stv06xx_hdcs.c revision c93396e13576928a073154b5715761ff8a998368
1/*
2 * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher
3 *		      Mark Cave-Ayland, Carlo E Prelz, Dick Streefland
4 * Copyright (c) 2002, 2003 Tuukka Toivonen
5 * Copyright (c) 2008 Erik Andrén
6 * Copyright (c) 2008 Chia-I Wu
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 *
22 * P/N 861037:      Sensor HDCS1000        ASIC STV0600
23 * P/N 861050-0010: Sensor HDCS1000        ASIC STV0600
24 * P/N 861050-0020: Sensor Photobit PB100  ASIC STV0600-1 - QuickCam Express
25 * P/N 861055:      Sensor ST VV6410       ASIC STV0610   - LEGO cam
26 * P/N 861075-0040: Sensor HDCS1000        ASIC
27 * P/N 961179-0700: Sensor ST VV6410       ASIC STV0602   - Dexxa WebCam USB
28 * P/N 861040-0000: Sensor ST VV6410       ASIC STV0610   - QuickCam Web
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include "stv06xx_hdcs.h"
34
35static struct v4l2_pix_format hdcs1x00_mode[] = {
36	{
37		HDCS_1X00_DEF_WIDTH,
38		HDCS_1X00_DEF_HEIGHT,
39		V4L2_PIX_FMT_SGRBG8,
40		V4L2_FIELD_NONE,
41		.sizeimage =
42			HDCS_1X00_DEF_WIDTH * HDCS_1X00_DEF_HEIGHT,
43		.bytesperline = HDCS_1X00_DEF_WIDTH,
44		.colorspace = V4L2_COLORSPACE_SRGB,
45		.priv = 1
46	}
47};
48
49static struct v4l2_pix_format hdcs1020_mode[] = {
50	{
51		HDCS_1020_DEF_WIDTH,
52		HDCS_1020_DEF_HEIGHT,
53		V4L2_PIX_FMT_SGRBG8,
54		V4L2_FIELD_NONE,
55		.sizeimage =
56			HDCS_1020_DEF_WIDTH * HDCS_1020_DEF_HEIGHT,
57		.bytesperline = HDCS_1020_DEF_WIDTH,
58		.colorspace = V4L2_COLORSPACE_SRGB,
59		.priv = 1
60	}
61};
62
63enum hdcs_power_state {
64	HDCS_STATE_SLEEP,
65	HDCS_STATE_IDLE,
66	HDCS_STATE_RUN
67};
68
69/* no lock? */
70struct hdcs {
71	enum hdcs_power_state state;
72	int w, h;
73
74	/* visible area of the sensor array */
75	struct {
76		int left, top;
77		int width, height;
78		int border;
79	} array;
80
81	struct {
82		/* Column timing overhead */
83		u8 cto;
84		/* Column processing overhead */
85		u8 cpo;
86		/* Row sample period constant */
87		u16 rs;
88		/* Exposure reset duration */
89		u16 er;
90	} exp;
91
92	int psmp;
93};
94
95static int hdcs_reg_write_seq(struct sd *sd, u8 reg, u8 *vals, u8 len)
96{
97	u8 regs[I2C_MAX_BYTES * 2];
98	int i;
99
100	if (unlikely((len <= 0) || (len >= I2C_MAX_BYTES) ||
101		     (reg + len > 0xff)))
102		return -EINVAL;
103
104	for (i = 0; i < len; i++) {
105		regs[2 * i] = reg;
106		regs[2 * i + 1] = vals[i];
107		/* All addresses are shifted left one bit
108		 * as bit 0 toggles r/w */
109		reg += 2;
110	}
111
112	return stv06xx_write_sensor_bytes(sd, regs, len);
113}
114
115static int hdcs_set_state(struct sd *sd, enum hdcs_power_state state)
116{
117	struct hdcs *hdcs = sd->sensor_priv;
118	u8 val;
119	int ret;
120
121	if (hdcs->state == state)
122		return 0;
123
124	/* we need to go idle before running or sleeping */
125	if (hdcs->state != HDCS_STATE_IDLE) {
126		ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
127		if (ret)
128			return ret;
129	}
130
131	hdcs->state = HDCS_STATE_IDLE;
132
133	if (state == HDCS_STATE_IDLE)
134		return 0;
135
136	switch (state) {
137	case HDCS_STATE_SLEEP:
138		val = HDCS_SLEEP_MODE;
139		break;
140
141	case HDCS_STATE_RUN:
142		val = HDCS_RUN_ENABLE;
143		break;
144
145	default:
146		return -EINVAL;
147	}
148
149	ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), val);
150
151	/* Update the state if the write succeeded */
152	if (!ret)
153		hdcs->state = state;
154
155	return ret;
156}
157
158static int hdcs_reset(struct sd *sd)
159{
160	struct hdcs *hdcs = sd->sensor_priv;
161	int err;
162
163	err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 1);
164	if (err < 0)
165		return err;
166
167	err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
