->flags)
3845			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3846				 test_bit(R5_Discard, &qdev->flags))))))
3847		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3848
3849	/* Now we might consider reading some blocks, either to check/generate
3850	 * parity, or to satisfy requests
3851	 * or to load a block that is being partially written.
3852	 */
3853	if (s.to_read || s.non_overwrite
3854	    || (conf->level == 6 && s.to_write && s.failed)
3855	    || (s.syncing && (s.uptodate + s.compute < disks))
3856	    || s.replacing
3857	    || s.expanding)
3858		handle_stripe_fill(sh, &s, disks);
3859
3860	/* Now to consider new write requests and what else, if anything
3861	 * should be read.  We do not handle new writes when:
3862	 * 1/ A 'write' operation (copy+xor) is already in flight.
3863	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3864	 *    block.
3865	 */
3866	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3867		handle_stripe_dirtying(conf, sh, &s, disks);
3868
3869	/* maybe we need to check and possibly fix the parity for this stripe
3870	 * Any reads will already have been scheduled, so we just see if enough
3871	 * data is available.  The parity check is held off while parity
3872	 * dependent operations are in flight.
3873	 */
3874	if (sh->check_state ||
3875	    (s.syncing && s.locked == 0 &&
3876	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3877	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3878		if (conf->level == 6)
3879			handle_parity_checks6(conf, sh, &s, disks);
3880		else
3881			handle_parity_checks5(conf, sh, &s, disks);
3882	}
3883
3884	if ((s.replacing || s.syncing) && s.locked == 0
3885	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3886	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3887		/* Write out to replacement devices where possible */
3888		for (i = 0; i < conf->raid_disks; i++)
3889			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3890				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3891				set_bit(R5_WantReplace, &sh->dev[i].flags);
3892				set_bit(R5_LOCKED, &sh->dev[i].flags);
3893				s.locked++;
3894			}
3895		if (s.replacing)
3896			set_bit(STRIPE_INSYNC, &sh->state);
3897		set_bit(STRIPE_REPLACED, &sh->state);
3898	}
3899	if ((s.syncing || s.replacing) && s.locked == 0 &&
3900	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3901	    test_bit(STRIPE_INSYNC, &sh->state)) {
3902		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3903		clear_bit(STRIPE_SYNCING, &sh->state);
3904		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3905			wake_up(&conf->wait_for_overlap);
3906	}
3907
3908	/* If the failed drives are just a ReadError, then we might need
3909	 * to progress the repair/check process
3910	 */
3911	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3912		for (i = 0; i < s.failed; i++) {
3913			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3914			if (test_bit(R5_ReadError, &dev->flags)
3915			    && !test_bit(R5_LOCKED, &dev->flags)
3916			    && test_bit(R5_UPTODATE, &dev->flags)
3917				) {
3918				if (!test_bit(R5_ReWrite, &dev->flags)) {
3919					set_bit(R5_Wantwrite, &dev->flags);
3920					set_bit(R5_ReWrite, &dev->flags);
3921					set_bit(R5_LOCKED, &dev->flags);
3922					s.locked++;
3923				} else {
3924					/* let's read it back */
3925					set_bit(R5_Wantread, &dev->flags);
3926					set_bit(R5_LOCKED, &dev->flags);
3927					s.locked++;
3928				}
3929			}
3930		}
3931
3932	/* Finish reconstruct operations initiated by the expansion process */
3933	if (sh->reconstruct_state == reconstruct_state_result) {
3934		struct stripe_head *sh_src
3935			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3936		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3937			/* sh cannot be written until sh_src has been read.
3938			 * so arrange for sh to be delayed a little
3939			 */
3940			set_bit(STRIPE_DELAYED, &sh->state);
3941			set_bit(STRIPE_HANDLE, &sh->state);
3942			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3943					      &sh_src->state))
3944				atomic_inc(&conf->preread_active_stripes);
3945			release_stripe(sh_src);
3946			goto finish;
3947		}
3948		if (sh_src)
3949			release_stripe(sh_src);
3950
3951		sh->reconstruct_state = reconstruct_state_idle;
3952		clear_bit(STRIPE_EXPANDING, &sh->state);
3953		for (i = conf->raid_disks; i--; ) {
3954			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3955			set_bit(R5_LOCKED, &sh->dev[i].flags);
3956			s.locked++;
3957		}
3958	}
3959
3960	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3961	    !sh->reconstruct_state) {
3962		/* Need to write out all blocks after computing parity */
3963		sh->disks = conf->raid_disks;
3964		stripe_set_idx(sh->sector, conf, 0, sh);
3965		schedule_reconstruction(sh, &s, 1, 1);
3966	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3967		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3968		atomic_dec(&conf->reshape_stripes);
3969		wake_up(&conf->wait_for_overlap);
3970		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3971	}
3972
3973	if (s.expanding && s.locked == 0 &&
3974	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3975		handle_stripe_expansion(conf, sh);
3976
3977finish:
3978	/* wait for this device to become unblocked */
3979	if (unlikely(s.blocked_rdev)) {
3980		if (conf->mddev->external)
3981			md_wait_for_blocked_rdev(s.blocked_rdev,
3982						 conf->mddev);
3983		else
3984			/* Internal metadata will immediately
3985			 * be written by raid5d, so we don't
3986			 * need to wait here.
3987			 */
3988			rdev_dec_pending(s.blocked_rdev,
3989					 conf->mddev);
3990	}
3991
3992	if (s.handle_bad_blocks)
3993		for (i = disks; i--; ) {
3994			struct md_rdev *rdev;
3995			struct r5dev *dev = &sh->dev[i];
3996			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3997				/* We own a safe reference to the rdev */
3998				rdev = conf->disks[i].rdev;
3999				if (!rdev_set_badblocks(rdev, sh->sector,
4000							STRIPE_SECTORS, 0))
4001					md_error(conf->mddev, rdev);
4002				rdev_dec_pending(rdev, conf->mddev);
4003			}
4004			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4005				rdev = conf->disks[i].rdev;
4006				rdev_clear_badblocks(rdev, sh->sector,
4007						     STRIPE_SECTORS, 0);
4008				rdev_dec_pending(rdev, conf->mddev);
4009			}
4010			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4011				rdev = conf->disks[i].replacement;
4012				if (!rdev)
4013					/* rdev have been moved down */
4014					rdev = conf->disks[i].rdev;
4015				rdev_clear_badblocks(rdev, sh->sector,
4016						     STRIPE_SECTORS, 0);
4017				rdev_dec_pending(rdev, conf->mddev);
4018			}
4019		}
4020
4021	if (s.ops_request)
4022		raid_run_ops(sh, s.ops_request);
4023
4024	ops_run_io(sh, &s);
4025
4026	if (s.dec_preread_active) {
4027		/* We delay this until after ops_run_io so that if make_request
4028		 * is waiting on a flush, it won't continue until the writes
4029		 * have actually been submitted.
4030		 */
4031		atomic_dec(&conf->preread_active_stripes);
4032		if (atomic_read(&conf->preread_active_stripes) <
4033		    IO_THRESHOLD)
4034			md_wakeup_thread(conf->mddev->thread);
4035	}
4036
4037	return_io(s.return_bi);
4038
4039	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4040}
4041
4042static void raid5_activate_delayed(struct r5conf *conf)
4043{
4044	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4045		while (!list_empty(&conf->delayed_list)) {
4046			struct list_head *l = conf->delayed_list.next;
4047			struct stripe_head *sh;
4048			sh = list_entry(l, struct stripe_head, lru);
4049			list_del_init(l);
4050			clear_bit(STRIPE_DELAYED, &sh->state);
4051			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4052				atomic_inc(&conf->preread_active_stripes);
4053			list_add_tail(&sh->lru, &conf->hold_list);
4054			raid5_wakeup_stripe_thread(sh);
4055		}
4056	}
4057}
4058
4059static void activate_bit_delay(struct r5conf *conf,
4060	struct list_head *temp_inactive_list)
4061{
4062	/* device_lock is held */
4063	struct list_head head;
4064	list_add(&head, &conf->bitmap_list);
4065	list_del_init(&conf->bitmap_list);
4066	while (!list_empty(&head)) {
4067		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4068		int hash;
4069		list_del_init(&sh->lru);
4070		atomic_inc(&sh->count);
4071		hash = sh->hash_lock_index;
4072		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4073	}
4074}
4075
4076int md_raid5_congested(struct mddev *mddev, int bits)
4077{
4078	struct r5conf *conf = mddev->private;
4079
4080	/* No difference between reads and writes.  Just check
4081	 * how busy the stripe_cache is
4082	 */
4083
4084	if (conf->inactive_blocked)
4085		return 1;
4086	if (conf->quiesce)
4087		return 1;
4088	if (atomic_read(&conf->empty_inactive_list_nr))
4089		return 1;
4090
4091	return 0;
4092}
4093EXPORT_SYMBOL_GPL(md_raid5_congested);
4094
4095static int raid5_congested(void *data, int bits)
4096{
4097	struct mddev *mddev = data;
4098
4099	return mddev_congested(mddev, bits) ||
4100		md_raid5_congested(mddev, bits);
4101}
4102
4103/* We want read requests to align with chunks where possible,
4104 * but write requests don't need to.
4105 */
4106static int raid5_mergeable_bvec(struct request_queue *q,
4107				struct bvec_merge_data *bvm,
4108				struct bio_vec *biovec)
4109{
4110	struct mddev *mddev = q->queuedata;
4111	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4112	int max;
4113	unsigned int chunk_sectors = mddev->chunk_sectors;
4114	unsigned int bio_sectors = bvm->bi_size >> 9;
4115
4116	if ((bvm->bi_rw & 1) == WRITE)
4117		return biovec->bv_len; /* always allow writes to be mergeable */
4118
4119	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4120		chunk_sectors = mddev->new_chunk_sectors;
4121	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4122	if (max < 0) max = 0;
4123	if (max <= biovec->bv_len && bio_sectors == 0)
4124		return biovec->bv_len;
4125	else
4126		return max;
4127}
4128
4129static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4130{
4131	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4132	unsigned int chunk_sectors = mddev->chunk_sectors;
4133	unsigned int bio_sectors = bio_sectors(bio);
4134
4135	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4136		chunk_sectors = mddev->new_chunk_sectors;
4137	return  chunk_sectors >=
4138		((sector & (chunk_sectors - 1)) + bio_sectors);
4139}
4140
4141/*
4142 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4143 *  later sampled by raid5d.
4144 */
4145static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4146{
4147	unsigned long flags;
4148
4149	spin_lock_irqsave(&conf->device_lock, flags);
4150
4151	bi->bi_next = conf->retry_read_aligned_list;
4152	conf->retry_read_aligned_list = bi;
4153
4154	spin_unlock_irqrestore(&conf->device_lock, flags);
4155	md_wakeup_thread(conf->mddev->thread);
4156}
4157
4158static struct bio *remove_bio_from_retry(struct r5conf *conf)
4159{
4160	struct bio *bi;
4161
4162	bi = conf->retry_read_aligned;
4163	if (bi) {
4164		conf->retry_read_aligned = NULL;
4165		return bi;
4166	}
4167	bi = conf->retry_read_aligned_list;
4168	if(bi) {
4169		conf->retry_read_aligned_list = bi->bi_next;
4170		bi->bi_next = NULL;
4171		/*
4172		 * this sets the active strip count to 1 and the processed
4173		 * strip count to zero (upper 8 bits)
4174		 */
4175		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4176	}
4177
4178	return bi;
4179}
4180
4181/*
4182 *  The "raid5_align_endio" should check if the read succeeded and if it
4183 *  did, call bio_endio on the original bio (having bio_put the new bio
4184 *  first).
4185 *  If the read failed..
4186 */
4187static void raid5_align_endio(struct bio *bi, int error)
4188{
4189	struct bio* raid_bi  = bi->bi_private;
4190	struct mddev *mddev;
4191	struct r5conf *conf;
4192	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4193	struct md_rdev *rdev;
4194
4195	bio_put(bi);
4196
4197	rdev = (void*)raid_bi->bi_next;
4198	raid_bi->bi_next = NULL;
4199	mddev = rdev->mddev;
4200	conf = mddev->private;
4201
4202	rdev_dec_pending(rdev, conf->mddev);
4203
4204	if (!error && uptodate) {
4205		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4206					 raid_bi, 0);
4207		bio_endio(raid_bi, 0);
4208		if (atomic_dec_and_test(&conf->active_aligned_reads))
4209			wake_up(&conf->wait_for_stripe);
4210		return;
4211	}
4212
4213	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4214
4215	add_bio_to_retry(raid_bi, conf);
4216}
4217
4218static int bio_fits_rdev(struct bio *bi)
4219{
4220	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4221
4222	if (bio_sectors(bi) > queue_max_sectors(q))
4223		return 0;
4224	blk_recount_segments(q, bi);
4225	if (bi->bi_phys_segments > queue_max_segments(q))
4226		return 0;
4227
4228	if (q->merge_bvec_fn)
4229		/* it's too hard to apply the merge_bvec_fn at this stage,
4230		 * just just give up
4231		 */
4232		return 0;
4233
4234	return 1;
4235}
4236
4237static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4238{
4239	struct r5conf *conf = mddev->private;
4240	int dd_idx;
4241	struct bio* align_bi;
4242	struct md_rdev *rdev;
4243	sector_t end_sector;
4244
4245	if (!in_chunk_boundary(mddev, raid_bio)) {
4246		pr_debug("chunk_aligned_read : non aligned\n");
4247		return 0;
4248	}
4249	/*
4250	 * use bio_clone_mddev to make a copy of the bio
4251	 */
4252	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4253	if (!align_bi)
4254		return 0;
4255	/*
4256	 *   set bi_end_io to a new function, and set bi_private to the
4257	 *     original bio.
