block.c revision 65299a3b788bd274bed92f9fa3232082c9f3ea70
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author:  Andrew Christian
18 *          28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/mutex.h>
32#include <linux/scatterlist.h>
33#include <linux/string_helpers.h>
34#include <linux/delay.h>
35#include <linux/capability.h>
36#include <linux/compat.h>
37
38#include <linux/mmc/ioctl.h>
39#include <linux/mmc/card.h>
40#include <linux/mmc/host.h>
41#include <linux/mmc/mmc.h>
42#include <linux/mmc/sd.h>
43
44#include <asm/system.h>
45#include <asm/uaccess.h>
46
47#include "queue.h"
48
49MODULE_ALIAS("mmc:block");
50#ifdef MODULE_PARAM_PREFIX
51#undef MODULE_PARAM_PREFIX
52#endif
53#define MODULE_PARAM_PREFIX "mmcblk."
54
55#define INAND_CMD38_ARG_EXT_CSD  113
56#define INAND_CMD38_ARG_ERASE    0x00
57#define INAND_CMD38_ARG_TRIM     0x01
58#define INAND_CMD38_ARG_SECERASE 0x80
59#define INAND_CMD38_ARG_SECTRIM1 0x81
60#define INAND_CMD38_ARG_SECTRIM2 0x88
61
62static DEFINE_MUTEX(block_mutex);
63
64/*
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
67 */
68static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
69
70/*
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
73 */
74static int max_devices;
75
76/* 256 minors, so at most 256 separate devices */
77static DECLARE_BITMAP(dev_use, 256);
78static DECLARE_BITMAP(name_use, 256);
79
80/*
81 * There is one mmc_blk_data per slot.
82 */
83struct mmc_blk_data {
84	spinlock_t	lock;
85	struct gendisk	*disk;
86	struct mmc_queue queue;
87	struct list_head part;
88
89	unsigned int	flags;
90#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
91#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
92
93	unsigned int	usage;
94	unsigned int	read_only;
95	unsigned int	part_type;
96	unsigned int	name_idx;
97
98	/*
99	 * Only set in main mmc_blk_data associated
100	 * with mmc_card with mmc_set_drvdata, and keeps
101	 * track of the current selected device partition.
102	 */
103	unsigned int	part_curr;
104	struct device_attribute force_ro;
105};
106
107static DEFINE_MUTEX(open_lock);
108
109enum mmc_blk_status {
110	MMC_BLK_SUCCESS = 0,
111	MMC_BLK_PARTIAL,
112	MMC_BLK_RETRY,
113	MMC_BLK_RETRY_SINGLE,
114	MMC_BLK_DATA_ERR,
115	MMC_BLK_CMD_ERR,
116	MMC_BLK_ABORT,
117};
118
119module_param(perdev_minors, int, 0444);
120MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
121
122static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
123{
124	struct mmc_blk_data *md;
125
126	mutex_lock(&open_lock);
127	md = disk->private_data;
128	if (md && md->usage == 0)
129		md = NULL;
130	if (md)
131		md->usage++;
132	mutex_unlock(&open_lock);
133
134	return md;
135}
136
137static inline int mmc_get_devidx(struct gendisk *disk)
138{
139	int devmaj = MAJOR(disk_devt(disk));
140	int devidx = MINOR(disk_devt(disk)) / perdev_minors;
141
142	if (!devmaj)
143		devidx = disk->first_minor / perdev_minors;
144	return devidx;
145}
146
147static void mmc_blk_put(struct mmc_blk_data *md)
148{
149	mutex_lock(&open_lock);
150	md->usage--;
151	if (md->usage == 0) {
152		int devidx = mmc_get_devidx(md->disk);
153		blk_cleanup_queue(md->queue.queue);
154
155		__clear_bit(devidx, dev_use);
156
157		put_disk(md->disk);
158		kfree(md);
159	}
160	mutex_unlock(&open_lock);
161}
162
163static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
164			     char *buf)
165{
166	int ret;
167	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
168
169	ret = snprintf(buf, PAGE_SIZE, "%d",
170		       get_disk_ro(dev_to_disk(dev)) ^
171		       md->read_only);
172	mmc_blk_put(md);
173	return ret;
174}
175
176static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
177			      const char *buf, size_t count)
178{
179	int ret;
180	char *end;
181	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
182	unsigned long set = simple_strtoul(buf, &end, 0);
183	if (end == buf) {
184		ret = -EINVAL;
185		goto out;
186	}
187
188	set_disk_ro(dev_to_disk(dev), set || md->read_only);
189	ret = count;
190out:
191	mmc_blk_put(md);
192	return ret;
193}
194
195static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
196{
197	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
198	int ret = -ENXIO;
199
200	mutex_lock(&block_mutex);
201	if (md) {
202		if (md->usage == 2)
203			check_disk_change(bdev);
204		ret = 0;
205
206		if ((mode & FMODE_WRITE) && md->read_only) {
207			mmc_blk_put(md);
208			ret = -EROFS;
209		}
210	}
211	mutex_unlock(&block_mutex);
212
213	return ret;
214}
215
216static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
217{
218	struct mmc_blk_data *md = disk->private_data;
219
220	mutex_lock(&block_mutex);
221	mmc_blk_put(md);
222	mutex_unlock(&block_mutex);
223	return 0;
224}
225
226static int
227mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
228{
229	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
230	geo->heads = 4;
231	geo->sectors = 16;
232	return 0;
233}
234
235struct mmc_blk_ioc_data {
236	struct mmc_ioc_cmd ic;
237	unsigned char *buf;
238	u64 buf_bytes;
239};
240
241static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
242	struct mmc_ioc_cmd __user *user)
243{
244	struct mmc_blk_ioc_data *idata;
245	int err;
246
247	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
248	if (!idata) {
249		err = -ENOMEM;
250		goto out;
251	}
252
253	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
254		err = -EFAULT;
255		goto idata_err;
256	}
257
258	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
259	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
260		err = -EOVERFLOW;
261		goto idata_err;
262	}
263
264	idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
265	if (!idata->buf) {
266		err = -ENOMEM;
267		goto idata_err;
268	}
269
270	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
271					idata->ic.data_ptr, idata->buf_bytes)) {
272		err = -EFAULT;
273		goto copy_err;
274	}
275
276	return idata;
277
278copy_err:
279	kfree(idata->buf);
280idata_err:
281	kfree(idata);
282out:
283	return ERR_PTR(err);
284}
285
286static int mmc_blk_ioctl_cmd(struct block_device *bdev,
287	struct mmc_ioc_cmd __user *ic_ptr)
288{
289	struct mmc_blk_ioc_data *idata;
290	struct mmc_blk_data *md;
291	struct mmc_card *card;
292	struct mmc_command cmd = {0};
293	struct mmc_data data = {0};
294	struct mmc_request mrq = {0};
295	struct scatterlist sg;
296	int err;
297
298	/*
299	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
300	 * whole block device, not on a partition.  This prevents overspray
301	 * between sibling partitions.