168	if (err < 0)
169		hdcs->state = HDCS_STATE_IDLE;
170
171	return err;
172}
173
174static int hdcs_set_exposure(struct gspca_dev *gspca_dev, __s32 val)
175{
176	struct sd *sd = (struct sd *) gspca_dev;
177	struct hdcs *hdcs = sd->sensor_priv;
178	int rowexp, srowexp;
179	int max_srowexp;
180	/* Column time period */
181	int ct;
182	/* Column processing period */
183	int cp;
184	/* Row processing period */
185	int rp;
186	/* Minimum number of column timing periods
187	   within the column processing period */
188	int mnct;
189	int cycles, err;
190	u8 exp[14];
191
192	cycles = val * HDCS_CLK_FREQ_MHZ * 257;
193
194	ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2);
195	cp = hdcs->exp.cto + (hdcs->w * ct / 2);
196
197	/* the cycles one row takes */
198	rp = hdcs->exp.rs + cp;
199
200	rowexp = cycles / rp;
201
202	/* the remaining cycles */
203	cycles -= rowexp * rp;
204
205	/* calculate sub-row exposure */
206	if (IS_1020(sd)) {
207		/* see HDCS-1020 datasheet 3.5.6.4, p. 63 */
208		srowexp = hdcs->w - (cycles + hdcs->exp.er + 13) / ct;
209
210		mnct = (hdcs->exp.er + 12 + ct - 1) / ct;
211		max_srowexp = hdcs->w - mnct;
212	} else {
213		/* see HDCS-1000 datasheet 3.4.5.5, p. 61 */
214		srowexp = cp - hdcs->exp.er - 6 - cycles;
215
216		mnct = (hdcs->exp.er + 5 + ct - 1) / ct;
217		max_srowexp = cp - mnct * ct - 1;
218	}
219
220	if (srowexp < 0)
221		srowexp = 0;
222	else if (srowexp > max_srowexp)
223		srowexp = max_srowexp;
224
225	if (IS_1020(sd)) {
226		exp[0] = HDCS20_CONTROL;
227		exp[1] = 0x00;		/* Stop streaming */
228		exp[2] = HDCS_ROWEXPL;
229		exp[3] = rowexp & 0xff;
230		exp[4] = HDCS_ROWEXPH;
231		exp[5] = rowexp >> 8;
232		exp[6] = HDCS20_SROWEXP;
233		exp[7] = (srowexp >> 2) & 0xff;
234		exp[8] = HDCS20_ERROR;
235		exp[9] = 0x10;		/* Clear exposure error flag*/
236		exp[10] = HDCS20_CONTROL;
237		exp[11] = 0x04;		/* Restart streaming */
238		err = stv06xx_write_sensor_bytes(sd, exp, 6);
239	} else {
240		exp[0] = HDCS00_CONTROL;
241		exp[1] = 0x00;         /* Stop streaming */
242		exp[2] = HDCS_ROWEXPL;
243		exp[3] = rowexp & 0xff;
244		exp[4] = HDCS_ROWEXPH;
245		exp[5] = rowexp >> 8;
246		exp[6] = HDCS00_SROWEXPL;
247		exp[7] = srowexp & 0xff;
248		exp[8] = HDCS00_SROWEXPH;
249		exp[9] = srowexp >> 8;
250		exp[10] = HDCS_STATUS;
251		exp[11] = 0x10;         /* Clear exposure error flag*/
252		exp[12] = HDCS00_CONTROL;
253		exp[13] = 0x04;         /* Restart streaming */
254		err = stv06xx_write_sensor_bytes(sd, exp, 7);
255		if (err < 0)
256			return err;
257	}
258	PDEBUG(D_CONF, "Writing exposure %d, rowexp %d, srowexp %d",
259	       val, rowexp, srowexp);
260	return err;
261}
262
263static int hdcs_set_gains(struct sd *sd, u8 g)
264{
265	int err;
266	u8 gains[4];
267
268	/* the voltage gain Av = (1 + 19 * val / 127) * (1 + bit7) */
269	if (g > 127)
270		g = 0x80 | (g / 2);
271
272	gains[0] = g;
273	gains[1] = g;
274	gains[2] = g;
275	gains[3] = g;
276
277	err = hdcs_reg_write_seq(sd, HDCS_ERECPGA, gains, 4);
278	return err;
279}
280
281static int hdcs_set_gain(struct gspca_dev *gspca_dev, __s32 val)
282{
283	PDEBUG(D_CONF, "Writing gain %d", val);
284	return hdcs_set_gains((struct sd *) gspca_dev,
285			       val & 0xff);
286}
287
288static int hdcs_set_size(struct sd *sd,
289		unsigned int width, unsigned int height)
290{
291	struct hdcs *hdcs = sd->sensor_priv;
292	u8 win[4];
293	unsigned int x, y;
294	int err;
295
296	/* must be multiple of 4 */
297	width = (width + 3) & ~0x3;
298	height = (height + 3) & ~0x3;
299
300	if (width > hdcs->array.width)
301		width = hdcs->array.width;
302
303	if (IS_1020(sd)) {
304		/* the borders are also invalid */
305		if (height + 2 * hdcs->array.border + HDCS_1020_BOTTOM_Y_SKIP
306				  > hdcs->array.height)