4258	 */
4259	align_bi->bi_end_io  = raid5_align_endio;
4260	align_bi->bi_private = raid_bio;
4261	/*
4262	 *	compute position
4263	 */
4264	align_bi->bi_iter.bi_sector =
4265		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4266				     0, &dd_idx, NULL);
4267
4268	end_sector = bio_end_sector(align_bi);
4269	rcu_read_lock();
4270	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4271	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4272	    rdev->recovery_offset < end_sector) {
4273		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4274		if (rdev &&
4275		    (test_bit(Faulty, &rdev->flags) ||
4276		    !(test_bit(In_sync, &rdev->flags) ||
4277		      rdev->recovery_offset >= end_sector)))
4278			rdev = NULL;
4279	}
4280	if (rdev) {
4281		sector_t first_bad;
4282		int bad_sectors;
4283
4284		atomic_inc(&rdev->nr_pending);
4285		rcu_read_unlock();
4286		raid_bio->bi_next = (void*)rdev;
4287		align_bi->bi_bdev =  rdev->bdev;
4288		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4289
4290		if (!bio_fits_rdev(align_bi) ||
4291		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4292				bio_sectors(align_bi),
4293				&first_bad, &bad_sectors)) {
4294			/* too big in some way, or has a known bad block */
4295			bio_put(align_bi);
4296			rdev_dec_pending(rdev, mddev);
4297			return 0;
4298		}
4299
4300		/* No reshape active, so we can trust rdev->data_offset */
4301		align_bi->bi_iter.bi_sector += rdev->data_offset;
4302
4303		spin_lock_irq(&conf->device_lock);
4304		wait_event_lock_irq(conf->wait_for_stripe,
4305				    conf->quiesce == 0,
4306				    conf->device_lock);
4307		atomic_inc(&conf->active_aligned_reads);
4308		spin_unlock_irq(&conf->device_lock);
4309
4310		if (mddev->gendisk)
4311			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4312					      align_bi, disk_devt(mddev->gendisk),
4313					      raid_bio->bi_iter.bi_sector);
4314		generic_make_request(align_bi);
4315		return 1;
4316	} else {
4317		rcu_read_unlock();
4318		bio_put(align_bi);
4319		return 0;
4320	}
4321}
4322
4323/* __get_priority_stripe - get the next stripe to process
4324 *
4325 * Full stripe writes are allowed to pass preread active stripes up until
4326 * the bypass_threshold is exceeded.  In general the bypass_count
4327 * increments when the handle_list is handled before the hold_list; however, it
4328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4329 * stripe with in flight i/o.  The bypass_count will be reset when the
4330 * head of the hold_list has changed, i.e. the head was promoted to the
4331 * handle_list.
4332 */
4333static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4334{
4335	struct stripe_head *sh = NULL, *tmp;
4336	struct list_head *handle_list = NULL;
4337	struct r5worker_group *wg = NULL;
4338
4339	if (conf->worker_cnt_per_group == 0) {
4340		handle_list = &conf->handle_list;
4341	} else if (group != ANY_GROUP) {
4342		handle_list = &conf->worker_groups[group].handle_list;
4343		wg = &conf->worker_groups[group];
4344	} else {
4345		int i;
4346		for (i = 0; i < conf->group_cnt; i++) {
4347			handle_list = &conf->worker_groups[i].handle_list;
4348			wg = &conf->worker_groups[i];
4349			if (!list_empty(handle_list))
4350				break;
4351		}
4352	}
4353
4354	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4355		  __func__,
4356		  list_empty(handle_list) ? "empty" : "busy",
4357		  list_empty(&conf->hold_list) ? "empty" : "busy",
4358		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4359
4360	if (!list_empty(handle_list)) {
4361		sh = list_entry(handle_list->next, typeof(*sh), lru);
4362
4363		if (list_empty(&conf->hold_list))
4364			conf->bypass_count = 0;
4365		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4366			if (conf->hold_list.next == conf->last_hold)
4367				conf->bypass_count++;
4368			else {
4369				conf->last_hold = conf->hold_list.next;
4370				conf->bypass_count -= conf->bypass_threshold;
4371				if (conf->bypass_count < 0)
4372					conf->bypass_count = 0;
4373			}
4374		}
4375	} else if (!list_empty(&conf->hold_list) &&
4376		   ((conf->bypass_threshold &&
4377		     conf->bypass_count > conf->bypass_threshold) ||
4378		    atomic_read(&conf->pending_full_writes) == 0)) {
4379
4380		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4381			if (conf->worker_cnt_per_group == 0 ||
4382			    group == ANY_GROUP ||
4383			    !cpu_online(tmp->cpu) ||
4384			    cpu_to_group(tmp->cpu) == group) {
4385				sh = tmp;
4386				break;
4387			}
4388		}
4389
4390		if (sh) {
4391			conf->bypass_count -= conf->bypass_threshold;
4392			if (conf->bypass_count < 0)
4393				conf->bypass_count = 0;
4394		}
4395		wg = NULL;
4396	}
4397
4398	if (!sh)
4399		return NULL;
4400
4401	if (wg) {
4402		wg->stripes_cnt--;
4403		sh->group = NULL;
4404	}
4405	list_del_init(&sh->lru);
4406	BUG_ON(atomic_inc_return(&sh->count) != 1);
4407	return sh;
4408}
4409
4410struct raid5_plug_cb {
4411	struct blk_plug_cb	cb;
4412	struct list_head	list;
4413	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4414};
4415
4416static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4417{
4418	struct raid5_plug_cb *cb = container_of(
4419		blk_cb, struct raid5_plug_cb, cb);
4420	struct stripe_head *sh;
4421	struct mddev *mddev = cb->cb.data;
4422	struct r5conf *conf = mddev->private;
4423	int cnt = 0;
4424	int hash;
4425
4426	if (cb->list.next && !list_empty(&cb->list)) {
4427		spin_lock_irq(&conf->device_lock);
4428		while (!list_empty(&cb->list)) {
4429			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4430			list_del_init(&sh->lru);
4431			/*
4432			 * avoid race release_stripe_plug() sees
4433			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4434			 * is still in our list
4435			 */
4436			smp_mb__before_atomic();
4437			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4438			/*
4439			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4440			 * case, the count is always > 1 here
4441			 */
4442			hash = sh->hash_lock_index;
4443			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4444			cnt++;
4445		}
4446		spin_unlock_irq(&conf->device_lock);
4447	}
4448	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4449				     NR_STRIPE_HASH_LOCKS);
4450	if (mddev->queue)
4451		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4452	kfree(cb);
4453}
4454
4455static void release_stripe_plug(struct mddev *mddev,
4456				struct stripe_head *sh)
4457{
4458	struct blk_plug_cb *blk_cb = blk_check_plugged(
4459		raid5_unplug, mddev,
4460		sizeof(struct raid5_plug_cb));
4461	struct raid5_plug_cb *cb;
4462
4463	if (!blk_cb) {
4464		release_stripe(sh);
4465		return;
4466	}
4467
4468	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4469
4470	if (cb->list.next == NULL) {
4471		int i;
4472		INIT_LIST_HEAD(&cb->list);
4473		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4474			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4475	}
4476
4477	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4478		list_add_tail(&sh->lru, &cb->list);
4479	else
4480		release_stripe(sh);
4481}
4482
4483static void make_discard_request(struct mddev *mddev, struct bio *bi)
4484{
4485	struct r5conf *conf = mddev->private;
4486	sector_t logical_sector, last_sector;
4487	struct stripe_head *sh;
4488	int remaining;
4489	int stripe_sectors;
4490
4491	if (mddev->reshape_position != MaxSector)
4492		/* Skip discard while reshape is happening */
4493		return;
4494
4495	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4496	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4497
4498	bi->bi_next = NULL;
4499	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4500
4501	stripe_sectors = conf->chunk_sectors *
4502		(conf->raid_disks - conf->max_degraded);
4503	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4504					       stripe_sectors);
4505	sector_div(last_sector, stripe_sectors);
4506
4507	logical_sector *= conf->chunk_sectors;
4508	last_sector *= conf->chunk_sectors;
4509
4510	for (; logical_sector < last_sector;
4511	     logical_sector += STRIPE_SECTORS) {
4512		DEFINE_WAIT(w);
4513		int d;
4514	again:
4515		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4516		prepare_to_wait(&conf->wait_for_overlap, &w,
4517				TASK_UNINTERRUPTIBLE);
4518		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4519		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4520			release_stripe(sh);
4521			schedule();
4522			goto again;
4523		}
4524		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4525		spin_lock_irq(&sh->stripe_lock);
4526		for (d = 0; d < conf->raid_disks; d++) {
4527			if (d == sh->pd_idx || d == sh->qd_idx)
4528				continue;
4529			if (sh->dev[d].towrite || sh->dev[d].toread) {
4530				set_bit(R5_Overlap, &sh->dev[d].flags);
4531				spin_unlock_irq(&sh->stripe_lock);
4532				release_stripe(sh);
4533				schedule();
4534				goto again;
4535			}
4536		}
4537		set_bit(STRIPE_DISCARD, &sh->state);
4538		finish_wait(&conf->wait_for_overlap, &w);
4539		for (d = 0; d < conf->raid_disks; d++) {
4540			if (d == sh->pd_idx || d == sh->qd_idx)
4541				continue;
4542			sh->dev[d].towrite = bi;
4543			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4544			raid5_inc_bi_active_stripes(bi);
4545		}
4546		spin_unlock_irq(&sh->stripe_lock);
4547		if (conf->mddev->bitmap) {
4548			for (d = 0;
4549			     d < conf->raid_disks - conf->max_degraded;
4550			     d++)
4551				bitmap_startwrite(mddev->bitmap,
4552						  sh->sector,
4553						  STRIPE_SECTORS,
4554						  0);
4555			sh->bm_seq = conf->seq_flush + 1;
4556			set_bit(STRIPE_BIT_DELAY, &sh->state);
4557		}
4558
4559		set_bit(STRIPE_HANDLE, &sh->state);
4560		clear_bit(STRIPE_DELAYED, &sh->state);
4561		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4562			atomic_inc(&conf->preread_active_stripes);
4563		release_stripe_plug(mddev, sh);
4564	}
4565
4566	remaining = raid5_dec_bi_active_stripes(bi);
4567	if (remaining == 0) {
4568		md_write_end(mddev);
4569		bio_endio(bi, 0);
4570	}
4571}
4572
4573static void make_request(struct mddev *mddev, struct bio * bi)
4574{
4575	struct r5conf *conf = mddev->private;
4576	int dd_idx;
4577	sector_t new_sector;
4578	sector_t logical_sector, last_sector;
4579	struct stripe_head *sh;
4580	const int rw = bio_data_dir(bi);
4581	int remaining;
4582	DEFINE_WAIT(w);
4583	bool do_prepare;
4584
4585	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4586		md_flush_request(mddev, bi);
4587		return;
4588	}
4589
4590	md_write_start(mddev, bi);
4591
4592	if (rw == READ &&
4593	     mddev->reshape_position == MaxSector &&
4594	     chunk_aligned_read(mddev,bi))
4595		return;
4596
4597	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4598		make_discard_request(mddev, bi);
4599		return;
4600	}
4601
4602	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4603	last_sector = bio_end_sector(bi);
4604	bi->bi_next = NULL;
4605	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4606
4607	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4608	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4609		int previous;
4610		int seq;
4611
4612		do_prepare = false;
4613	retry:
4614		seq = read_seqcount_begin(&conf->gen_lock);
4615		previous = 0;
4616		if (do_prepare)
4617			prepare_to_wait(&conf->wait_for_overlap, &w,
4618				TASK_UNINTERRUPTIBLE);
4619		if (unlikely(conf->reshape_progress != MaxSector)) {
4620			/* spinlock is needed as reshape_progress may be
4621			 * 64bit on a 32bit platform, and so it might be
4622			 * possible to see a half-updated value
4623			 * Of course reshape_progress could change after
4624			 * the lock is dropped, so once we get a reference
4625			 * to the stripe that we think it is, we will have
4626			 * to check again.
4627			 */
4628			spin_lock_irq(&conf->device_lock);
4629			if (mddev->reshape_backwards
4630			    ? logical_sector < conf->reshape_progress
4631			    : logical_sector >= conf->reshape_progress) {
4632				previous = 1;
4633			} else {
4634				if (mddev->reshape_backwards
4635				    ? logical_sector < conf->reshape_safe
4636				    : logical_sector >= conf->reshape_safe) {
4637					spin_unlock_irq(&conf->device_lock);
4638					schedule();
4639					do_prepare = true;
4640					goto retry;
4641				}
4642			}
4643			spin_unlock_irq(&conf->device_lock);
4644		}
4645
4646		new_sector = raid5_compute_sector(conf, logical_sector,
4647						  previous,
4648						  &dd_idx, NULL);
4649		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4650			(unsigned long long)new_sector,
4651			(unsigned long long)logical_sector);
4652
4653		sh = get_active_stripe(conf, new_sector, previous,
4654				       (bi->bi_rw&RWA_MASK), 0);
4655		if (sh) {
4656			if (unlikely(previous)) {
4657				/* expansion might have moved on while waiting for a
4658				 * stripe, so we must do the range check again.
4659				 * Expansion could still move past after this
4660				 * test, but as we are holding a reference to
4661				 * 'sh', we know that if that happens,
4662				 *  STRIPE_EXPANDING will get set and the expansion
4663				 * won't proceed until we finish with the stripe.