302	 */
303	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
304		return -EPERM;
305
306	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
307	if (IS_ERR(idata))
308		return PTR_ERR(idata);
309
310	cmd.opcode = idata->ic.opcode;
311	cmd.arg = idata->ic.arg;
312	cmd.flags = idata->ic.flags;
313
314	data.sg = &sg;
315	data.sg_len = 1;
316	data.blksz = idata->ic.blksz;
317	data.blocks = idata->ic.blocks;
318
319	sg_init_one(data.sg, idata->buf, idata->buf_bytes);
320
321	if (idata->ic.write_flag)
322		data.flags = MMC_DATA_WRITE;
323	else
324		data.flags = MMC_DATA_READ;
325
326	mrq.cmd = &cmd;
327	mrq.data = &data;
328
329	md = mmc_blk_get(bdev->bd_disk);
330	if (!md) {
331		err = -EINVAL;
332		goto cmd_done;
333	}
334
335	card = md->queue.card;
336	if (IS_ERR(card)) {
337		err = PTR_ERR(card);
338		goto cmd_done;
339	}
340
341	mmc_claim_host(card->host);
342
343	if (idata->ic.is_acmd) {
344		err = mmc_app_cmd(card->host, card);
345		if (err)
346			goto cmd_rel_host;
347	}
348
349	/* data.flags must already be set before doing this. */
350	mmc_set_data_timeout(&data, card);
351	/* Allow overriding the timeout_ns for empirical tuning. */
352	if (idata->ic.data_timeout_ns)
353		data.timeout_ns = idata->ic.data_timeout_ns;
354
355	if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
356		/*
357		 * Pretend this is a data transfer and rely on the host driver
358		 * to compute timeout.  When all host drivers support
359		 * cmd.cmd_timeout for R1B, this can be changed to:
360		 *
361		 *     mrq.data = NULL;
362		 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
363		 */
364		data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
365	}
366
367	mmc_wait_for_req(card->host, &mrq);
368
369	if (cmd.error) {
370		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
371						__func__, cmd.error);
372		err = cmd.error;
373		goto cmd_rel_host;
374	}
375	if (data.error) {
376		dev_err(mmc_dev(card->host), "%s: data error %d\n",
377						__func__, data.error);
378		err = data.error;
379		goto cmd_rel_host;
380	}
381
382	/*
383	 * According to the SD specs, some commands require a delay after
384	 * issuing the command.
385	 */
386	if (idata->ic.postsleep_min_us)
387		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
388
389	if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
390		err = -EFAULT;
391		goto cmd_rel_host;
392	}
393
394	if (!idata->ic.write_flag) {
395		if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
396						idata->buf, idata->buf_bytes)) {
397			err = -EFAULT;
398			goto cmd_rel_host;
399		}
400	}
401
402cmd_rel_host:
403	mmc_release_host(card->host);
404
405cmd_done:
406	mmc_blk_put(md);
407	kfree(idata->buf);
408	kfree(idata);
409	return err;
410}
411
412static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
413	unsigned int cmd, unsigned long arg)
414{
415	int ret = -EINVAL;
416	if (cmd == MMC_IOC_CMD)
417		ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
418	return ret;
419}
420
421#ifdef CONFIG_COMPAT
422static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
423	unsigned int cmd, unsigned long arg)
424{
425	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
426}
427#endif
428
429static const struct block_device_operations mmc_bdops = {
430	.open			= mmc_blk_open,
431	.release		= mmc_blk_release,
432	.getgeo			= mmc_blk_getgeo,
433	.owner			= THIS_MODULE,
434	.ioctl			= mmc_blk_ioctl,
435#ifdef CONFIG_COMPAT
436	.compat_ioctl		= mmc_blk_compat_ioctl,
437#endif
438};
439
440static inline int mmc_blk_part_switch(struct mmc_card *card,
441				      struct mmc_blk_data *md)
442{
443	int ret;
444	struct mmc_blk_data *main_md = mmc_get_drvdata(card);
445	if (main_md->part_curr == md->part_type)
446		return 0;
447
448	if (mmc_card_mmc(card)) {
449		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
450		card->ext_csd.part_config |= md->part_type;
451
452		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
453				 EXT_CSD_PART_CONFIG, card->ext_csd.part_config,
454				 card->ext_csd.part_time);
455		if (ret)
456			return ret;
457}
458
459	main_md->part_curr = md->part_type;
460	return 0;
461}
462
463static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
464{
465	int err;
466	u32 result;
467	__be32 *blocks;
468
469	struct mmc_request mrq = {0};
470	struct mmc_command cmd = {0};
471	struct mmc_data data = {0};
472	unsigned int timeout_us;
473
474	struct scatterlist sg;
475
476	cmd.opcode = MMC_APP_CMD;
477	cmd.arg = card->rca << 16;
478	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
479
480	err = mmc_wait_for_cmd(card->host, &cmd, 0);
481	if (err)
482		return (u32)-1;
483	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
484		return (u32)-1;
485
486	memset(&cmd, 0, sizeof(struct mmc_command));
487
488	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
489	cmd.arg = 0;
490	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
491
492	data.timeout_ns = card->csd.tacc_ns * 100;
493	data.timeout_clks = card->csd.tacc_clks * 100;
494
495	timeout_us = data.timeout_ns / 1000;
496	timeout_us += data.timeout_clks * 1000 /
497		(card->host->ios.clock / 1000);
498
499	if (timeout_us > 100000) {
500		data.timeout_ns = 100000000;
501		data.timeout_clks = 0;
502	}
503
504	data.blksz = 4;
505	data.blocks = 1;
506	data.flags = MMC_DATA_READ;
507	data.sg = &sg;
508	data.sg_len = 1;
509
510	mrq.cmd = &cmd;
511	mrq.data = &data;
512
513	blocks = kmalloc(4, GFP_KERNEL);