307			height = hdcs->array.height - 2 * hdcs->array.border -
308				HDCS_1020_BOTTOM_Y_SKIP;
309
310		y = (hdcs->array.height - HDCS_1020_BOTTOM_Y_SKIP - height) / 2
311				+ hdcs->array.top;
312	} else {
313		if (height > hdcs->array.height)
314			height = hdcs->array.height;
315
316		y = hdcs->array.top + (hdcs->array.height - height) / 2;
317	}
318
319	x = hdcs->array.left + (hdcs->array.width - width) / 2;
320
321	win[0] = y / 4;
322	win[1] = x / 4;
323	win[2] = (y + height) / 4 - 1;
324	win[3] = (x + width) / 4 - 1;
325
326	err = hdcs_reg_write_seq(sd, HDCS_FWROW, win, 4);
327	if (err < 0)
328		return err;
329
330	/* Update the current width and height */
331	hdcs->w = width;
332	hdcs->h = height;
333	return err;
334}
335
336static int hdcs_s_ctrl(struct v4l2_ctrl *ctrl)
337{
338	struct gspca_dev *gspca_dev =
339		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
340	int err = -EINVAL;
341
342	switch (ctrl->id) {
343	case V4L2_CID_GAIN:
344		err = hdcs_set_gain(gspca_dev, ctrl->val);
345		break;
346	case V4L2_CID_EXPOSURE:
347		err = hdcs_set_exposure(gspca_dev, ctrl->val);
348		break;
349	}
350	return err;
351}
352
353static const struct v4l2_ctrl_ops hdcs_ctrl_ops = {
354	.s_ctrl = hdcs_s_ctrl,
355};
356
357static int hdcs_init_controls(struct sd *sd)
358{
359	struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler;
360
361	v4l2_ctrl_handler_init(hdl, 2);
362	v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops,
363			V4L2_CID_EXPOSURE, 0, 0xff, 1, HDCS_DEFAULT_EXPOSURE);
364	v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops,
365			V4L2_CID_GAIN, 0, 0xff, 1, HDCS_DEFAULT_GAIN);
366	return hdl->error;
367}
368
369static int hdcs_probe_1x00(struct sd *sd)
370{
371	struct hdcs *hdcs;
372	u16 sensor;
373	int ret;
374
375	ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
376	if (ret < 0 || sensor != 0x08)
377		return -ENODEV;
378
379	pr_info("HDCS-1000/1100 sensor detected\n");
380
381	sd->gspca_dev.cam.cam_mode = hdcs1x00_mode;
382	sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1x00_mode);
383
384	hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
385	if (!hdcs)
386		return -ENOMEM;
387
388	hdcs->array.left = 8;
389	hdcs->array.top = 8;
390	hdcs->array.width = HDCS_1X00_DEF_WIDTH;
391	hdcs->array.height = HDCS_1X00_DEF_HEIGHT;
392	hdcs->array.border = 4;
393
394	hdcs->exp.cto = 4;
395	hdcs->exp.cpo = 2;
396	hdcs->exp.rs = 186;
397	hdcs->exp.er = 100;
398
399	/*
400	 * Frame rate on HDCS-1000 with STV600 depends on PSMP:
401	 *  4 = doesn't work at all
402	 *  5 = 7.8 fps,
403	 *  6 = 6.9 fps,
404	 *  8 = 6.3 fps,
405	 * 10 = 5.5 fps,
406	 * 15 = 4.4 fps,
407	 * 31 = 2.8 fps
408	 *
409	 * Frame rate on HDCS-1000 with STV602 depends on PSMP:
410	 * 15 = doesn't work at all
411	 * 18 = doesn't work at all
412	 * 19 = 7.3 fps
413	 * 20 = 7.4 fps
414	 * 21 = 7.4 fps
415	 * 22 = 7.4 fps
416	 * 24 = 6.3 fps
417	 * 30 = 5.4 fps
418	 */
419	hdcs->psmp = (sd->bridge == BRIDGE_STV602) ? 20 : 5;
420
421	sd->sensor_priv = hdcs;
422
423	return 0;
424}
425
426static int hdcs_probe_1020(struct sd *sd)
427{
428	struct hdcs *hdcs;
429	u16 sensor;
430	int ret;
431
432	ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
433	if (ret < 0 || sensor != 0x10)
434		return -ENODEV;
435
436	pr_info("HDCS-1020 sensor detected\n");
437
438	sd->gspca_dev.cam.cam_mode = hdcs1020_mode;
439	sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1020_mode);
440
441	hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
442	if (!hdcs)
443		return -ENOMEM;
444
445	/*
446	 * From Andrey's test image: looks like HDCS-1020 upper-left
447	 * visible pixel is at 24,8 (y maybe even smaller?) and lower-right
448	 * visible pixel at 375,299 (x maybe even larger?)