4664				 */
4665				int must_retry = 0;
4666				spin_lock_irq(&conf->device_lock);
4667				if (mddev->reshape_backwards
4668				    ? logical_sector >= conf->reshape_progress
4669				    : logical_sector < conf->reshape_progress)
4670					/* mismatch, need to try again */
4671					must_retry = 1;
4672				spin_unlock_irq(&conf->device_lock);
4673				if (must_retry) {
4674					release_stripe(sh);
4675					schedule();
4676					do_prepare = true;
4677					goto retry;
4678				}
4679			}
4680			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4681				/* Might have got the wrong stripe_head
4682				 * by accident
4683				 */
4684				release_stripe(sh);
4685				goto retry;
4686			}
4687
4688			if (rw == WRITE &&
4689			    logical_sector >= mddev->suspend_lo &&
4690			    logical_sector < mddev->suspend_hi) {
4691				release_stripe(sh);
4692				/* As the suspend_* range is controlled by
4693				 * userspace, we want an interruptible
4694				 * wait.
4695				 */
4696				flush_signals(current);
4697				prepare_to_wait(&conf->wait_for_overlap,
4698						&w, TASK_INTERRUPTIBLE);
4699				if (logical_sector >= mddev->suspend_lo &&
4700				    logical_sector < mddev->suspend_hi) {
4701					schedule();
4702					do_prepare = true;
4703				}
4704				goto retry;
4705			}
4706
4707			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4708			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4709				/* Stripe is busy expanding or
4710				 * add failed due to overlap.  Flush everything
4711				 * and wait a while
4712				 */
4713				md_wakeup_thread(mddev->thread);
4714				release_stripe(sh);
4715				schedule();
4716				do_prepare = true;
4717				goto retry;
4718			}
4719			set_bit(STRIPE_HANDLE, &sh->state);
4720			clear_bit(STRIPE_DELAYED, &sh->state);
4721			if ((bi->bi_rw & REQ_SYNC) &&
4722			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4723				atomic_inc(&conf->preread_active_stripes);
4724			release_stripe_plug(mddev, sh);
4725		} else {
4726			/* cannot get stripe for read-ahead, just give-up */
4727			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4728			break;
4729		}
4730	}
4731	finish_wait(&conf->wait_for_overlap, &w);
4732
4733	remaining = raid5_dec_bi_active_stripes(bi);
4734	if (remaining == 0) {
4735
4736		if ( rw == WRITE )
4737			md_write_end(mddev);
4738
4739		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4740					 bi, 0);
4741		bio_endio(bi, 0);
4742	}
4743}
4744
4745static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4746
4747static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4748{
4749	/* reshaping is quite different to recovery/resync so it is
4750	 * handled quite separately ... here.
4751	 *
4752	 * On each call to sync_request, we gather one chunk worth of
4753	 * destination stripes and flag them as expanding.
4754	 * Then we find all the source stripes and request reads.
4755	 * As the reads complete, handle_stripe will copy the data
4756	 * into the destination stripe and release that stripe.
4757	 */
4758	struct r5conf *conf = mddev->private;
4759	struct stripe_head *sh;
4760	sector_t first_sector, last_sector;
4761	int raid_disks = conf->previous_raid_disks;
4762	int data_disks = raid_disks - conf->max_degraded;
4763	int new_data_disks = conf->raid_disks - conf->max_degraded;
4764	int i;
4765	int dd_idx;
4766	sector_t writepos, readpos, safepos;
4767	sector_t stripe_addr;
4768	int reshape_sectors;
4769	struct list_head stripes;
4770
4771	if (sector_nr == 0) {
4772		/* If restarting in the middle, skip the initial sectors */
4773		if (mddev->reshape_backwards &&
4774		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4775			sector_nr = raid5_size(mddev, 0, 0)
4776				- conf->reshape_progress;
4777		} else if (!mddev->reshape_backwards &&
4778			   conf->reshape_progress > 0)
4779			sector_nr = conf->reshape_progress;
4780		sector_div(sector_nr, new_data_disks);
4781		if (sector_nr) {
4782			mddev->curr_resync_completed = sector_nr;
4783			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4784			*skipped = 1;
4785			return sector_nr;
4786		}
4787	}
4788
4789	/* We need to process a full chunk at a time.
4790	 * If old and new chunk sizes differ, we need to process the
4791	 * largest of these
4792	 */
4793	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4794		reshape_sectors = mddev->new_chunk_sectors;
4795	else
4796		reshape_sectors = mddev->chunk_sectors;
4797
4798	/* We update the metadata at least every 10 seconds, or when
4799	 * the data about to be copied would over-write the source of
4800	 * the data at the front of the range.  i.e. one new_stripe
4801	 * along from reshape_progress new_maps to after where
4802	 * reshape_safe old_maps to
4803	 */
4804	writepos = conf->reshape_progress;
4805	sector_div(writepos, new_data_disks);
4806	readpos = conf->reshape_progress;
4807	sector_div(readpos, data_disks);
4808	safepos = conf->reshape_safe;
4809	sector_div(safepos, data_disks);
4810	if (mddev->reshape_backwards) {
4811		writepos -= min_t(sector_t, reshape_sectors, writepos);
4812		readpos += reshape_sectors;
4813		safepos += reshape_sectors;
4814	} else {
4815		writepos += reshape_sectors;
4816		readpos -= min_t(sector_t, reshape_sectors, readpos);
4817		safepos -= min_t(sector_t, reshape_sectors, safepos);
4818	}
4819
4820	/* Having calculated the 'writepos' possibly use it
4821	 * to set 'stripe_addr' which is where we will write to.
4822	 */
4823	if (mddev->reshape_backwards) {
4824		BUG_ON(conf->reshape_progress == 0);
4825		stripe_addr = writepos;
4826		BUG_ON((mddev->dev_sectors &
4827			~((sector_t)reshape_sectors - 1))
4828		       - reshape_sectors - stripe_addr
4829		       != sector_nr);
4830	} else {
4831		BUG_ON(writepos != sector_nr + reshape_sectors);
4832		stripe_addr = sector_nr;
4833	}
4834
4835	/* 'writepos' is the most advanced device address we might write.
4836	 * 'readpos' is the least advanced device address we might read.
4837	 * 'safepos' is the least address recorded in the metadata as having
4838	 *     been reshaped.
4839	 * If there is a min_offset_diff, these are adjusted either by
4840	 * increasing the safepos/readpos if diff is negative, or
4841	 * increasing writepos if diff is positive.
4842	 * If 'readpos' is then behind 'writepos', there is no way that we can
4843	 * ensure safety in the face of a crash - that must be done by userspace
4844	 * making a backup of the data.  So in that case there is no particular
4845	 * rush to update metadata.
4846	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4847	 * update the metadata to advance 'safepos' to match 'readpos' so that
4848	 * we can be safe in the event of a crash.
4849	 * So we insist on updating metadata if safepos is behind writepos and
4850	 * readpos is beyond writepos.
4851	 * In any case, update the metadata every 10 seconds.
4852	 * Maybe that number should be configurable, but I'm not sure it is
4853	 * worth it.... maybe it could be a multiple of safemode_delay???
4854	 */
4855	if (conf->min_offset_diff < 0) {
4856		safepos += -conf->min_offset_diff;
4857		readpos += -conf->min_offset_diff;
4858	} else
4859		writepos += conf->min_offset_diff;
4860
4861	if ((mddev->reshape_backwards
4862	     ? (safepos > writepos && readpos < writepos)
4863	     : (safepos < writepos && readpos > writepos)) ||
4864	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4865		/* Cannot proceed until we've updated the superblock... */
4866		wait_event(conf->wait_for_overlap,
4867			   atomic_read(&conf->reshape_stripes)==0
4868			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4869		if (atomic_read(&conf->reshape_stripes) != 0)
4870			return 0;
4871		mddev->reshape_position = conf->reshape_progress;
4872		mddev->curr_resync_completed = sector_nr;
4873		conf->reshape_checkpoint = jiffies;
4874		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4875		md_wakeup_thread(mddev->thread);
4876		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4877			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4878		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4879			return 0;
4880		spin_lock_irq(&conf->device_lock);
4881		conf->reshape_safe = mddev->reshape_position;
4882		spin_unlock_irq(&conf->device_lock);
4883		wake_up(&conf->wait_for_overlap);
4884		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4885	}
4886
4887	INIT_LIST_HEAD(&stripes);
4888	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4889		int j;
4890		int skipped_disk = 0;
4891		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4892		set_bit(STRIPE_EXPANDING, &sh->state);
4893		atomic_inc(&conf->reshape_stripes);
4894		/* If any of this stripe is beyond the end of the old
4895		 * array, then we need to zero those blocks
4896		 */
4897		for (j=sh->disks; j--;) {
4898			sector_t s;
4899			if (j == sh->pd_idx)
4900				continue;
4901			if (conf->level == 6 &&
4902			    j == sh->qd_idx)
4903				continue;
4904			s = compute_blocknr(sh, j, 0);
4905			if (s < raid5_size(mddev, 0, 0)) {
4906				skipped_disk = 1;
4907				continue;
4908			}
4909			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4910			set_bit(R5_Expanded, &sh->dev[j].flags);
4911			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4912		}
4913		if (!skipped_disk) {
4914			set_bit(STRIPE_EXPAND_READY, &sh->state);
4915			set_bit(STRIPE_HANDLE, &sh->state);
4916		}
4917		list_add(&sh->lru, &stripes);
4918	}
4919	spin_lock_irq(&conf->device_lock);
4920	if (mddev->reshape_backwards)
4921		conf->reshape_progress -= reshape_sectors * new_data_disks;
4922	else
4923		conf->reshape_progress += reshape_sectors * new_data_disks;
4924	spin_unlock_irq(&conf->device_lock);
4925	/* Ok, those stripe are ready. We can start scheduling
4926	 * reads on the source stripes.
4927	 * The source stripes are determined by mapping the first and last
4928	 * block on the destination stripes.
4929	 */
4930	first_sector =
4931		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4932				     1, &dd_idx, NULL);
4933	last_sector =
4934		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4935					    * new_data_disks - 1),
4936				     1, &dd_idx, NULL);
4937	if (last_sector >= mddev->dev_sectors)
4938		last_sector = mddev->dev_sectors - 1;
4939	while (first_sector <= last_sector) {
4940		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4941		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4942		set_bit(STRIPE_HANDLE, &sh->state);
4943		release_stripe(sh);
4944		first_sector += STRIPE_SECTORS;
4945	}
4946	/* Now that the sources are clearly marked, we can release
4947	 * the destination stripes
4948	 */
4949	while (!list_empty(&stripes)) {
4950		sh = list_entry(stripes.next, struct stripe_head, lru);
4951		list_del_init(&sh->lru);
4952		release_stripe(sh);
4953	}
4954	/* If this takes us to the resync_max point where we have to pause,
4955	 * then we need to write out the superblock.
4956	 */
4957	sector_nr += reshape_sectors;
4958	if ((sector_nr - mddev->curr_resync_completed) * 2
4959	    >= mddev->resync_max - mddev->curr_resync_completed) {
4960		/* Cannot proceed until we've updated the superblock... */
4961		wait_event(conf->wait_for_overlap,
4962			   atomic_read(&conf->reshape_stripes) == 0
4963			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4964		if (atomic_read(&conf->reshape_stripes) != 0)
4965			goto ret;
4966		mddev->reshape_position = conf->reshape_progress;
4967		mddev->curr_resync_completed = sector_nr;
4968		conf->reshape_checkpoint = jiffies;
4969		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4970		md_wakeup_thread(mddev->thread);
4971		wait_event(mddev->sb_wait,
4972			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4973			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4975			goto ret;
4976		spin_lock_irq(&conf->device_lock);
4977		conf->reshape_safe = mddev->reshape_position;
4978		spin_unlock_irq(&conf->device_lock);
4979		wake_up(&conf->wait_for_overlap);
4980		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4981	}
4982ret:
4983	return reshape_sectors;
4984}
4985
4986/* FIXME go_faster isn't used */
4987static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4988{
4989	struct r5conf *conf = mddev->private;
4990	struct stripe_head *sh;
4991	sector_t max_sector = mddev->dev_sectors;
4992	sector_t sync_blocks;
4993	int still_degraded = 0;
4994	int i;
4995
4996	if (sector_nr >= max_sector) {
4997		/* just being told to finish up .. nothing much to do */
4998
4999		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5000			end_reshape(conf);
5001			return 0;
5002		}
5003
5004		if (mddev->curr_resync < max_sector) /* aborted */
5005			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5006					&sync_blocks, 1);
5007		else /* completed sync */
5008			conf->fullsync = 0;
5009		bitmap_close_sync(mddev->bitmap);
5010
5011		return 0;
5012	}
5013
5014	/* Allow raid5_quiesce to complete */
5015	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5016
5017	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5018		return reshape_request(mddev, sector_nr, skipped);
5019
5020	/* No need to check resync_max as we never do more than one
5021	 * stripe, and as resync_max will always be on a chunk boundary,
5022	 * if the check in md_do_sync didn't fire, there is no chance
5023	 * of overstepping resync_max here
5024	 */
5025
5026	/* if there is too many failed drives and we are trying
5027	 * to resync, then assert that we are finished, because there is
5028	 * nothing we can do.
5029	 */
5030	if (mddev->degraded >= conf->max_degraded &&
5031	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5032		sector_t rv = mddev->dev_sectors - sector_nr;
5033		*skipped = 1;
5034		return rv;
5035	}
5036	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5037	    !conf->fullsync &&
5038	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5039	    sync_blocks >= STRIPE_SECTORS) {
5040		/* we can skip this block, and probably more */
5041		sync_blocks /= STRIPE_SECTORS;
5042		*skipped = 1;
5043		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5044	}
5045
5046	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5047
5048	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5049	if (sh == NULL) {
5050		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5051		/* make sure we don't swamp the stripe cache if someone else
5052		 * is trying to get access
5053		 */
5054		schedule_timeout_uninterruptible(1);
5055	}
5056	/* Need to check if array will still be degraded after recovery/resync
5057	 * We don't need to check the 'failed' flag as when that gets set,
5058	 * recovery aborts.