514	if (!blocks)
515		return (u32)-1;
516
517	sg_init_one(&sg, blocks, 4);
518
519	mmc_wait_for_req(card->host, &mrq);
520
521	result = ntohl(*blocks);
522	kfree(blocks);
523
524	if (cmd.error || data.error)
525		result = (u32)-1;
526
527	return result;
528}
529
530static int send_stop(struct mmc_card *card, u32 *status)
531{
532	struct mmc_command cmd = {0};
533	int err;
534
535	cmd.opcode = MMC_STOP_TRANSMISSION;
536	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
537	err = mmc_wait_for_cmd(card->host, &cmd, 5);
538	if (err == 0)
539		*status = cmd.resp[0];
540	return err;
541}
542
543static int get_card_status(struct mmc_card *card, u32 *status, int retries)
544{
545	struct mmc_command cmd = {0};
546	int err;
547
548	cmd.opcode = MMC_SEND_STATUS;
549	if (!mmc_host_is_spi(card->host))
550		cmd.arg = card->rca << 16;
551	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
552	err = mmc_wait_for_cmd(card->host, &cmd, retries);
553	if (err == 0)
554		*status = cmd.resp[0];
555	return err;
556}
557
558#define ERR_RETRY	2
559#define ERR_ABORT	1
560#define ERR_CONTINUE	0
561
562static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
563	bool status_valid, u32 status)
564{
565	switch (error) {
566	case -EILSEQ:
567		/* response crc error, retry the r/w cmd */
568		pr_err("%s: %s sending %s command, card status %#x\n",
569			req->rq_disk->disk_name, "response CRC error",
570			name, status);
571		return ERR_RETRY;
572
573	case -ETIMEDOUT:
574		pr_err("%s: %s sending %s command, card status %#x\n",
575			req->rq_disk->disk_name, "timed out", name, status);
576
577		/* If the status cmd initially failed, retry the r/w cmd */
578		if (!status_valid)
579			return ERR_RETRY;
580
581		/*
582		 * If it was a r/w cmd crc error, or illegal command
583		 * (eg, issued in wrong state) then retry - we should
584		 * have corrected the state problem above.
585		 */
586		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
587			return ERR_RETRY;
588
589		/* Otherwise abort the command */
590		return ERR_ABORT;
591
592	default:
593		/* We don't understand the error code the driver gave us */
594		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
595		       req->rq_disk->disk_name, error, status);
596		return ERR_ABORT;
597	}
598}
599
600/*
601 * Initial r/w and stop cmd error recovery.
602 * We don't know whether the card received the r/w cmd or not, so try to
603 * restore things back to a sane state.  Essentially, we do this as follows:
604 * - Obtain card status.  If the first attempt to obtain card status fails,
605 *   the status word will reflect the failed status cmd, not the failed
606 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
607 *   longer communicate with the card.
608 * - Check the card state.  If the card received the cmd but there was a
609 *   transient problem with the response, it might still be in a data transfer
610 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
611 * - If the r/w cmd failed due to a response CRC error, it was probably
612 *   transient, so retry the cmd.
613 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
614 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
615 *   illegal cmd, retry.
616 * Otherwise we don't understand what happened, so abort.
617 */
618static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
619	struct mmc_blk_request *brq)
620{
621	bool prev_cmd_status_valid = true;
622	u32 status, stop_status = 0;
623	int err, retry;
624
625	/*
626	 * Try to get card status which indicates both the card state
627	 * and why there was no response.  If the first attempt fails,
628	 * we can't be sure the returned status is for the r/w command.
629	 */
630	for (retry = 2; retry >= 0; retry--) {
631		err = get_card_status(card, &status, 0);
632		if (!err)
633			break;
634
635		prev_cmd_status_valid = false;
636		pr_err("%s: error %d sending status command, %sing\n",
637		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
638	}
639
640	/* We couldn't get a response from the card.  Give up. */
641	if (err)
642		return ERR_ABORT;
643
644	/*
645	 * Check the current card state.  If it is in some data transfer
646	 * mode, tell it to stop (and hopefully transition back to TRAN.)
647	 */
648	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
649	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
650		err = send_stop(card, &stop_status);
651		if (err)
652			pr_err("%s: error %d sending stop command\n",
653			       req->rq_disk->disk_name, err);
654
655		/*
656		 * If the stop cmd also timed out, the card is probably
657		 * not present, so abort.  Other errors are bad news too.
658		 */
659		if (err)
660			return ERR_ABORT;
661	}
662
663	/* Check for set block count errors */
664	if (brq->sbc.error)
665		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
666				prev_cmd_status_valid, status);
667
668	/* Check for r/w command errors */
669	if (brq->cmd.error)
670		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
671				prev_cmd_status_valid, status);
672
673	/* Now for stop errors.  These aren't fatal to the transfer. */
674	pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
675	       req->rq_disk->disk_name, brq->stop.error,
676	       brq->cmd.resp[0], status);
677
678	/*
679	 * Subsitute in our own stop status as this will give the error
680	 * state which happened during the execution of the r/w command.