449	 */
450	hdcs->array.left = 24;
451	hdcs->array.top  = 4;
452	hdcs->array.width = HDCS_1020_DEF_WIDTH;
453	hdcs->array.height = 304;
454	hdcs->array.border = 4;
455
456	hdcs->psmp = 6;
457
458	hdcs->exp.cto = 3;
459	hdcs->exp.cpo = 3;
460	hdcs->exp.rs = 155;
461	hdcs->exp.er = 96;
462
463	sd->sensor_priv = hdcs;
464
465	return 0;
466}
467
468static int hdcs_start(struct sd *sd)
469{
470	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
471
472	PDEBUG(D_STREAM, "Starting stream");
473
474	return hdcs_set_state(sd, HDCS_STATE_RUN);
475}
476
477static int hdcs_stop(struct sd *sd)
478{
479	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
480
481	PDEBUG(D_STREAM, "Halting stream");
482
483	return hdcs_set_state(sd, HDCS_STATE_SLEEP);
484}
485
486static int hdcs_init(struct sd *sd)
487{
488	struct hdcs *hdcs = sd->sensor_priv;
489	int i, err = 0;
490
491	/* Set the STV0602AA in STV0600 emulation mode */
492	if (sd->bridge == BRIDGE_STV602)
493		stv06xx_write_bridge(sd, STV_STV0600_EMULATION, 1);
494
495	/* Execute the bridge init */
496	for (i = 0; i < ARRAY_SIZE(stv_bridge_init) && !err; i++) {
497		err = stv06xx_write_bridge(sd, stv_bridge_init[i][0],
498					   stv_bridge_init[i][1]);
499	}
500	if (err < 0)
501		return err;
502
503	/* sensor soft reset */
504	hdcs_reset(sd);
505
506	/* Execute the sensor init */
507	for (i = 0; i < ARRAY_SIZE(stv_sensor_init) && !err; i++) {
508		err = stv06xx_write_sensor(sd, stv_sensor_init[i][0],
509					     stv_sensor_init[i][1]);
510	}
511	if (err < 0)
512		return err;
513
514	/* Enable continuous frame capture, bit 2: stop when frame complete */
515	err = stv06xx_write_sensor(sd, HDCS_REG_CONFIG(sd), BIT(3));
516	if (err < 0)
517		return err;
518
519	/* Set PGA sample duration
520	(was 0x7E for the STV602, but caused slow framerate with HDCS-1020) */
521	if (IS_1020(sd))
522		err = stv06xx_write_sensor(sd, HDCS_TCTRL,
523				(HDCS_ADC_START_SIG_DUR << 6) | hdcs->psmp);
524	else
525		err = stv06xx_write_sensor(sd, HDCS_TCTRL,
526				(HDCS_ADC_START_SIG_DUR << 5) | hdcs->psmp);
527	if (err < 0)
528		return err;
529
530	return hdcs_set_size(sd, hdcs->array.width, hdcs->array.height);
531}
532
533static int hdcs_dump(struct sd *sd)
534{
535	u16 reg, val;
536
537	pr_info("Dumping sensor registers:\n");
538
539	for (reg = HDCS_IDENT; reg <= HDCS_ROWEXPH; reg++) {
540		stv06xx_read_sensor(sd, reg, &val);
541		pr_info("reg 0x%02x = 0x%02x\n", reg, val);
542	}
543	return 0;
544}
545