5059	 */
5060	for (i = 0; i < conf->raid_disks; i++)
5061		if (conf->disks[i].rdev == NULL)
5062			still_degraded = 1;
5063
5064	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5065
5066	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5067	set_bit(STRIPE_HANDLE, &sh->state);
5068
5069	release_stripe(sh);
5070
5071	return STRIPE_SECTORS;
5072}
5073
5074static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5075{
5076	/* We may not be able to submit a whole bio at once as there
5077	 * may not be enough stripe_heads available.
5078	 * We cannot pre-allocate enough stripe_heads as we may need
5079	 * more than exist in the cache (if we allow ever large chunks).
5080	 * So we do one stripe head at a time and record in
5081	 * ->bi_hw_segments how many have been done.
5082	 *
5083	 * We *know* that this entire raid_bio is in one chunk, so
5084	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5085	 */
5086	struct stripe_head *sh;
5087	int dd_idx;
5088	sector_t sector, logical_sector, last_sector;
5089	int scnt = 0;
5090	int remaining;
5091	int handled = 0;
5092
5093	logical_sector = raid_bio->bi_iter.bi_sector &
5094		~((sector_t)STRIPE_SECTORS-1);
5095	sector = raid5_compute_sector(conf, logical_sector,
5096				      0, &dd_idx, NULL);
5097	last_sector = bio_end_sector(raid_bio);
5098
5099	for (; logical_sector < last_sector;
5100	     logical_sector += STRIPE_SECTORS,
5101		     sector += STRIPE_SECTORS,
5102		     scnt++) {
5103
5104		if (scnt < raid5_bi_processed_stripes(raid_bio))
5105			/* already done this stripe */
5106			continue;
5107
5108		sh = get_active_stripe(conf, sector, 0, 1, 1);
5109
5110		if (!sh) {
5111			/* failed to get a stripe - must wait */
5112			raid5_set_bi_processed_stripes(raid_bio, scnt);
5113			conf->retry_read_aligned = raid_bio;
5114			return handled;
5115		}
5116
5117		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5118			release_stripe(sh);
5119			raid5_set_bi_processed_stripes(raid_bio, scnt);
5120			conf->retry_read_aligned = raid_bio;
5121			return handled;
5122		}
5123
5124		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5125		handle_stripe(sh);
5126		release_stripe(sh);
5127		handled++;
5128	}
5129	remaining = raid5_dec_bi_active_stripes(raid_bio);
5130	if (remaining == 0) {
5131		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5132					 raid_bio, 0);
5133		bio_endio(raid_bio, 0);
5134	}
5135	if (atomic_dec_and_test(&conf->active_aligned_reads))
5136		wake_up(&conf->wait_for_stripe);
5137	return handled;
5138}
5139
5140static int handle_active_stripes(struct r5conf *conf, int group,
5141				 struct r5worker *worker,
5142				 struct list_head *temp_inactive_list)
5143{
5144	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5145	int i, batch_size = 0, hash;
5146	bool release_inactive = false;
5147
5148	while (batch_size < MAX_STRIPE_BATCH &&
5149			(sh = __get_priority_stripe(conf, group)) != NULL)
5150		batch[batch_size++] = sh;
5151
5152	if (batch_size == 0) {
5153		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5154			if (!list_empty(temp_inactive_list + i))
5155				break;
5156		if (i == NR_STRIPE_HASH_LOCKS)
5157			return batch_size;
5158		release_inactive = true;
5159	}
5160	spin_unlock_irq(&conf->device_lock);
5161
5162	release_inactive_stripe_list(conf, temp_inactive_list,
5163				     NR_STRIPE_HASH_LOCKS);
5164
5165	if (release_inactive) {
5166		spin_lock_irq(&conf->device_lock);
5167		return 0;
5168	}
5169
5170	for (i = 0; i < batch_size; i++)
5171		handle_stripe(batch[i]);
5172
5173	cond_resched();
5174
5175	spin_lock_irq(&conf->device_lock);
5176	for (i = 0; i < batch_size; i++) {
5177		hash = batch[i]->hash_lock_index;
5178		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5179	}
5180	return batch_size;
5181}
5182
5183static void raid5_do_work(struct work_struct *work)
5184{
5185	struct r5worker *worker = container_of(work, struct r5worker, work);
5186	struct r5worker_group *group = worker->group;
5187	struct r5conf *conf = group->conf;
5188	int group_id = group - conf->worker_groups;
5189	int handled;
5190	struct blk_plug plug;
5191
5192	pr_debug("+++ raid5worker active\n");
5193
5194	blk_start_plug(&plug);
5195	handled = 0;
5196	spin_lock_irq(&conf->device_lock);
5197	while (1) {
5198		int batch_size, released;
5199
5200		released = release_stripe_list(conf, worker->temp_inactive_list);
5201
5202		batch_size = handle_active_stripes(conf, group_id, worker,
5203						   worker->temp_inactive_list);
5204		worker->working = false;
5205		if (!batch_size && !released)
5206			break;
5207		handled += batch_size;
5208	}
5209	pr_debug("%d stripes handled\n", handled);
5210
5211	spin_unlock_irq(&conf->device_lock);
5212	blk_finish_plug(&plug);
5213
5214	pr_debug("--- raid5worker inactive\n");
5215}
5216
5217/*
5218 * This is our raid5 kernel thread.
5219 *
5220 * We scan the hash table for stripes which can be handled now.
5221 * During the scan, completed stripes are saved for us by the interrupt
5222 * handler, so that they will not have to wait for our next wakeup.
5223 */
5224static void raid5d(struct md_thread *thread)
5225{
5226	struct mddev *mddev = thread->mddev;
5227	struct r5conf *conf = mddev->private;
5228	int handled;
5229	struct blk_plug plug;
5230
5231	pr_debug("+++ raid5d active\n");
5232
5233	md_check_recovery(mddev);
5234
5235	blk_start_plug(&plug);
5236	handled = 0;
5237	spin_lock_irq(&conf->device_lock);
5238	while (1) {
5239		struct bio *bio;
5240		int batch_size, released;
5241
5242		released = release_stripe_list(conf, conf->temp_inactive_list);
5243
5244		if (
5245		    !list_empty(&conf->bitmap_list)) {
5246			/* Now is a good time to flush some bitmap updates */
5247			conf->seq_flush++;
5248			spin_unlock_irq(&conf->device_lock);
5249			bitmap_unplug(mddev->bitmap);
5250			spin_lock_irq(&conf->device_lock);
5251			conf->seq_write = conf->seq_flush;
5252			activate_bit_delay(conf, conf->temp_inactive_list);
5253		}
5254		raid5_activate_delayed(conf);
5255
5256		while ((bio = remove_bio_from_retry(conf))) {
5257			int ok;
5258			spin_unlock_irq(&conf->device_lock);
5259			ok = retry_aligned_read(conf, bio);
5260			spin_lock_irq(&conf->device_lock);
5261			if (!ok)
5262				break;
5263			handled++;
5264		}
5265
5266		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5267						   conf->temp_inactive_list);
5268		if (!batch_size && !released)
5269			break;
5270		handled += batch_size;
5271
5272		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5273			spin_unlock_irq(&conf->device_lock);
5274			md_check_recovery(mddev);
5275			spin_lock_irq(&conf->device_lock);
5276		}
5277	}
5278	pr_debug("%d stripes handled\n", handled);
5279
5280	spin_unlock_irq(&conf->device_lock);
5281
5282	async_tx_issue_pending_all();
5283	blk_finish_plug(&plug);
5284
5285	pr_debug("--- raid5d inactive\n");
5286}
5287
5288static ssize_t
5289raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5290{
5291	struct r5conf *conf = mddev->private;
5292	if (conf)
5293		return sprintf(page, "%d\n", conf->max_nr_stripes);
5294	else
5295		return 0;
5296}
5297
5298int
5299raid5_set_cache_size(struct mddev *mddev, int size)
5300{
5301	struct r5conf *conf = mddev->private;
5302	int err;
5303	int hash;
5304
5305	if (size <= 16 || size > 32768)
5306		return -EINVAL;
5307	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5308	while (size < conf->max_nr_stripes) {
5309		if (drop_one_stripe(conf, hash))
5310			conf->max_nr_stripes--;
5311		else
5312			break;
5313		hash--;
5314		if (hash < 0)
5315			hash = NR_STRIPE_HASH_LOCKS - 1;
5316	}
5317	err = md_allow_write(mddev);
5318	if (err)
5319		return err;
5320	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5321	while (size > conf->max_nr_stripes) {
5322		if (grow_one_stripe(conf, hash))
5323			conf->max_nr_stripes++;
5324		else break;
5325		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5326	}
5327	return 0;
5328}
5329EXPORT_SYMBOL(raid5_set_cache_size);
5330
5331static ssize_t
5332raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5333{
5334	struct r5conf *conf = mddev->private;
5335	unsigned long new;
5336	int err;
5337
5338	if (len >= PAGE_SIZE)
5339		return -EINVAL;
5340	if (!conf)
5341		return -ENODEV;
5342
5343	if (kstrtoul(page, 10, &new))
5344		return -EINVAL;
5345	err = raid5_set_cache_size(mddev, new);
5346	if (err)
5347		return err;
5348	return len;
5349}
5350
5351static struct md_sysfs_entry
5352raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5353				raid5_show_stripe_cache_size,
5354				raid5_store_stripe_cache_size);
5355
5356static ssize_t
5357raid5_show_preread_threshold(struct mddev *mddev, char *page)
5358{
5359	struct r5conf *conf = mddev->private;
5360	if (conf)
5361		return sprintf(page, "%d\n", conf->bypass_threshold);
5362	else
5363		return 0;
5364}
5365
5366static ssize_t
5367raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5368{
5369	struct r5conf *conf = mddev->private;
5370	unsigned long new;
5371	if (len >= PAGE_SIZE)
5372		return -EINVAL;
5373	if (!conf)
5374		return -ENODEV;
5375
5376	if (kstrtoul(page, 10, &new))
5377		return -EINVAL;
5378	if (new > conf->max_nr_stripes)
5379		return -EINVAL;
5380	conf->bypass_threshold = new;
5381	return len;
5382}
5383
5384static struct md_sysfs_entry
5385raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5386					S_IRUGO | S_IWUSR,
5387					raid5_show_preread_threshold,
5388					raid5_store_preread_threshold);
5389
5390static ssize_t
5391raid5_show_skip_copy(struct mddev *mddev, char *page)
5392{
5393	struct r5conf *conf = mddev->private;
5394	if (conf)
5395		return sprintf(page, "%d\n", conf->skip_copy);
5396	else
5397		return 0;
5398}
5399
5400static ssize_t
5401raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5402{
5403	struct r5conf *conf = mddev->private;
5404	unsigned long new;
5405	if (len >= PAGE_SIZE)
5406		return -EINVAL;
5407	if (!conf)
5408		return -ENODEV;
5409
5410	if (kstrtoul(page, 10, &new))
5411		return -EINVAL;
5412	new = !!new;
5413	if (new == conf->skip_copy)
5414		return len;
5415
5416	mddev_suspend(mddev);
5417	conf->skip_copy = new;
5418	if (new)
5419		mddev->queue->backing_dev_info.capabilities |=
5420						BDI_CAP_STABLE_WRITES;
5421	else
5422		mddev->queue->backing_dev_info.capabilities &=
5423						~BDI_CAP_STABLE_WRITES;
5424	mddev_resume(mddev);
5425	return len;
5426}
5427
5428static struct md_sysfs_entry
5429raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5430					raid5_show_skip_copy,
5431					raid5_store_skip_copy);
5432
5433static ssize_t
5434stripe_cache_active_show(struct mddev *mddev, char *page)
5435{
5436	struct r5conf *conf = mddev->private;
5437	if (conf)
5438		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5439	else
5440		return 0;
5441}
5442
5443static struct md_sysfs_entry
5444raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5445
5446static ssize_t
5447raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5448{
5449	struct r5conf *conf = mddev->private;
5450	if (conf)
5451		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5452	else
5453		return 0;
5454}
5455
5456static int alloc_thread_groups(struct r5conf *conf, int cnt,
5457			       int *group_cnt,
5458			       int *worker_cnt_per_group,
5459			       struct r5worker_group **worker_groups);
5460static ssize_t
5461raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5462{
5463	struct r5conf *conf = mddev->private;
5464	unsigned long new;
5465	int err;
5466	struct r5worker_group *new_groups, *old_groups;
5467	int group_cnt, worker_cnt_per_group;
5468
5469	if (len >= PAGE_SIZE)
5470		return -EINVAL;
5471	if (!conf)
5472		return -ENODEV;
5473
5474	if (kstrtoul(page, 10, &new))
5475		return -EINVAL;
5476
5477	if (new == conf->worker_cnt_per_group)
5478		return len;
5479
5480	mddev_suspend(mddev);
5481
5482	old_groups = conf->worker_groups;
5483	if (old_groups)
5484		flush_workqueue(raid5_wq);
5485
5486	err = alloc_thread_groups(conf, new,
5487				  &group_cnt, &worker_cnt_per_group,
5488				  &new_groups);
5489	if (!err) {
5490		spin_lock_irq(&conf->device_lock);
5491		conf->group_cnt = group_cnt;
5492		conf->worker_cnt_per_group = worker_cnt_per_group;
5493		conf->worker_groups = new_groups;
5494		spin_unlock_irq(&conf->device_lock);
5495
5496		if (old_groups)
5497			kfree(old_groups[0].workers);
5498		kfree(old_groups);
5499	}
5500
5501	mddev_resume(mddev);
5502
5503	if (err)
5504		return err;
5505	return len;
5506}
5507
5508static struct md_sysfs_entry
5509raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5510				raid5_show_group_thread_cnt,
5511				raid5_store_group_thread_cnt);
5512
5513static struct attribute *raid5_attrs[] =  {
5514	&raid5_stripecache_size.attr,
5515	&raid5_stripecache_active.attr,
5516	&raid5_preread_bypass_threshold.attr,
5517	&raid5_group_thread_cnt.attr,
5518	&raid5_skip_copy.attr,
5519	NULL,
5520};
5521static struct attribute_group raid5_attrs_group = {