681	 */
682	if (stop_status) {
683		brq->stop.resp[0] = stop_status;
684		brq->stop.error = 0;
685	}
686	return ERR_CONTINUE;
687}
688
689static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
690{
691	struct mmc_blk_data *md = mq->data;
692	struct mmc_card *card = md->queue.card;
693	unsigned int from, nr, arg;
694	int err = 0;
695
696	if (!mmc_can_erase(card)) {
697		err = -EOPNOTSUPP;
698		goto out;
699	}
700
701	from = blk_rq_pos(req);
702	nr = blk_rq_sectors(req);
703
704	if (mmc_can_trim(card))
705		arg = MMC_TRIM_ARG;
706	else
707		arg = MMC_ERASE_ARG;
708
709	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
710		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
711				 INAND_CMD38_ARG_EXT_CSD,
712				 arg == MMC_TRIM_ARG ?
713				 INAND_CMD38_ARG_TRIM :
714				 INAND_CMD38_ARG_ERASE,
715				 0);
716		if (err)
717			goto out;
718	}
719	err = mmc_erase(card, from, nr, arg);
720out:
721	spin_lock_irq(&md->lock);
722	__blk_end_request(req, err, blk_rq_bytes(req));
723	spin_unlock_irq(&md->lock);
724
725	return err ? 0 : 1;
726}
727
728static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
729				       struct request *req)
730{
731	struct mmc_blk_data *md = mq->data;
732	struct mmc_card *card = md->queue.card;
733	unsigned int from, nr, arg;
734	int err = 0;
735
736	if (!mmc_can_secure_erase_trim(card)) {
737		err = -EOPNOTSUPP;
738		goto out;
739	}
740
741	from = blk_rq_pos(req);
742	nr = blk_rq_sectors(req);
743
744	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
745		arg = MMC_SECURE_TRIM1_ARG;
746	else
747		arg = MMC_SECURE_ERASE_ARG;
748
749	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
750		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
751				 INAND_CMD38_ARG_EXT_CSD,
752				 arg == MMC_SECURE_TRIM1_ARG ?
753				 INAND_CMD38_ARG_SECTRIM1 :
754				 INAND_CMD38_ARG_SECERASE,
755				 0);
756		if (err)
757			goto out;
758	}
759	err = mmc_erase(card, from, nr, arg);
760	if (!err && arg == MMC_SECURE_TRIM1_ARG) {
761		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
762			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
763					 INAND_CMD38_ARG_EXT_CSD,
764					 INAND_CMD38_ARG_SECTRIM2,
765					 0);
766			if (err)
767				goto out;
768		}
769		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
770	}
771out:
772	spin_lock_irq(&md->lock);
773	__blk_end_request(req, err, blk_rq_bytes(req));
774	spin_unlock_irq(&md->lock);
775
776	return err ? 0 : 1;
777}
778
779static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
780{
781	struct mmc_blk_data *md = mq->data;
782
783	/*
784	 * No-op, only service this because we need REQ_FUA for reliable
785	 * writes.
786	 */
787	spin_lock_irq(&md->lock);
788	__blk_end_request_all(req, 0);
789	spin_unlock_irq(&md->lock);
790
791	return 1;
792}
793
794/*
795 * Reformat current write as a reliable write, supporting
796 * both legacy and the enhanced reliable write MMC cards.
797 * In each transfer we'll handle only as much as a single
798 * reliable write can handle, thus finish the request in
799 * partial completions.
800 */
801static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
802				    struct mmc_card *card,
803				    struct request *req)
804{
805	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
806		/* Legacy mode imposes restrictions on transfers. */
807		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
808			brq->data.blocks = 1;
809
810		if (brq->data.blocks > card->ext_csd.rel_sectors)
811			brq->data.blocks = card->ext_csd.rel_sectors;
812		else if (brq->data.blocks < card->ext_csd.rel_sectors)
813			brq->data.blocks = 1;
814	}
815}
816
817#define CMD_ERRORS							\
818	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
819	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
820	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
821	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
822	 R1_CC_ERROR |		/* Card controller error */		\
823	 R1_ERROR)		/* General/unknown error */
824
825static int mmc_blk_err_check(struct mmc_card *card,
826			     struct mmc_async_req *areq)
827{
828	enum mmc_blk_status ret = MMC_BLK_SUCCESS;
829	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
830						    mmc_active);
831	struct mmc_blk_request *brq = &mq_mrq->brq;
832	struct request *req = mq_mrq->req;
833
834	/*
835	 * sbc.error indicates a problem with the set block count
836	 * command.  No data will have been transferred.
837	 *
838	 * cmd.error indicates a problem with the r/w command.  No
839	 * data will have been transferred.
840	 *
841	 * stop.error indicates a problem with the stop command.  Data
842	 * may have been transferred, or may still be transferring.
843	 */
844	if (brq->sbc.error || brq->cmd.error || brq->stop.error) {
845		switch (mmc_blk_cmd_recovery(card, req, brq)) {
846		case ERR_RETRY:
847			return MMC_BLK_RETRY;
848		case ERR_ABORT:
849			return MMC_BLK_ABORT;
850		case ERR_CONTINUE:
851			break;
852		}
853	}
854
855	/*
856	 * Check for errors relating to the execution of the
857	 * initial command - such as address errors.  No data
858	 * has been transferred.
859	 */
860	if (brq->cmd.resp[0] & CMD_ERRORS) {
861		pr_err("%s: r/w command failed, status = %#x\n",
862		       req->rq_disk->disk_name, brq->cmd.resp[0]);
863		return MMC_BLK_ABORT;
864	}
865
866	/*
867	 * Everything else is either success, or a data error of some
868	 * kind.  If it was a write, we may have transitioned to
869	 * program mode, which we have to wait for it to complete.
870	 */
871	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
872		u32 status;
873		do {
874			int err = get_card_status(card, &status, 5);
875			if (err) {
876				printk(KERN_ERR "%s: error %d requesting status\n",
877				       req->rq_disk->disk_name, err);
878				return MMC_BLK_CMD_ERR;
879			}
880			/*
881			 * Some cards mishandle the status bits,
882			 * so make sure to check both the busy
883			 * indication and the card state.