5522	.name = NULL,
5523	.attrs = raid5_attrs,
5524};
5525
5526static int alloc_thread_groups(struct r5conf *conf, int cnt,
5527			       int *group_cnt,
5528			       int *worker_cnt_per_group,
5529			       struct r5worker_group **worker_groups)
5530{
5531	int i, j, k;
5532	ssize_t size;
5533	struct r5worker *workers;
5534
5535	*worker_cnt_per_group = cnt;
5536	if (cnt == 0) {
5537		*group_cnt = 0;
5538		*worker_groups = NULL;
5539		return 0;
5540	}
5541	*group_cnt = num_possible_nodes();
5542	size = sizeof(struct r5worker) * cnt;
5543	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5544	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5545				*group_cnt, GFP_NOIO);
5546	if (!*worker_groups || !workers) {
5547		kfree(workers);
5548		kfree(*worker_groups);
5549		return -ENOMEM;
5550	}
5551
5552	for (i = 0; i < *group_cnt; i++) {
5553		struct r5worker_group *group;
5554
5555		group = &(*worker_groups)[i];
5556		INIT_LIST_HEAD(&group->handle_list);
5557		group->conf = conf;
5558		group->workers = workers + i * cnt;
5559
5560		for (j = 0; j < cnt; j++) {
5561			struct r5worker *worker = group->workers + j;
5562			worker->group = group;
5563			INIT_WORK(&worker->work, raid5_do_work);
5564
5565			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5566				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5567		}
5568	}
5569
5570	return 0;
5571}
5572
5573static void free_thread_groups(struct r5conf *conf)
5574{
5575	if (conf->worker_groups)
5576		kfree(conf->worker_groups[0].workers);
5577	kfree(conf->worker_groups);
5578	conf->worker_groups = NULL;
5579}
5580
5581static sector_t
5582raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5583{
5584	struct r5conf *conf = mddev->private;
5585
5586	if (!sectors)
5587		sectors = mddev->dev_sectors;
5588	if (!raid_disks)
5589		/* size is defined by the smallest of previous and new size */
5590		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5591
5592	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5593	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5594	return sectors * (raid_disks - conf->max_degraded);
5595}
5596
5597static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5598{
5599	safe_put_page(percpu->spare_page);
5600	kfree(percpu->scribble);
5601	percpu->spare_page = NULL;
5602	percpu->scribble = NULL;
5603}
5604
5605static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5606{
5607	if (conf->level == 6 && !percpu->spare_page)
5608		percpu->spare_page = alloc_page(GFP_KERNEL);
5609	if (!percpu->scribble)
5610		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5611
5612	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5613		free_scratch_buffer(conf, percpu);
5614		return -ENOMEM;
5615	}
5616
5617	return 0;
5618}
5619
5620static void raid5_free_percpu(struct r5conf *conf)
5621{
5622	unsigned long cpu;
5623
5624	if (!conf->percpu)
5625		return;
5626
5627#ifdef CONFIG_HOTPLUG_CPU
5628	unregister_cpu_notifier(&conf->cpu_notify);
5629#endif
5630
5631	get_online_cpus();
5632	for_each_possible_cpu(cpu)
5633		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5634	put_online_cpus();
5635
5636	free_percpu(conf->percpu);
5637}
5638
5639static void free_conf(struct r5conf *conf)
5640{
5641	free_thread_groups(conf);
5642	shrink_stripes(conf);
5643	raid5_free_percpu(conf);
5644	kfree(conf->disks);
5645	kfree(conf->stripe_hashtbl);
5646	kfree(conf);
5647}
5648
5649#ifdef CONFIG_HOTPLUG_CPU
5650static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5651			      void *hcpu)
5652{
5653	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5654	long cpu = (long)hcpu;
5655	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5656
5657	switch (action) {
5658	case CPU_UP_PREPARE:
5659	case CPU_UP_PREPARE_FROZEN:
5660		if (alloc_scratch_buffer(conf, percpu)) {
5661			pr_err("%s: failed memory allocation for cpu%ld\n",
5662			       __func__, cpu);
5663			return notifier_from_errno(-ENOMEM);
5664		}
5665		break;
5666	case CPU_DEAD:
5667	case CPU_DEAD_FROZEN:
5668		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5669		break;
5670	default:
5671		break;
5672	}
5673	return NOTIFY_OK;
5674}
5675#endif
5676
5677static int raid5_alloc_percpu(struct r5conf *conf)
5678{
5679	unsigned long cpu;
5680	int err = 0;
5681
5682	conf->percpu = alloc_percpu(struct raid5_percpu);
5683	if (!conf->percpu)
5684		return -ENOMEM;
5685
5686#ifdef CONFIG_HOTPLUG_CPU
5687	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5688	conf->cpu_notify.priority = 0;
5689	err = register_cpu_notifier(&conf->cpu_notify);
5690	if (err)
5691		return err;
5692#endif
5693
5694	get_online_cpus();
5695	for_each_present_cpu(cpu) {
5696		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5697		if (err) {
5698			pr_err("%s: failed memory allocation for cpu%ld\n",
5699			       __func__, cpu);
5700			break;
5701		}
5702	}
5703	put_online_cpus();
5704
5705	return err;
5706}
5707
5708static struct r5conf *setup_conf(struct mddev *mddev)
5709{
5710	struct r5conf *conf;
5711	int raid_disk, memory, max_disks;
5712	struct md_rdev *rdev;
5713	struct disk_info *disk;
5714	char pers_name[6];
5715	int i;
5716	int group_cnt, worker_cnt_per_group;
5717	struct r5worker_group *new_group;
5718
5719	if (mddev->new_level != 5
5720	    && mddev->new_level != 4
5721	    && mddev->new_level != 6) {
5722		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5723		       mdname(mddev), mddev->new_level);
5724		return ERR_PTR(-EIO);
5725	}
5726	if ((mddev->new_level == 5
5727	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5728	    (mddev->new_level == 6
5729	     && !algorithm_valid_raid6(mddev->new_layout))) {
5730		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5731		       mdname(mddev), mddev->new_layout);
5732		return ERR_PTR(-EIO);
5733	}
5734	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5735		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5736		       mdname(mddev), mddev->raid_disks);
5737		return ERR_PTR(-EINVAL);
5738	}
5739
5740	if (!mddev->new_chunk_sectors ||
5741	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5742	    !is_power_of_2(mddev->new_chunk_sectors)) {
5743		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5744		       mdname(mddev), mddev->new_chunk_sectors << 9);
5745		return ERR_PTR(-EINVAL);
5746	}
5747
5748	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5749	if (conf == NULL)
5750		goto abort;
5751	/* Don't enable multi-threading by default*/
5752	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5753				 &new_group)) {
5754		conf->group_cnt = group_cnt;
5755		conf->worker_cnt_per_group = worker_cnt_per_group;
5756		conf->worker_groups = new_group;
5757	} else
5758		goto abort;
5759	spin_lock_init(&conf->device_lock);
5760	seqcount_init(&conf->gen_lock);
5761	init_waitqueue_head(&conf->wait_for_stripe);
5762	init_waitqueue_head(&conf->wait_for_overlap);
5763	INIT_LIST_HEAD(&conf->handle_list);
5764	INIT_LIST_HEAD(&conf->hold_list);
5765	INIT_LIST_HEAD(&conf->delayed_list);
5766	INIT_LIST_HEAD(&conf->bitmap_list);
5767	init_llist_head(&conf->released_stripes);
5768	atomic_set(&conf->active_stripes, 0);
5769	atomic_set(&conf->preread_active_stripes, 0);
5770	atomic_set(&conf->active_aligned_reads, 0);
5771	conf->bypass_threshold = BYPASS_THRESHOLD;
5772	conf->recovery_disabled = mddev->recovery_disabled - 1;
5773
5774	conf->raid_disks = mddev->raid_disks;
5775	if (mddev->reshape_position == MaxSector)
5776		conf->previous_raid_disks = mddev->raid_disks;
5777	else
5778		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5779	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5780	conf->scribble_len = scribble_len(max_disks);
5781
5782	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5783			      GFP_KERNEL);
5784	if (!conf->disks)
5785		goto abort;
5786
5787	conf->mddev = mddev;
5788
5789	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5790		goto abort;
5791
5792	/* We init hash_locks[0] separately to that it can be used
5793	 * as the reference lock in the spin_lock_nest_lock() call
5794	 * in lock_all_device_hash_locks_irq in order to convince
5795	 * lockdep that we know what we are doing.
5796	 */
5797	spin_lock_init(conf->hash_locks);
5798	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5799		spin_lock_init(conf->hash_locks + i);
5800
5801	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5802		INIT_LIST_HEAD(conf->inactive_list + i);
5803
5804	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5805		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5806
5807	conf->level = mddev->new_level;
5808	if (raid5_alloc_percpu(conf) != 0)
5809		goto abort;
5810
5811	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5812
5813	rdev_for_each(rdev, mddev) {
5814		raid_disk = rdev->raid_disk;
5815		if (raid_disk >= max_disks
5816		    || raid_disk < 0)
5817			continue;
5818		disk = conf->disks + raid_disk;
5819
5820		if (test_bit(Replacement, &rdev->flags)) {
5821			if (disk->replacement)
5822				goto abort;
5823			disk->replacement = rdev;
5824		} else {
5825			if (disk->rdev)
5826				goto abort;
5827			disk->rdev = rdev;
5828		}
5829
5830		if (test_bit(In_sync, &rdev->flags)) {
5831			char b[BDEVNAME_SIZE];
5832			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5833			       " disk %d\n",
5834			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5835		} else if (rdev->saved_raid_disk != raid_disk)
5836			/* Cannot rely on bitmap to complete recovery */
5837			conf->fullsync = 1;
5838	}
5839
5840	conf->chunk_sectors = mddev->new_chunk_sectors;
5841	conf->level = mddev->new_level;
5842	if (conf->level == 6)
5843		conf->max_degraded = 2;
5844	else
5845		conf->max_degraded = 1;
5846	conf->algorithm = mddev->new_layout;
5847	conf->reshape_progress = mddev->reshape_position;
5848	if (conf->reshape_progress != MaxSector) {
5849		conf->prev_chunk_sectors = mddev->chunk_sectors;
5850		conf->prev_algo = mddev->layout;
5851	}
5852
5853	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5854		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5855	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5856	if (grow_stripes(conf, NR_STRIPES)) {
5857		printk(KERN_ERR
5858		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5859		       mdname(mddev), memory);
5860		goto abort;
5861	} else
5862		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5863		       mdname(mddev), memory);
5864
5865	sprintf(pers_name, "raid%d", mddev->new_level);
5866	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5867	if (!conf->thread) {
5868		printk(KERN_ERR
5869		       "md/raid:%s: couldn't allocate thread.\n",
5870		       mdname(mddev));
5871		goto abort;
5872	}
5873
5874	return conf;
5875
5876 abort:
5877	if (conf) {
5878		free_conf(conf);
5879		return ERR_PTR(-EIO);
5880	} else
5881		return ERR_PTR(-ENOMEM);
5882}
5883
5884static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5885{
5886	switch (algo) {
5887	case ALGORITHM_PARITY_0:
5888		if (raid_disk < max_degraded)
5889			return 1;
5890		break;
5891	case ALGORITHM_PARITY_N:
5892		if (raid_disk >= raid_disks - max_degraded)
5893			return 1;
5894		break;
5895	case ALGORITHM_PARITY_0_6:
5896		if (raid_disk == 0 ||
5897		    raid_disk == raid_disks - 1)
5898			return 1;
5899		break;
5900	case ALGORITHM_LEFT_ASYMMETRIC_6:
5901	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5902	case ALGORITHM_LEFT_SYMMETRIC_6:
5903	case ALGORITHM_RIGHT_SYMMETRIC_6:
5904		if (raid_disk == raid_disks - 1)
5905			return 1;
5906	}
5907	return 0;
5908}
5909
5910static int run(struct mddev *mddev)
5911{
5912	struct r5conf *conf;
5913	int working_disks = 0;
5914	int dirty_parity_disks = 0;
5915	struct md_rdev *rdev;
5916	sector_t reshape_offset = 0;
5917	int i;
5918	long long min_offset_diff = 0;
5919	int first = 1;
5920
5921	if (mddev->recovery_cp != MaxSector)
5922		printk(KERN_NOTICE "md/raid:%s: not clean"
5923		       " -- starting background reconstruction\n",
5924		       mdname(mddev));
5925
5926	rdev_for_each(rdev, mddev) {
5927		long long diff;
5928		if (rdev->raid_disk < 0)
5929			continue;
5930		diff = (rdev->new_data_offset - rdev->data_offset);
5931		if (first) {
5932			min_offset_diff = diff;
5933			first = 0;
5934		} else if (mddev->reshape_backwards &&
5935			 diff < min_offset_diff)
5936			min_offset_diff = diff;
5937		else if (!mddev->reshape_backwards &&
5938			 diff > min_offset_diff)
5939			min_offset_diff = diff;
5940	}
5941
5942	if (mddev->reshape_position != MaxSector) {
5943		/* Check that we can continue the reshape.
5944		 * Difficulties arise if the stripe we would write to
5945		 * next is at or after the stripe we would read from next.
5946		 * For a reshape that changes the number of devices, this
5947		 * is only possible for a very short time, and mdadm makes
5948		 * sure that time appears to have past before assembling
5949		 * the array.  So we fail if that time hasn't passed.