884			 */
885		} while (!(status & R1_READY_FOR_DATA) ||
886			 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
887	}
888
889	if (brq->data.error) {
890		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
891		       req->rq_disk->disk_name, brq->data.error,
892		       (unsigned)blk_rq_pos(req),
893		       (unsigned)blk_rq_sectors(req),
894		       brq->cmd.resp[0], brq->stop.resp[0]);
895
896		if (rq_data_dir(req) == READ) {
897			if (brq->data.blocks > 1) {
898				/* Redo read one sector at a time */
899				pr_warning("%s: retrying using single block read\n",
900					   req->rq_disk->disk_name);
901				return MMC_BLK_RETRY_SINGLE;
902			}
903			return MMC_BLK_DATA_ERR;
904		} else {
905			return MMC_BLK_CMD_ERR;
906		}
907	}
908
909	if (ret == MMC_BLK_SUCCESS &&
910	    blk_rq_bytes(req) != brq->data.bytes_xfered)
911		ret = MMC_BLK_PARTIAL;
912
913	return ret;
914}
915
916static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
917			       struct mmc_card *card,
918			       int disable_multi,
919			       struct mmc_queue *mq)
920{
921	u32 readcmd, writecmd;
922	struct mmc_blk_request *brq = &mqrq->brq;
923	struct request *req = mqrq->req;
924	struct mmc_blk_data *md = mq->data;
925
926	/*
927	 * Reliable writes are used to implement Forced Unit Access and
928	 * REQ_META accesses, and are supported only on MMCs.
929	 *
930	 * XXX: this really needs a good explanation of why REQ_META
931	 * is treated special.
932	 */
933	bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
934			  (req->cmd_flags & REQ_META)) &&
935		(rq_data_dir(req) == WRITE) &&
936		(md->flags & MMC_BLK_REL_WR);
937
938	memset(brq, 0, sizeof(struct mmc_blk_request));
939	brq->mrq.cmd = &brq->cmd;
940	brq->mrq.data = &brq->data;
941
942	brq->cmd.arg = blk_rq_pos(req);
943	if (!mmc_card_blockaddr(card))
944		brq->cmd.arg <<= 9;
945	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
946	brq->data.blksz = 512;
947	brq->stop.opcode = MMC_STOP_TRANSMISSION;
948	brq->stop.arg = 0;
949	brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
950	brq->data.blocks = blk_rq_sectors(req);
951
952	/*
953	 * The block layer doesn't support all sector count
954	 * restrictions, so we need to be prepared for too big
955	 * requests.
956	 */
957	if (brq->data.blocks > card->host->max_blk_count)
958		brq->data.blocks = card->host->max_blk_count;
959
960	/*
961	 * After a read error, we redo the request one sector at a time
962	 * in order to accurately determine which sectors can be read
963	 * successfully.
964	 */
965	if (disable_multi && brq->data.blocks > 1)
966		brq->data.blocks = 1;
967
968	if (brq->data.blocks > 1 || do_rel_wr) {
969		/* SPI multiblock writes terminate using a special
970		 * token, not a STOP_TRANSMISSION request.
971		 */
972		if (!mmc_host_is_spi(card->host) ||
973		    rq_data_dir(req) == READ)
974			brq->mrq.stop = &brq->stop;
975		readcmd = MMC_READ_MULTIPLE_BLOCK;
976		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
977	} else {
978		brq->mrq.stop = NULL;
979		readcmd = MMC_READ_SINGLE_BLOCK;
980		writecmd = MMC_WRITE_BLOCK;
981	}
982	if (rq_data_dir(req) == READ) {
983		brq->cmd.opcode = readcmd;
984		brq->data.flags |= MMC_DATA_READ;
985	} else {
986		brq->cmd.opcode = writecmd;
987		brq->data.flags |= MMC_DATA_WRITE;
988	}
989
990	if (do_rel_wr)
991		mmc_apply_rel_rw(brq, card, req);
992
993	/*
994	 * Pre-defined multi-block transfers are preferable to
995	 * open ended-ones (and necessary for reliable writes).
996	 * However, it is not sufficient to just send CMD23,
997	 * and avoid the final CMD12, as on an error condition
998	 * CMD12 (stop) needs to be sent anyway. This, coupled
999	 * with Auto-CMD23 enhancements provided by some
1000	 * hosts, means that the complexity of dealing
1001	 * with this is best left to the host. If CMD23 is
1002	 * supported by card and host, we'll fill sbc in and let
1003	 * the host deal with handling it correctly. This means
1004	 * that for hosts that don't expose MMC_CAP_CMD23, no
1005	 * change of behavior will be observed.
1006	 *
1007	 * N.B: Some MMC cards experience perf degradation.
1008	 * We'll avoid using CMD23-bounded multiblock writes for
1009	 * these, while retaining features like reliable writes.
1010	 */
1011
1012	if ((md->flags & MMC_BLK_CMD23) &&
1013	    mmc_op_multi(brq->cmd.opcode) &&
1014	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1015		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1016		brq->sbc.arg = brq->data.blocks |
1017			(do_rel_wr ? (1 << 31) : 0);
1018		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1019		brq->mrq.sbc = &brq->sbc;
1020	}
1021
1022	mmc_set_data_timeout(&brq->data, card);
1023
1024	brq->data.sg = mqrq->sg;
1025	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1026
1027	/*
1028	 * Adjust the sg list so it is the same size as the
1029	 * request.