5950		 * For a reshape that keeps the number of devices the same
5951		 * mdadm must be monitoring the reshape can keeping the
5952		 * critical areas read-only and backed up.  It will start
5953		 * the array in read-only mode, so we check for that.
5954		 */
5955		sector_t here_new, here_old;
5956		int old_disks;
5957		int max_degraded = (mddev->level == 6 ? 2 : 1);
5958
5959		if (mddev->new_level != mddev->level) {
5960			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5961			       "required - aborting.\n",
5962			       mdname(mddev));
5963			return -EINVAL;
5964		}
5965		old_disks = mddev->raid_disks - mddev->delta_disks;
5966		/* reshape_position must be on a new-stripe boundary, and one
5967		 * further up in new geometry must map after here in old
5968		 * geometry.
5969		 */
5970		here_new = mddev->reshape_position;
5971		if (sector_div(here_new, mddev->new_chunk_sectors *
5972			       (mddev->raid_disks - max_degraded))) {
5973			printk(KERN_ERR "md/raid:%s: reshape_position not "
5974			       "on a stripe boundary\n", mdname(mddev));
5975			return -EINVAL;
5976		}
5977		reshape_offset = here_new * mddev->new_chunk_sectors;
5978		/* here_new is the stripe we will write to */
5979		here_old = mddev->reshape_position;
5980		sector_div(here_old, mddev->chunk_sectors *
5981			   (old_disks-max_degraded));
5982		/* here_old is the first stripe that we might need to read
5983		 * from */
5984		if (mddev->delta_disks == 0) {
5985			if ((here_new * mddev->new_chunk_sectors !=
5986			     here_old * mddev->chunk_sectors)) {
5987				printk(KERN_ERR "md/raid:%s: reshape position is"
5988				       " confused - aborting\n", mdname(mddev));
5989				return -EINVAL;
5990			}
5991			/* We cannot be sure it is safe to start an in-place
5992			 * reshape.  It is only safe if user-space is monitoring
5993			 * and taking constant backups.
5994			 * mdadm always starts a situation like this in
5995			 * readonly mode so it can take control before
5996			 * allowing any writes.  So just check for that.
5997			 */
5998			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5999			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6000				/* not really in-place - so OK */;
6001			else if (mddev->ro == 0) {
6002				printk(KERN_ERR "md/raid:%s: in-place reshape "
6003				       "must be started in read-only mode "
6004				       "- aborting\n",
6005				       mdname(mddev));
6006				return -EINVAL;
6007			}
6008		} else if (mddev->reshape_backwards
6009		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6010		       here_old * mddev->chunk_sectors)
6011		    : (here_new * mddev->new_chunk_sectors >=
6012		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6013			/* Reading from the same stripe as writing to - bad */
6014			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6015			       "auto-recovery - aborting.\n",
6016			       mdname(mddev));
6017			return -EINVAL;
6018		}
6019		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6020		       mdname(mddev));
6021		/* OK, we should be able to continue; */
6022	} else {
6023		BUG_ON(mddev->level != mddev->new_level);
6024		BUG_ON(mddev->layout != mddev->new_layout);
6025		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6026		BUG_ON(mddev->delta_disks != 0);
6027	}
6028
6029	if (mddev->private == NULL)
6030		conf = setup_conf(mddev);
6031	else
6032		conf = mddev->private;
6033
6034	if (IS_ERR(conf))
6035		return PTR_ERR(conf);
6036
6037	conf->min_offset_diff = min_offset_diff;
6038	mddev->thread = conf->thread;
6039	conf->thread = NULL;
6040	mddev->private = conf;
6041
6042	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6043	     i++) {
6044		rdev = conf->disks[i].rdev;
6045		if (!rdev && conf->disks[i].replacement) {
6046			/* The replacement is all we have yet */
6047			rdev = conf->disks[i].replacement;
6048			conf->disks[i].replacement = NULL;
6049			clear_bit(Replacement, &rdev->flags);
6050			conf->disks[i].rdev = rdev;
6051		}
6052		if (!rdev)
6053			continue;
6054		if (conf->disks[i].replacement &&
6055		    conf->reshape_progress != MaxSector) {
6056			/* replacements and reshape simply do not mix. */
6057			printk(KERN_ERR "md: cannot handle concurrent "
6058			       "replacement and reshape.\n");
6059			goto abort;
6060		}
6061		if (test_bit(In_sync, &rdev->flags)) {
6062			working_disks++;
6063			continue;
6064		}
6065		/* This disc is not fully in-sync.  However if it
6066		 * just stored parity (beyond the recovery_offset),
6067		 * when we don't need to be concerned about the
6068		 * array being dirty.
6069		 * When reshape goes 'backwards', we never have
6070		 * partially completed devices, so we only need
6071		 * to worry about reshape going forwards.
6072		 */
6073		/* Hack because v0.91 doesn't store recovery_offset properly. */
6074		if (mddev->major_version == 0 &&
6075		    mddev->minor_version > 90)
6076			rdev->recovery_offset = reshape_offset;
6077
6078		if (rdev->recovery_offset < reshape_offset) {
6079			/* We need to check old and new layout */
6080			if (!only_parity(rdev->raid_disk,
6081					 conf->algorithm,
6082					 conf->raid_disks,
6083					 conf->max_degraded))
6084				continue;
6085		}
6086		if (!only_parity(rdev->raid_disk,
6087				 conf->prev_algo,
6088				 conf->previous_raid_disks,
6089				 conf->max_degraded))
6090			continue;
6091		dirty_parity_disks++;
6092	}
6093
6094	/*
6095	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6096	 */
6097	mddev->degraded = calc_degraded(conf);
6098
6099	if (has_failed(conf)) {
6100		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6101			" (%d/%d failed)\n",
6102			mdname(mddev), mddev->degraded, conf->raid_disks);
6103		goto abort;
6104	}
6105
6106	/* device size must be a multiple of chunk size */
6107	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6108	mddev->resync_max_sectors = mddev->dev_sectors;
6109
6110	if (mddev->degraded > dirty_parity_disks &&
6111	    mddev->recovery_cp != MaxSector) {
6112		if (mddev->ok_start_degraded)
6113			printk(KERN_WARNING
6114			       "md/raid:%s: starting dirty degraded array"
6115			       " - data corruption possible.\n",
6116			       mdname(mddev));
6117		else {
6118			printk(KERN_ERR
6119			       "md/raid:%s: cannot start dirty degraded array.\n",
6120			       mdname(mddev));
6121			goto abort;
6122		}
6123	}
6124
6125	if (mddev->degraded == 0)
6126		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6127		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6128		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6129		       mddev->new_layout);
6130	else
6131		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6132		       " out of %d devices, algorithm %d\n",
6133		       mdname(mddev), conf->level,
6134		       mddev->raid_disks - mddev->degraded,
6135		       mddev->raid_disks, mddev->new_layout);
6136
6137	print_raid5_conf(conf);
6138
6139	if (conf->reshape_progress != MaxSector) {
6140		conf->reshape_safe = conf->reshape_progress;
6141		atomic_set(&conf->reshape_stripes, 0);
6142		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6143		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6144		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6145		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6146		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6147							"reshape");
6148	}
6149
6150	/* Ok, everything is just fine now */
6151	if (mddev->to_remove == &raid5_attrs_group)
6152		mddev->to_remove = NULL;
6153	else if (mddev->kobj.sd &&
6154	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6155		printk(KERN_WARNING
6156		       "raid5: failed to create sysfs attributes for %s\n",
6157		       mdname(mddev));
6158	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6159
6160	if (mddev->queue) {
6161		int chunk_size;
6162		bool discard_supported = true;
6163		/* read-ahead size must cover two whole stripes, which
6164		 * is 2 * (datadisks) * chunksize where 'n' is the
6165		 * number of raid devices
6166		 */
6167		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6168		int stripe = data_disks *
6169			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6170		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6171			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6172
6173		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6174
6175		mddev->queue->backing_dev_info.congested_data = mddev;
6176		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6177
6178		chunk_size = mddev->chunk_sectors << 9;
6179		blk_queue_io_min(mddev->queue, chunk_size);
6180		blk_queue_io_opt(mddev->queue, chunk_size *
6181				 (conf->raid_disks - conf->max_degraded));
6182		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6183		/*
6184		 * We can only discard a whole stripe. It doesn't make sense to
6185		 * discard data disk but write parity disk
6186		 */
6187		stripe = stripe * PAGE_SIZE;
6188		/* Round up to power of 2, as discard handling
6189		 * currently assumes that */
6190		while ((stripe-1) & stripe)
6191			stripe = (stripe | (stripe-1)) + 1;
6192		mddev->queue->limits.discard_alignment = stripe;
6193		mddev->queue->limits.discard_granularity = stripe;
6194		/*
6195		 * unaligned part of discard request will be ignored, so can't
6196		 * guarantee discard_zeroes_data
6197		 */
6198		mddev->queue->limits.discard_zeroes_data = 0;
6199
6200		blk_queue_max_write_same_sectors(mddev->queue, 0);
6201
6202		rdev_for_each(rdev, mddev) {
6203			disk_stack_limits(mddev->gendisk, rdev->bdev,
6204					  rdev->data_offset << 9);
6205			disk_stack_limits(mddev->gendisk, rdev->bdev,
6206					  rdev->new_data_offset << 9);
6207			/*
6208			 * discard_zeroes_data is required, otherwise data
6209			 * could be lost. Consider a scenario: discard a stripe
6210			 * (the stripe could be inconsistent if
6211			 * discard_zeroes_data is 0); write one disk of the
6212			 * stripe (the stripe could be inconsistent again
6213			 * depending on which disks are used to calculate
6214			 * parity); the disk is broken; The stripe data of this
6215			 * disk is lost.
6216			 */
6217			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6218			    !bdev_get_queue(rdev->bdev)->
6219						limits.discard_zeroes_data)
6220				discard_supported = false;
6221			/* Unfortunately, discard_zeroes_data is not currently
6222			 * a guarantee - just a hint.  So we only allow DISCARD
6223			 * if the sysadmin has confirmed that only safe devices
6224			 * are in use by setting a module parameter.
6225			 */
6226			if (!devices_handle_discard_safely) {
6227				if (discard_supported) {
6228					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6229					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6230				}
6231				discard_supported = false;
6232			}
6233		}
6234
6235		if (discard_supported &&
6236		   mddev->queue->limits.max_discard_sectors >= stripe &&
6237		   mddev->queue->limits.discard_granularity >= stripe)
6238			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6239						mddev->queue);
6240		else
6241			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6242						mddev->queue);
6243	}
6244
6245	return 0;
6246abort:
6247	md_unregister_thread(&mddev->thread);
6248	print_raid5_conf(conf);
6249	free_conf(conf);
6250	mddev->private = NULL;
6251	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6252	return -EIO;
6253}
6254
6255static int stop(struct mddev *mddev)
6256{
6257	struct r5conf *conf = mddev->private;
6258
6259	md_unregister_thread(&mddev->thread);
6260	if (mddev->queue)
6261		mddev->queue->backing_dev_info.congested_fn = NULL;
6262	free_conf(conf);
6263	mddev->private = NULL;
6264	mddev->to_remove = &raid5_attrs_group;
6265	return 0;
6266}
6267
6268static void status(struct seq_file *seq, struct mddev *mddev)
6269{
6270	struct r5conf *conf = mddev->private;
6271	int i;
6272
6273	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6274		mddev->chunk_sectors / 2, mddev->layout);
6275	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6276	for (i = 0; i < conf->raid_disks; i++)
6277		seq_printf (seq, "%s",
6278			       conf->disks[i].rdev &&
6279			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6280	seq_printf (seq, "]");
6281}
6282
6283static void print_raid5_conf (struct r5conf *conf)
6284{
6285	int i;
6286	struct disk_info *tmp;
6287
6288	printk(KERN_DEBUG "RAID conf printout:\n");
6289	if (!conf) {
6290		printk("(conf==NULL)\n");
6291		return;
6292	}
6293	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6294	       conf->raid_disks,
6295	       conf->raid_disks - conf->mddev->degraded);
6296
6297	for (i = 0; i < conf->raid_disks; i++) {
6298		char b[BDEVNAME_SIZE];
6299		tmp = conf->disks + i;
6300		if (tmp->rdev)
6301			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6302			       i, !test_bit(Faulty, &tmp->rdev->flags),
6303			       bdevname(tmp->rdev->bdev, b));
6304	}
6305}
6306
6307static int raid5_spare_active(struct mddev *mddev)
6308{
6309	int i;
6310	struct r5conf *conf = mddev->private;
6311	struct disk_info *tmp;
6312	int count = 0;
6313	unsigned long flags;
6314
6315	for (i = 0; i < conf->raid_disks; i++) {
6316		tmp = conf->disks + i;
6317		if (tmp->replacement
6318		    && tmp->replacement->recovery_offset == MaxSector
6319		    && !test_bit(Faulty, &tmp->replacement->flags)
6320		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6321			/* Replacement has just become active. */
6322			if (!tmp->rdev
6323			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6324				count++;
6325			if (tmp->rdev) {
6326				/* Replaced device not technically faulty,
6327				 * but we need to be sure it gets removed
6328				 * and never re-added.