1030	 */
1031	if (brq->data.blocks != blk_rq_sectors(req)) {
1032		int i, data_size = brq->data.blocks << 9;
1033		struct scatterlist *sg;
1034
1035		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1036			data_size -= sg->length;
1037			if (data_size <= 0) {
1038				sg->length += data_size;
1039				i++;
1040				break;
1041			}
1042		}
1043		brq->data.sg_len = i;
1044	}
1045
1046	mqrq->mmc_active.mrq = &brq->mrq;
1047	mqrq->mmc_active.err_check = mmc_blk_err_check;
1048
1049	mmc_queue_bounce_pre(mqrq);
1050}
1051
1052static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1053{
1054	struct mmc_blk_data *md = mq->data;
1055	struct mmc_card *card = md->queue.card;
1056	struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1057	int ret = 1, disable_multi = 0, retry = 0;
1058	enum mmc_blk_status status;
1059	struct mmc_queue_req *mq_rq;
1060	struct request *req;
1061	struct mmc_async_req *areq;
1062
1063	if (!rqc && !mq->mqrq_prev->req)
1064		return 0;
1065
1066	do {
1067		if (rqc) {
1068			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1069			areq = &mq->mqrq_cur->mmc_active;
1070		} else
1071			areq = NULL;
1072		areq = mmc_start_req(card->host, areq, (int *) &status);
1073		if (!areq)
1074			return 0;
1075
1076		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1077		brq = &mq_rq->brq;
1078		req = mq_rq->req;
1079		mmc_queue_bounce_post(mq_rq);
1080
1081		switch (status) {
1082		case MMC_BLK_SUCCESS:
1083		case MMC_BLK_PARTIAL:
1084			/*
1085			 * A block was successfully transferred.
1086			 */
1087			spin_lock_irq(&md->lock);
1088			ret = __blk_end_request(req, 0,
1089						brq->data.bytes_xfered);
1090			spin_unlock_irq(&md->lock);
1091			if (status == MMC_BLK_SUCCESS && ret) {
1092				/*
1093				 * The blk_end_request has returned non zero
1094				 * even though all data is transfered and no
1095				 * erros returned by host.
1096				 * If this happen it's a bug.
1097				 */
1098				printk(KERN_ERR "%s BUG rq_tot %d d_xfer %d\n",
1099				       __func__, blk_rq_bytes(req),
1100				       brq->data.bytes_xfered);
1101				rqc = NULL;
1102				goto cmd_abort;
1103			}
1104			break;
1105		case MMC_BLK_CMD_ERR:
1106			goto cmd_err;
1107		case MMC_BLK_RETRY_SINGLE:
1108			disable_multi = 1;
1109			break;
1110		case MMC_BLK_RETRY:
1111			if (retry++ < 5)
1112				break;
1113		case MMC_BLK_ABORT:
1114			goto cmd_abort;
1115		case MMC_BLK_DATA_ERR:
1116			/*
1117			 * After an error, we redo I/O one sector at a
1118			 * time, so we only reach here after trying to
1119			 * read a single sector.
1120			 */
1121			spin_lock_irq(&md->lock);
1122			ret = __blk_end_request(req, -EIO,
1123						brq->data.blksz);
1124			spin_unlock_irq(&md->lock);
1125			if (!ret)
1126				goto start_new_req;
1127			break;
1128		}
1129
1130		if (ret) {
1131			/*
1132			 * In case of a none complete request
1133			 * prepare it again and resend.
1134			 */
1135			mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1136			mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1137		}
1138	} while (ret);
1139
1140	return 1;
1141
1142 cmd_err:
1143 	/*
1144 	 * If this is an SD card and we're writing, we can first
1145 	 * mark the known good sectors as ok.
1146 	 *
1147	 * If the card is not SD, we can still ok written sectors
1148	 * as reported by the controller (which might be less than
1149	 * the real number of written sectors, but never more).
1150	 */
1151	if (mmc_card_sd(card)) {
1152		u32 blocks;
1153
1154		blocks = mmc_sd_num_wr_blocks(card);
1155		if (blocks != (u32)-1) {
1156			spin_lock_irq(&md->lock);
1157			ret = __blk_end_request(req, 0, blocks << 9);
1158			spin_unlock_irq(&md->lock);
1159		}
1160	} else {
1161		spin_lock_irq(&md->lock);
1162		ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1163		spin_unlock_irq(&md->lock);
1164	}
1165
1166 cmd_abort:
1167	spin_lock_irq(&md->lock);
1168	while (ret)
1169		ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1170	spin_unlock_irq(&md->lock);
1171
1172 start_new_req:
1173	if (rqc) {
1174		mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1175		mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1176	}
1177
1178	return 0;
1179}
1180
1181static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1182{
1183	int ret;
1184	struct mmc_blk_data *md = mq->data;
1185	struct mmc_card *card = md->queue.card;
1186
1187	if (req && !mq->mqrq_prev->req)
1188		/* claim host only for the first request */
1189		mmc_claim_host(card->host);
1190
1191	ret = mmc_blk_part_switch(card, md);
1192	if (ret) {
1193		ret = 0;
1194		goto out;
1195	}
1196
1197	if (req && req->cmd_flags & REQ_DISCARD) {
1198		/* complete ongoing async transfer before issuing discard */
1199		if (card->host->areq)
1200			mmc_blk_issue_rw_rq(mq, NULL);
1201		if (req->cmd_flags & REQ_SECURE)
1202			ret = mmc_blk_issue_secdiscard_rq(mq, req);
1203		else
1204			ret = mmc_blk_issue_discard_rq(mq, req);
1205	} else if (req && req->cmd_flags & REQ_FLUSH) {
1206		/* complete ongoing async transfer before issuing flush */
1207		if (card->host->areq)
1208			mmc_blk_issue_rw_rq(mq, NULL);
1209		ret = mmc_blk_issue_flush(mq, req);
1210	} else {
1211		ret = mmc_blk_issue_rw_rq(mq, req);
1212	}
1213
1214out:
1215	if (!req)
1216		/* release host only when there are no more requests */
1217		mmc_release_host(card->host);
1218	return ret;
1219}
1220
1221static inline int mmc_blk_readonly(struct mmc_card *card)
1222{
1223	return mmc_card_readonly(card) ||
1224	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1225}
1226
1227static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1228					      struct device *parent,
1229					      sector_t size,
1230					      bool default_ro,
1231					      const char *subname)
1232{
1233	struct mmc_blk_data *md;
1234	int devidx, ret;
1235
1236	devidx = find_first_zero_bit(dev_use, max_devices);
1237	if (devidx >= max_devices)
1238		return ERR_PTR(-ENOSPC);
1239	__set_bit(devidx, dev_use);
1240
1241	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1242	if (!md) {
1243		ret = -ENOMEM;
1244		goto out;
1245	}
1246
1247	/*
1248	 * !subname implies we are creating main mmc_blk_data that will be
1249	 * associated with mmc_card with mmc_set_drvdata. Due to device
1250	 * partitions, devidx will not coincide with a per-physical card
1251	 * index anymore so we keep track of a name index.