6329				 */
6330				set_bit(Faulty, &tmp->rdev->flags);
6331				sysfs_notify_dirent_safe(
6332					tmp->rdev->sysfs_state);
6333			}
6334			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6335		} else if (tmp->rdev
6336		    && tmp->rdev->recovery_offset == MaxSector
6337		    && !test_bit(Faulty, &tmp->rdev->flags)
6338		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6339			count++;
6340			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6341		}
6342	}
6343	spin_lock_irqsave(&conf->device_lock, flags);
6344	mddev->degraded = calc_degraded(conf);
6345	spin_unlock_irqrestore(&conf->device_lock, flags);
6346	print_raid5_conf(conf);
6347	return count;
6348}
6349
6350static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6351{
6352	struct r5conf *conf = mddev->private;
6353	int err = 0;
6354	int number = rdev->raid_disk;
6355	struct md_rdev **rdevp;
6356	struct disk_info *p = conf->disks + number;
6357
6358	print_raid5_conf(conf);
6359	if (rdev == p->rdev)
6360		rdevp = &p->rdev;
6361	else if (rdev == p->replacement)
6362		rdevp = &p->replacement;
6363	else
6364		return 0;
6365
6366	if (number >= conf->raid_disks &&
6367	    conf->reshape_progress == MaxSector)
6368		clear_bit(In_sync, &rdev->flags);
6369
6370	if (test_bit(In_sync, &rdev->flags) ||
6371	    atomic_read(&rdev->nr_pending)) {
6372		err = -EBUSY;
6373		goto abort;
6374	}
6375	/* Only remove non-faulty devices if recovery
6376	 * isn't possible.
6377	 */
6378	if (!test_bit(Faulty, &rdev->flags) &&
6379	    mddev->recovery_disabled != conf->recovery_disabled &&
6380	    !has_failed(conf) &&
6381	    (!p->replacement || p->replacement == rdev) &&
6382	    number < conf->raid_disks) {
6383		err = -EBUSY;
6384		goto abort;
6385	}
6386	*rdevp = NULL;
6387	synchronize_rcu();
6388	if (atomic_read(&rdev->nr_pending)) {
6389		/* lost the race, try later */
6390		err = -EBUSY;
6391		*rdevp = rdev;
6392	} else if (p->replacement) {
6393		/* We must have just cleared 'rdev' */
6394		p->rdev = p->replacement;
6395		clear_bit(Replacement, &p->replacement->flags);
6396		smp_mb(); /* Make sure other CPUs may see both as identical
6397			   * but will never see neither - if they are careful
6398			   */
6399		p->replacement = NULL;
6400		clear_bit(WantReplacement, &rdev->flags);
6401	} else
6402		/* We might have just removed the Replacement as faulty-
6403		 * clear the bit just in case
6404		 */
6405		clear_bit(WantReplacement, &rdev->flags);
6406abort:
6407
6408	print_raid5_conf(conf);
6409	return err;
6410}
6411
6412static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6413{
6414	struct r5conf *conf = mddev->private;
6415	int err = -EEXIST;
6416	int disk;
6417	struct disk_info *p;
6418	int first = 0;
6419	int last = conf->raid_disks - 1;
6420
6421	if (mddev->recovery_disabled == conf->recovery_disabled)
6422		return -EBUSY;
6423
6424	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6425		/* no point adding a device */
6426		return -EINVAL;
6427
6428	if (rdev->raid_disk >= 0)
6429		first = last = rdev->raid_disk;
6430
6431	/*
6432	 * find the disk ... but prefer rdev->saved_raid_disk
6433	 * if possible.
6434	 */
6435	if (rdev->saved_raid_disk >= 0 &&
6436	    rdev->saved_raid_disk >= first &&
6437	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6438		first = rdev->saved_raid_disk;
6439
6440	for (disk = first; disk <= last; disk++) {
6441		p = conf->disks + disk;
6442		if (p->rdev == NULL) {
6443			clear_bit(In_sync, &rdev->flags);
6444			rdev->raid_disk = disk;
6445			err = 0;
6446			if (rdev->saved_raid_disk != disk)
6447				conf->fullsync = 1;
6448			rcu_assign_pointer(p->rdev, rdev);
6449			goto out;
6450		}
6451	}
6452	for (disk = first; disk <= last; disk++) {
6453		p = conf->disks + disk;
6454		if (test_bit(WantReplacement, &p->rdev->flags) &&
6455		    p->replacement == NULL) {
6456			clear_bit(In_sync, &rdev->flags);
6457			set_bit(Replacement, &rdev->flags);
6458			rdev->raid_disk = disk;
6459			err = 0;
6460			conf->fullsync = 1;
6461			rcu_assign_pointer(p->replacement, rdev);
6462			break;
6463		}
6464	}
6465out:
6466	print_raid5_conf(conf);
6467	return err;
6468}
6469
6470static int raid5_resize(struct mddev *mddev, sector_t sectors)
6471{
6472	/* no resync is happening, and there is enough space
6473	 * on all devices, so we can resize.
6474	 * We need to make sure resync covers any new space.
6475	 * If the array is shrinking we should possibly wait until
6476	 * any io in the removed space completes, but it hardly seems
6477	 * worth it.
6478	 */
6479	sector_t newsize;
6480	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6481	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6482	if (mddev->external_size &&
6483	    mddev->array_sectors > newsize)
6484		return -EINVAL;
6485	if (mddev->bitmap) {
6486		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6487		if (ret)
6488			return ret;
6489	}
6490	md_set_array_sectors(mddev, newsize);
6491	set_capacity(mddev->gendisk, mddev->array_sectors);
6492	revalidate_disk(mddev->gendisk);
6493	if (sectors > mddev->dev_sectors &&
6494	    mddev->recovery_cp > mddev->dev_sectors) {
6495		mddev->recovery_cp = mddev->dev_sectors;
6496		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6497	}
6498	mddev->dev_sectors = sectors;
6499	mddev->resync_max_sectors = sectors;
6500	return 0;
6501}
6502
6503static int check_stripe_cache(struct mddev *mddev)
6504{
6505	/* Can only proceed if there are plenty of stripe_heads.
6506	 * We need a minimum of one full stripe,, and for sensible progress
6507	 * it is best to have about 4 times that.
6508	 * If we require 4 times, then the default 256 4K stripe_heads will
6509	 * allow for chunk sizes up to 256K, which is probably OK.
6510	 * If the chunk size is greater, user-space should request more
6511	 * stripe_heads first.
6512	 */
6513	struct r5conf *conf = mddev->private;
6514	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6515	    > conf->max_nr_stripes ||
6516	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6517	    > conf->max_nr_stripes) {
6518		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6519		       mdname(mddev),
6520		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6521			/ STRIPE_SIZE)*4);
6522		return 0;
6523	}
6524	return 1;
6525}
6526
6527static int check_reshape(struct mddev *mddev)
6528{
6529	struct r5conf *conf = mddev->private;
6530
6531	if (mddev->delta_disks == 0 &&
6532	    mddev->new_layout == mddev->layout &&
6533	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6534		return 0; /* nothing to do */
6535	if (has_failed(conf))
6536		return -EINVAL;
6537	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6538		/* We might be able to shrink, but the devices must
6539		 * be made bigger first.
6540		 * For raid6, 4 is the minimum size.
6541		 * Otherwise 2 is the minimum
6542		 */
6543		int min = 2;
6544		if (mddev->level == 6)
6545			min = 4;
6546		if (mddev->raid_disks + mddev->delta_disks < min)
6547			return -EINVAL;
6548	}
6549
6550	if (!check_stripe_cache(mddev))
6551		return -ENOSPC;
6552
6553	return resize_stripes(conf, (conf->previous_raid_disks
6554				     + mddev->delta_disks));
6555}
6556
6557static int raid5_start_reshape(struct mddev *mddev)
6558{
6559	struct r5conf *conf = mddev->private;
6560	struct md_rdev *rdev;
6561	int spares = 0;
6562	unsigned long flags;
6563
6564	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6565		return -EBUSY;
6566
6567	if (!check_stripe_cache(mddev))
6568		return -ENOSPC;
6569
6570	if (has_failed(conf))
6571		return -EINVAL;
6572
6573	rdev_for_each(rdev, mddev) {
6574		if (!test_bit(In_sync, &rdev->flags)
6575		    && !test_bit(Faulty, &rdev->flags))
6576			spares++;
6577	}
6578
6579	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6580		/* Not enough devices even to make a degraded array
6581		 * of that size
6582		 */
6583		return -EINVAL;
6584
6585	/* Refuse to reduce size of the array.  Any reductions in
6586	 * array size must be through explicit setting of array_size
6587	 * attribute.
6588	 */
6589	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6590	    < mddev->array_sectors) {
6591		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6592		       "before number of disks\n", mdname(mddev));
6593		return -EINVAL;
6594	}
6595
6596	atomic_set(&conf->reshape_stripes, 0);
6597	spin_lock_irq(&conf->device_lock);
6598	write_seqcount_begin(&conf->gen_lock);
6599	conf->previous_raid_disks = conf->raid_disks;
6600	conf->raid_disks += mddev->delta_disks;
6601	conf->prev_chunk_sectors = conf->chunk_sectors;
6602	conf->chunk_sectors = mddev->new_chunk_sectors;
6603	conf->prev_algo = conf->algorithm;
6604	conf->algorithm = mddev->new_layout;
6605	conf->generation++;
6606	/* Code that selects data_offset needs to see the generation update
6607	 * if reshape_progress has been set - so a memory barrier needed.
6608	 */
6609	smp_mb();
6610	if (mddev->reshape_backwards)
6611		conf->reshape_progress = raid5_size(mddev, 0, 0);
6612	else
6613		conf->reshape_progress = 0;
6614	conf->reshape_safe = conf->reshape_progress;
6615	write_seqcount_end(&conf->gen_lock);
6616	spin_unlock_irq(&conf->device_lock);
6617
6618	/* Now make sure any requests that proceeded on the assumption
6619	 * the reshape wasn't running - like Discard or Read - have
6620	 * completed.
6621	 */
6622	mddev_suspend(mddev);
6623	mddev_resume(mddev);
6624
6625	/* Add some new drives, as many as will fit.
6626	 * We know there are enough to make the newly sized array work.
6627	 * Don't add devices if we are reducing the number of
6628	 * devices in the array.  This is because it is not possible
6629	 * to correctly record the "partially reconstructed" state of
6630	 * such devices during the reshape and confusion could result.
6631	 */
6632	if (mddev->delta_disks >= 0) {
6633		rdev_for_each(rdev, mddev)
6634			if (rdev->raid_disk < 0 &&
6635			    !test_bit(Faulty, &rdev->flags)) {
6636				if (raid5_add_disk(mddev, rdev) == 0) {
6637					if (rdev->raid_disk
6638					    >= conf->previous_raid_disks)
6639						set_bit(In_sync, &rdev->flags);
6640					else
6641						rdev->recovery_offset = 0;
6642
6643					if (sysfs_link_rdev(mddev, rdev))
6644						/* Failure here is OK */;
6645				}
6646			} else if (rdev->raid_disk >= conf->previous_raid_disks
6647				   && !test_bit(Faulty, &rdev->flags)) {
6648				/* This is a spare that was manually added */
6649				set_bit(In_sync, &rdev->flags);
6650			}
6651
6652		/* When a reshape changes the number of devices,
6653		 * ->degraded is measured against the larger of the
6654		 * pre and post number of devices.
6655		 */
6656		spin_lock_irqsave(&conf->device_lock, flags);
6657		mddev->degraded = calc_degraded(conf);
6658		spin_unlock_irqrestore(&conf->device_lock, flags);
6659	}
6660	mddev->raid_disks = conf->raid_disks;
6661	mddev->reshape_position = conf->reshape_progress;
6662	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6663
6664	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6665	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6666	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6667	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6668	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6669						"reshape");
6670	if (!mddev->sync_thread) {
6671		mddev->recovery = 0;
6672		spin_lock_irq(&conf->device_lock);
6673		write_seqcount_begin(&conf->gen_lock);
6674		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6675		mddev->new_chunk_sectors =
6676			conf->chunk_sectors = conf->prev_chunk_sectors;
6677		mddev->new_layout = conf->algorithm = conf->prev_algo;
6678		rdev_for_each(rdev, mddev)
6679			rdev->new_data_offset = rdev->data_offset;
6680		smp_wmb();
6681		conf->generation --;
6682		conf->reshape_progress = MaxSector;
6683		mddev->reshape_position = MaxSector;
6684		write_seqcount_end(&conf->gen_lock);
6685		spin_unlock_irq(&conf->device_lock);
6686		return -EAGAIN;
6687	}
6688	conf->reshape_checkpoint = jiffies;
6689	md_wakeup_thread(mddev->sync_thread);
6690	md_new_event(mddev);
6691	return 0;
6692}
6693
6694/* This is called from the reshape thread and should make any
6695 * changes needed in 'conf'
6696 */
6697static void end_reshape(struct r5conf *conf)
6698{
6699
6700	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6701		struct md_rdev *rdev;
6702
6703		spin_lock_irq(&conf->device_lock);
6704		conf->previous_raid_disks = conf->raid_disks;
6705		rdev_for_each(rdev, conf->mddev)
6706			rdev->data_offset = rdev->new_data_offset;
6707		smp_wmb();
6708		conf->reshape_progress = MaxSector;
6709		spin_unlock_irq(&conf->device_lock);
6710		wake_up(&conf->wait_for_overlap);
6711
6712		/* read-ahead size must cover two whole stripes, which is
6713		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6714		 */
6715		if (conf->mddev->queue) {
6716			int data_disks = conf->raid_disks - conf->max_degraded;
6717			int stripe = data_disks * ((conf->chunk_sectors << 9)
6718						   / PAGE_SIZE);
6719			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6720				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6721		}
6722	}
6723}
6724
6725/* This is called from the raid5d thread with mddev_lock held.
6726 * It makes config changes to the device.