1252	 */
1253	if (!subname) {
1254		md->name_idx = find_first_zero_bit(name_use, max_devices);
1255		__set_bit(md->name_idx, name_use);
1256	}
1257	else
1258		md->name_idx = ((struct mmc_blk_data *)
1259				dev_to_disk(parent)->private_data)->name_idx;
1260
1261	/*
1262	 * Set the read-only status based on the supported commands
1263	 * and the write protect switch.
1264	 */
1265	md->read_only = mmc_blk_readonly(card);
1266
1267	md->disk = alloc_disk(perdev_minors);
1268	if (md->disk == NULL) {
1269		ret = -ENOMEM;
1270		goto err_kfree;
1271	}
1272
1273	spin_lock_init(&md->lock);
1274	INIT_LIST_HEAD(&md->part);
1275	md->usage = 1;
1276
1277	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1278	if (ret)
1279		goto err_putdisk;
1280
1281	md->queue.issue_fn = mmc_blk_issue_rq;
1282	md->queue.data = md;
1283
1284	md->disk->major	= MMC_BLOCK_MAJOR;
1285	md->disk->first_minor = devidx * perdev_minors;
1286	md->disk->fops = &mmc_bdops;
1287	md->disk->private_data = md;
1288	md->disk->queue = md->queue.queue;
1289	md->disk->driverfs_dev = parent;
1290	set_disk_ro(md->disk, md->read_only || default_ro);
1291
1292	/*
1293	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1294	 *
1295	 * - be set for removable media with permanent block devices
1296	 * - be unset for removable block devices with permanent media
1297	 *
1298	 * Since MMC block devices clearly fall under the second
1299	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1300	 * should use the block device creation/destruction hotplug
1301	 * messages to tell when the card is present.
1302	 */
1303
1304	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1305		 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1306
1307	blk_queue_logical_block_size(md->queue.queue, 512);
1308	set_capacity(md->disk, size);
1309
1310	if (mmc_host_cmd23(card->host)) {
1311		if (mmc_card_mmc(card) ||
1312		    (mmc_card_sd(card) &&
1313		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1314			md->flags |= MMC_BLK_CMD23;
1315	}
1316
1317	if (mmc_card_mmc(card) &&
1318	    md->flags & MMC_BLK_CMD23 &&
1319	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1320	     card->ext_csd.rel_sectors)) {
1321		md->flags |= MMC_BLK_REL_WR;
1322		blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1323	}
1324
1325	return md;
1326
1327 err_putdisk:
1328	put_disk(md->disk);
1329 err_kfree:
1330	kfree(md);
1331 out:
1332	return ERR_PTR(ret);
1333}
1334
1335static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1336{
1337	sector_t size;
1338	struct mmc_blk_data *md;
1339
1340	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1341		/*
1342		 * The EXT_CSD sector count is in number or 512 byte
1343		 * sectors.
1344		 */
1345		size = card->ext_csd.sectors;
1346	} else {
1347		/*
1348		 * The CSD capacity field is in units of read_blkbits.
1349		 * set_capacity takes units of 512 bytes.
1350		 */
1351		size = card->csd.capacity << (card->csd.read_blkbits - 9);
1352	}
1353
1354	md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1355	return md;
1356}
1357
1358static int mmc_blk_alloc_part(struct mmc_card *card,
1359			      struct mmc_blk_data *md,
1360			      unsigned int part_type,
1361			      sector_t size,
1362			      bool default_ro,
1363			      const char *subname)
1364{
1365	char cap_str[10];
1366	struct mmc_blk_data *part_md;
1367
1368	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1369				    subname);
1370	if (IS_ERR(part_md))
1371		return PTR_ERR(part_md);
1372	part_md->part_type = part_type;
1373	list_add(&part_md->part, &md->part);
1374
1375	string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1376			cap_str, sizeof(cap_str));
1377	printk(KERN_INFO "%s: %s %s partition %u %s\n",
1378	       part_md->disk->disk_name, mmc_card_id(card),
1379	       mmc_card_name(card), part_md->part_type, cap_str);
1380	return 0;
1381}
1382
1383static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1384{
1385	int ret = 0;
1386
1387	if (!mmc_card_mmc(card))
1388		return 0;
1389
1390	if (card->ext_csd.boot_size) {
1391		ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT0,
1392					 card->ext_csd.boot_size >> 9,
1393					 true,
1394					 "boot0");
1395		if (ret)
1396			return ret;
1397		ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT1,
1398					 card->ext_csd.boot_size >> 9,
1399					 true,
1400					 "boot1");
1401		if (ret)
1402			return ret;
1403	}
1404
1405	return ret;
1406}
1407
1408static int
1409mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1410{
1411	int err;
1412
1413	mmc_claim_host(card->host);
1414	err = mmc_set_blocklen(card, 512);
1415	mmc_release_host(card->host);
1416
1417	if (err) {
1418		printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1419			md->disk->disk_name, err);
1420		return -EINVAL;
1421	}
1422
1423	return 0;
1424}
1425
1426static void mmc_blk_remove_req(struct mmc_blk_data *md)
1427{
1428	if (md) {
1429		if (md->disk->flags & GENHD_FL_UP) {
1430			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1431
1432			/* Stop new requests from getting into the queue */
1433			del_gendisk(md->disk);
1434		}
1435
1436		/* Then flush out any already in there */
1437		mmc_cleanup_queue(&md->queue);
1438		mmc_blk_put(md);
1439	}
1440}
1441
1442static void mmc_blk_remove_parts(struct mmc_card *card,
1443				 struct mmc_blk_data *md)
1444{
1445	struct list_head *pos, *q;
1446	struct mmc_blk_data *part_md;
1447
1448	__clear_bit(md->name_idx, name_use);
1449	list_for_each_safe(pos, q, &md->part) {
1450		part_md = list_entry(pos, struct mmc_blk_data, part);
1451		list_del(pos);
1452		mmc_blk_remove_req(part_md);
1453	}
1454}
1455
1456static int mmc_add_disk(struct mmc_blk_data *md)
1457{
1458	int ret;
1459
1460	add_disk(md->disk);
1461	md->force_ro.show = force_ro_show;
1462	md->force_ro.store = force_ro_store;
1463	sysfs_attr_init(&md->force_ro.attr);
1464	md->force_ro.attr.name = "force_ro";
1465	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1466	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1467	if (ret)
1468		del_gendisk(md->disk);
1469
1470	return ret;
1471}
1472
1473static const struct mmc_fixup blk_fixups[] =
1474{
1475	MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1476	MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1477	MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1478	MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1479	MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1480
1481	/*
1482	 * Some MMC cards experience performance degradation with CMD23
1483	 * instead of CMD12-bounded multiblock transfers. For now we'll
1484	 * black list what's bad...
1485	 * - Certain Toshiba cards.
1486	 *
1487	 * N.B. This doesn't affect SD cards.
1488	 */
1489	MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1490		  MMC_QUIRK_BLK_NO_CMD23),
1491	MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1492		  MMC_QUIRK_BLK_NO_CMD23),
1493	MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1494		  MMC_QUIRK_BLK_NO_CMD23),
1495	END_FIXUP
1496};
1497
1498static int mmc_blk_probe(struct mmc_card *card)
1499{
1500	struct mmc_blk_data *md, *part_md;
1501	int err;
1502	char cap_str[10];
1503
1504	/*
1505	 * Check that the card supports the command class(es) we need.
1506	 */
1507	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1508		return -ENODEV;
1509
1510	md = mmc_blk_alloc(card);
1511	if (IS_ERR(md))
1512		return PTR_ERR(md);
1513
1514	err = mmc_blk_set_blksize(md, card);
1515	if (err)
1516		goto out;
1517
1518	string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1519			cap_str, sizeof(cap_str));
1520	printk(KERN_INFO "%s: %s %s %s %s\n",
1521		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1522		cap_str, md->read_only ? "(ro)" : "");
1523
1524	if (mmc_blk_alloc_parts(card, md))
1525		goto out;
1526
1527	mmc_set_drvdata(card, md);
1528	mmc_fixup_device(card, blk_fixups);
1529
1530	if (mmc_add_disk(md))
1531		goto out;
1532
1533	list_for_each_entry(part_md, &md->part, part) {
1534		if (mmc_add_disk(part_md))
1535			goto out;
1536	}
1537	return 0;
1538
1539 out:
1540	mmc_blk_remove_parts(card, md);
1541	mmc_blk_remove_req(md);
1542	return err;
1543}
1544
1545static void mmc_blk_remove(struct mmc_card *card)
1546{
1547	struct mmc_blk_data *md = mmc_get_drvdata(card);
1548
1549	mmc_blk_remove_parts(card, md);
1550	mmc_claim_host(card->host);
1551	mmc_blk_part_switch(card, md);
1552	mmc_release_host(card->host);
1553	mmc_blk_remove_req(md);
1554	mmc_set_drvdata(card, NULL);
1555}
1556
1557#ifdef CONFIG_PM
1558static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1559{
1560	struct mmc_blk_data *part_md;
1561	struct mmc_blk_data *md = mmc_get_drvdata(card);
1562
1563	if (md) {
1564		mmc_queue_suspend(&md->queue);
1565		list_for_each_entry(part_md, &md->part, part) {
1566			mmc_queue_suspend(&part_md->queue);
1567		}
1568	}
1569	return 0;
1570}
1571
1572static int mmc_blk_resume(struct mmc_card *card)
1573{
1574	struct mmc_blk_data *part_md;
1575	struct mmc_blk_data *md = mmc_get_drvdata(card);
1576
1577	if (md) {
1578		mmc_blk_set_blksize(md, card);
1579
1580		/*
1581		 * Resume involves the card going into idle state,
1582		 * so current partition is always the main one.
1583		 */
1584		md->part_curr = md->part_type;
1585		mmc_queue_resume(&md->queue);
1586		list_for_each_entry(part_md, &md->part, part) {
1587			mmc_queue_resume(&part_md->queue);
1588		}
1589	}
1590	return 0;
1591}
1592#else
1593#define	mmc_blk_suspend	NULL
1594#define mmc_blk_resume	NULL
1595#endif
1596
1597static struct mmc_driver mmc_driver = {
1598	.drv		= {
1599		.name	= "mmcblk",
1600	},
1601	.probe		= mmc_blk_probe,
1602	.remove		= mmc_blk_remove,
1603	.suspend	= mmc_blk_suspend,
1604	.resume		= mmc_blk_resume,
1605};
1606
1607static int __init mmc_blk_init(void)
1608{
1609	int res;
1610
1611	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1612		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1613
1614	max_devices = 256 / perdev_minors;
1615
1616	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1617	if (res)
1618		goto out;
1619
1620	res = mmc_register_driver(&mmc_driver);
1621	if (res)
1622		goto out2;
1623
1624	return 0;
1625 out2:
1626	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1627 out:
1628	return res;
1629}
1630
1631static void __exit mmc_blk_exit(void)
1632{
1633	mmc_unregister_driver(&mmc_driver);
1634	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1635}
1636
1637module_init(mmc_blk_init);
1638module_exit(mmc_blk_exit);
1639
1640MODULE_LICENSE("GPL");
1641MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1642
1643