6727 */
6728static void raid5_finish_reshape(struct mddev *mddev)
6729{
6730	struct r5conf *conf = mddev->private;
6731
6732	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6733
6734		if (mddev->delta_disks > 0) {
6735			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6736			set_capacity(mddev->gendisk, mddev->array_sectors);
6737			revalidate_disk(mddev->gendisk);
6738		} else {
6739			int d;
6740			spin_lock_irq(&conf->device_lock);
6741			mddev->degraded = calc_degraded(conf);
6742			spin_unlock_irq(&conf->device_lock);
6743			for (d = conf->raid_disks ;
6744			     d < conf->raid_disks - mddev->delta_disks;
6745			     d++) {
6746				struct md_rdev *rdev = conf->disks[d].rdev;
6747				if (rdev)
6748					clear_bit(In_sync, &rdev->flags);
6749				rdev = conf->disks[d].replacement;
6750				if (rdev)
6751					clear_bit(In_sync, &rdev->flags);
6752			}
6753		}
6754		mddev->layout = conf->algorithm;
6755		mddev->chunk_sectors = conf->chunk_sectors;
6756		mddev->reshape_position = MaxSector;
6757		mddev->delta_disks = 0;
6758		mddev->reshape_backwards = 0;
6759	}
6760}
6761
6762static void raid5_quiesce(struct mddev *mddev, int state)
6763{
6764	struct r5conf *conf = mddev->private;
6765
6766	switch(state) {
6767	case 2: /* resume for a suspend */
6768		wake_up(&conf->wait_for_overlap);
6769		break;
6770
6771	case 1: /* stop all writes */
6772		lock_all_device_hash_locks_irq(conf);
6773		/* '2' tells resync/reshape to pause so that all
6774		 * active stripes can drain
6775		 */
6776		conf->quiesce = 2;
6777		wait_event_cmd(conf->wait_for_stripe,
6778				    atomic_read(&conf->active_stripes) == 0 &&
6779				    atomic_read(&conf->active_aligned_reads) == 0,
6780				    unlock_all_device_hash_locks_irq(conf),
6781				    lock_all_device_hash_locks_irq(conf));
6782		conf->quiesce = 1;
6783		unlock_all_device_hash_locks_irq(conf);
6784		/* allow reshape to continue */
6785		wake_up(&conf->wait_for_overlap);
6786		break;
6787
6788	case 0: /* re-enable writes */
6789		lock_all_device_hash_locks_irq(conf);
6790		conf->quiesce = 0;
6791		wake_up(&conf->wait_for_stripe);
6792		wake_up(&conf->wait_for_overlap);
6793		unlock_all_device_hash_locks_irq(conf);
6794		break;
6795	}
6796}
6797
6798static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6799{
6800	struct r0conf *raid0_conf = mddev->private;
6801	sector_t sectors;
6802
6803	/* for raid0 takeover only one zone is supported */
6804	if (raid0_conf->nr_strip_zones > 1) {
6805		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6806		       mdname(mddev));
6807		return ERR_PTR(-EINVAL);
6808	}
6809
6810	sectors = raid0_conf->strip_zone[0].zone_end;
6811	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6812	mddev->dev_sectors = sectors;
6813	mddev->new_level = level;
6814	mddev->new_layout = ALGORITHM_PARITY_N;
6815	mddev->new_chunk_sectors = mddev->chunk_sectors;
6816	mddev->raid_disks += 1;
6817	mddev->delta_disks = 1;
6818	/* make sure it will be not marked as dirty */
6819	mddev->recovery_cp = MaxSector;
6820
6821	return setup_conf(mddev);
6822}
6823
6824static void *raid5_takeover_raid1(struct mddev *mddev)
6825{
6826	int chunksect;
6827
6828	if (mddev->raid_disks != 2 ||
6829	    mddev->degraded > 1)
6830		return ERR_PTR(-EINVAL);
6831
6832	/* Should check if there are write-behind devices? */
6833
6834	chunksect = 64*2; /* 64K by default */
6835
6836	/* The array must be an exact multiple of chunksize */
6837	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6838		chunksect >>= 1;
6839
6840	if ((chunksect<<9) < STRIPE_SIZE)
6841		/* array size does not allow a suitable chunk size */
6842		return ERR_PTR(-EINVAL);
6843
6844	mddev->new_level = 5;
6845	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6846	mddev->new_chunk_sectors = chunksect;
6847
6848	return setup_conf(mddev);
6849}
6850
6851static void *raid5_takeover_raid6(struct mddev *mddev)
6852{
6853	int new_layout;
6854
6855	switch (mddev->layout) {
6856	case ALGORITHM_LEFT_ASYMMETRIC_6:
6857		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6858		break;
6859	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6860		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6861		break;
6862	case ALGORITHM_LEFT_SYMMETRIC_6:
6863		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6864		break;
6865	case ALGORITHM_RIGHT_SYMMETRIC_6:
6866		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6867		break;
6868	case ALGORITHM_PARITY_0_6:
6869		new_layout = ALGORITHM_PARITY_0;
6870		break;
6871	case ALGORITHM_PARITY_N:
6872		new_layout = ALGORITHM_PARITY_N;
6873		break;
6874	default:
6875		return ERR_PTR(-EINVAL);
6876	}
6877	mddev->new_level = 5;
6878	mddev->new_layout = new_layout;
6879	mddev->delta_disks = -1;
6880	mddev->raid_disks -= 1;
6881	return setup_conf(mddev);
6882}
6883
6884static int raid5_check_reshape(struct mddev *mddev)
6885{
6886	/* For a 2-drive array, the layout and chunk size can be changed
6887	 * immediately as not restriping is needed.
6888	 * For larger arrays we record the new value - after validation
6889	 * to be used by a reshape pass.
6890	 */
6891	struct r5conf *conf = mddev->private;
6892	int new_chunk = mddev->new_chunk_sectors;
6893
6894	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6895		return -EINVAL;
6896	if (new_chunk > 0) {
6897		if (!is_power_of_2(new_chunk))
6898			return -EINVAL;
6899		if (new_chunk < (PAGE_SIZE>>9))
6900			return -EINVAL;
6901		if (mddev->array_sectors & (new_chunk-1))
6902			/* not factor of array size */
6903			return -EINVAL;
6904	}
6905
6906	/* They look valid */
6907
6908	if (mddev->raid_disks == 2) {
6909		/* can make the change immediately */
6910		if (mddev->new_layout >= 0) {
6911			conf->algorithm = mddev->new_layout;
6912			mddev->layout = mddev->new_layout;
6913		}
6914		if (new_chunk > 0) {
6915			conf->chunk_sectors = new_chunk ;
6916			mddev->chunk_sectors = new_chunk;
6917		}
6918		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6919		md_wakeup_thread(mddev->thread);
6920	}
6921	return check_reshape(mddev);
6922}
6923
6924static int raid6_check_reshape(struct mddev *mddev)
6925{
6926	int new_chunk = mddev->new_chunk_sectors;
6927
6928	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6929		return -EINVAL;
6930	if (new_chunk > 0) {
6931		if (!is_power_of_2(new_chunk))
6932			return -EINVAL;
6933		if (new_chunk < (PAGE_SIZE >> 9))
6934			return -EINVAL;
6935		if (mddev->array_sectors & (new_chunk-1))
6936			/* not factor of array size */
6937			return -EINVAL;
6938	}
6939
6940	/* They look valid */
6941	return check_reshape(mddev);
6942}
6943
6944static void *raid5_takeover(struct mddev *mddev)
6945{
6946	/* raid5 can take over:
6947	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6948	 *  raid1 - if there are two drives.  We need to know the chunk size
6949	 *  raid4 - trivial - just use a raid4 layout.
6950	 *  raid6 - Providing it is a *_6 layout
6951	 */
6952	if (mddev->level == 0)
6953		return raid45_takeover_raid0(mddev, 5);
6954	if (mddev->level == 1)
6955		return raid5_takeover_raid1(mddev);
6956	if (mddev->level == 4) {
6957		mddev->new_layout = ALGORITHM_PARITY_N;
6958		mddev->new_level = 5;
6959		return setup_conf(mddev);
6960	}
6961	if (mddev->level == 6)
6962		return raid5_takeover_raid6(mddev);
6963
6964	return ERR_PTR(-EINVAL);
6965}
6966
6967static void *raid4_takeover(struct mddev *mddev)
6968{
6969	/* raid4 can take over:
6970	 *  raid0 - if there is only one strip zone
6971	 *  raid5 - if layout is right
6972	 */
6973	if (mddev->level == 0)
6974		return raid45_takeover_raid0(mddev, 4);
6975	if (mddev->level == 5 &&
6976	    mddev->layout == ALGORITHM_PARITY_N) {
6977		mddev->new_layout = 0;
6978		mddev->new_level = 4;
6979		return setup_conf(mddev);
6980	}
6981	return ERR_PTR(-EINVAL);
6982}
6983
6984static struct md_personality raid5_personality;
6985
6986static void *raid6_takeover(struct mddev *mddev)
6987{
6988	/* Currently can only take over a raid5.  We map the
6989	 * personality to an equivalent raid6 personality
6990	 * with the Q block at the end.
6991	 */
6992	int new_layout;
6993
6994	if (mddev->pers != &raid5_personality)
6995		return ERR_PTR(-EINVAL);
6996	if (mddev->degraded > 1)
6997		return ERR_PTR(-EINVAL);
6998	if (mddev->raid_disks > 253)
6999		return ERR_PTR(-EINVAL);
7000	if (mddev->raid_disks < 3)
7001		return ERR_PTR(-EINVAL);
7002
7003	switch (mddev->layout) {
7004	case ALGORITHM_LEFT_ASYMMETRIC:
7005		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7006		break;
7007	case ALGORITHM_RIGHT_ASYMMETRIC:
7008		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7009		break;
7010	case ALGORITHM_LEFT_SYMMETRIC:
7011		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7012		break;
7013	case ALGORITHM_RIGHT_SYMMETRIC:
7014		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7015		break;
7016	case ALGORITHM_PARITY_0:
7017		new_layout = ALGORITHM_PARITY_0_6;
7018		break;
7019	case ALGORITHM_PARITY_N:
7020		new_layout = ALGORITHM_PARITY_N;
7021		break;
7022	default:
7023		return ERR_PTR(-EINVAL);
7024	}
7025	mddev->new_level = 6;
7026	mddev->new_layout = new_layout;
7027	mddev->delta_disks = 1;
7028	mddev->raid_disks += 1;
7029	return setup_conf(mddev);
7030}
7031
7032static struct md_personality raid6_personality =
7033{
7034	.name		= "raid6",
7035	.level		= 6,
7036	.owner		= THIS_MODULE,
7037	.make_request	= make_request,
7038	.run		= run,
7039	.stop		= stop,
7040	.status		= status,
7041	.error_handler	= error,
7042	.hot_add_disk	= raid5_add_disk,
7043	.hot_remove_disk= raid5_remove_disk,
7044	.spare_active	= raid5_spare_active,
7045	.sync_request	= sync_request,
7046	.resize		= raid5_resize,
7047	.size		= raid5_size,
7048	.check_reshape	= raid6_check_reshape,
7049	.start_reshape  = raid5_start_reshape,
7050	.finish_reshape = raid5_finish_reshape,
7051	.quiesce	= raid5_quiesce,
7052	.takeover	= raid6_takeover,
7053};
7054static struct md_personality raid5_personality =
7055{
7056	.name		= "raid5",
7057	.level		= 5,
7058	.owner		= THIS_MODULE,
7059	.make_request	= make_request,
7060	.run		= run,
7061	.stop		= stop,
7062	.status		= status,
7063	.error_handler	= error,
7064	.hot_add_disk	= raid5_add_disk,
7065	.hot_remove_disk= raid5_remove_disk,
7066	.spare_active	= raid5_spare_active,
7067	.sync_request	= sync_request,
7068	.resize		= raid5_resize,
7069	.size		= raid5_size,
7070	.check_reshape	= raid5_check_reshape,
7071	.start_reshape  = raid5_start_reshape,
7072	.finish_reshape = raid5_finish_reshape,
7073	.quiesce	= raid5_quiesce,
7074	.takeover	= raid5_takeover,
7075};
7076
7077static struct md_personality raid4_personality =
7078{
7079	.name		= "raid4",
7080	.level		= 4,
7081	.owner		= THIS_MODULE,
7082	.make_request	= make_request,
7083	.run		= run,
7084	.stop		= stop,
7085	.status		= status,
7086	.error_handler	= error,
7087	.hot_add_disk	= raid5_add_disk,
7088	.hot_remove_disk= raid5_remove_disk,
7089	.spare_active	= raid5_spare_active,
7090	.sync_request	= sync_request,
7091	.resize		= raid5_resize,
7092	.size		= raid5_size,
7093	.check_reshape	= raid5_check_reshape,
7094	.start_reshape  = raid5_start_reshape,
7095	.finish_reshape = raid5_finish_reshape,
7096	.quiesce	= raid5_quiesce,
7097	.takeover	= raid4_takeover,
7098};
7099
7100static int __init raid5_init(void)
7101{
7102	raid5_wq = alloc_workqueue("raid5wq",
7103		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7104	if (!raid5_wq)
7105		return -ENOMEM;
7106	register_md_personality(&raid6_personality);
7107	register_md_personality(&raid5_personality);
7108	register_md_personality(&raid4_personality);
7109	return 0;
7110}
7111
7112static void raid5_exit(void)
7113{
7114	unregister_md_personality(&raid6_personality);
7115	unregister_md_personality(&raid5_personality);
7116	unregister_md_personality(&raid4_personality);
7117	destroy_workqueue(raid5_wq);
7118}
7119
7120module_init(raid5_init);
7121module_exit(raid5_exit);
7122MODULE_LICENSE("GPL");
7123MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7124MODULE_ALIAS("md-personality-4"); /* RAID5 */
7125MODULE_ALIAS("md-raid5");
7126MODULE_ALIAS("md-raid4");
7127MODULE_ALIAS("md-level-5");
7128MODULE_ALIAS("md-level-4");
7129MODULE_ALIAS("md-personality-8"); /* RAID6 */
7130MODULE_ALIAS("md-raid6");
7131MODULE_ALIAS("md-level-6");
7132
7133/* This used to be two separate modules, they were: */
7134MODULE_ALIAS("raid5");
7135MODULE_ALIAS("raid6");
7136