block.c revision d380443cd0271903bf9516bc04cead81676be034
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author:  Andrew Christian
18 *          28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/mutex.h>
32#include <linux/scatterlist.h>
33#include <linux/string_helpers.h>
34#include <linux/delay.h>
35#include <linux/capability.h>
36#include <linux/compat.h>
37
38#include <linux/mmc/ioctl.h>
39#include <linux/mmc/card.h>
40#include <linux/mmc/host.h>
41#include <linux/mmc/mmc.h>
42#include <linux/mmc/sd.h>
43
44#include <asm/uaccess.h>
45
46#include "queue.h"
47
48MODULE_ALIAS("mmc:block");
49#ifdef MODULE_PARAM_PREFIX
50#undef MODULE_PARAM_PREFIX
51#endif
52#define MODULE_PARAM_PREFIX "mmcblk."
53
54#define INAND_CMD38_ARG_EXT_CSD  113
55#define INAND_CMD38_ARG_ERASE    0x00
56#define INAND_CMD38_ARG_TRIM     0x01
57#define INAND_CMD38_ARG_SECERASE 0x80
58#define INAND_CMD38_ARG_SECTRIM1 0x81
59#define INAND_CMD38_ARG_SECTRIM2 0x88
60
61static DEFINE_MUTEX(block_mutex);
62
63/*
64 * The defaults come from config options but can be overriden by module
65 * or bootarg options.
66 */
67static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
68
69/*
70 * We've only got one major, so number of mmcblk devices is
71 * limited to 256 / number of minors per device.
72 */
73static int max_devices;
74
75/* 256 minors, so at most 256 separate devices */
76static DECLARE_BITMAP(dev_use, 256);
77static DECLARE_BITMAP(name_use, 256);
78
79/*
80 * There is one mmc_blk_data per slot.
81 */
82struct mmc_blk_data {
83	spinlock_t	lock;
84	struct gendisk	*disk;
85	struct mmc_queue queue;
86	struct list_head part;
87
88	unsigned int	flags;
89#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
90#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
91
92	unsigned int	usage;
93	unsigned int	read_only;
94	unsigned int	part_type;
95	unsigned int	name_idx;
96	unsigned int	reset_done;
97#define MMC_BLK_READ		BIT(0)
98#define MMC_BLK_WRITE		BIT(1)
99#define MMC_BLK_DISCARD		BIT(2)
100#define MMC_BLK_SECDISCARD	BIT(3)
101
102	/*
103	 * Only set in main mmc_blk_data associated
104	 * with mmc_card with mmc_set_drvdata, and keeps
105	 * track of the current selected device partition.
106	 */
107	unsigned int	part_curr;
108	struct device_attribute force_ro;
109	struct device_attribute power_ro_lock;
110	int	area_type;
111};
112
113static DEFINE_MUTEX(open_lock);
114
115enum mmc_blk_status {
116	MMC_BLK_SUCCESS = 0,
117	MMC_BLK_PARTIAL,
118	MMC_BLK_CMD_ERR,
119	MMC_BLK_RETRY,
120	MMC_BLK_ABORT,
121	MMC_BLK_DATA_ERR,
122	MMC_BLK_ECC_ERR,
123	MMC_BLK_NOMEDIUM,
124};
125
126module_param(perdev_minors, int, 0444);
127MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
128
129static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
130{
131	struct mmc_blk_data *md;
132
133	mutex_lock(&open_lock);
134	md = disk->private_data;
135	if (md && md->usage == 0)
136		md = NULL;
137	if (md)
138		md->usage++;
139	mutex_unlock(&open_lock);
140
141	return md;
142}
143
144static inline int mmc_get_devidx(struct gendisk *disk)
145{
146	int devmaj = MAJOR(disk_devt(disk));
147	int devidx = MINOR(disk_devt(disk)) / perdev_minors;
148
149	if (!devmaj)
150		devidx = disk->first_minor / perdev_minors;
151	return devidx;
152}
153
154static void mmc_blk_put(struct mmc_blk_data *md)
155{
156	mutex_lock(&open_lock);
157	md->usage--;
158	if (md->usage == 0) {
159		int devidx = mmc_get_devidx(md->disk);
160		blk_cleanup_queue(md->queue.queue);
161
162		__clear_bit(devidx, dev_use);
163
164		put_disk(md->disk);
165		kfree(md);
166	}
167	mutex_unlock(&open_lock);
168}
169
170static ssize_t power_ro_lock_show(struct device *dev,
171		struct device_attribute *attr, char *buf)
172{
173	int ret;
174	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
175	struct mmc_card *card = md->queue.card;
176	int locked = 0;
177
178	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
179		locked = 2;
180	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
181		locked = 1;
182
183	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
184
185	return ret;
186}
187
188static ssize_t power_ro_lock_store(struct device *dev,
189		struct device_attribute *attr, const char *buf, size_t count)
190{
191	int ret;
192	struct mmc_blk_data *md, *part_md;
193	struct mmc_card *card;
194	unsigned long set;
195
196	if (kstrtoul(buf, 0, &set))
197		return -EINVAL;
198
199	if (set != 1)
200		return count;
201
202	md = mmc_blk_get(dev_to_disk(dev));
203	card = md->queue.card;
204
205	mmc_claim_host(card->host);
206
207	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
208				card->ext_csd.boot_ro_lock |
209				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
210				card->ext_csd.part_time);
211	if (ret)
212		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
213	else
214		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
215
216	mmc_release_host(card->host);
217
218	if (!ret) {
219		pr_info("%s: Locking boot partition ro until next power on\n",
220			md->disk->disk_name);
221		set_disk_ro(md->disk, 1);
222
223		list_for_each_entry(part_md, &md->part, part)
224			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
225				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
226				set_disk_ro(part_md->disk, 1);
227			}
228	}
229
230	mmc_blk_put(md);
231	return count;
232}
233
234static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
235			     char *buf)
236{
237	int ret;
238	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
239
240	ret = snprintf(buf, PAGE_SIZE, "%d",
241		       get_disk_ro(dev_to_disk(dev)) ^
242		       md->read_only);
243	mmc_blk_put(md);
244	return ret;
245}
246
247static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
248			      const char *buf, size_t count)
249{
250	int ret;
251	char *end;
252	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
253	unsigned long set = simple_strtoul(buf, &end, 0);
254	if (end == buf) {
255		ret = -EINVAL;
256		goto out;
257	}
258
259	set_disk_ro(dev_to_disk(dev), set || md->read_only);
260	ret = count;
261out:
262	mmc_blk_put(md);
263	return ret;
264}
265
266static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
267{
268	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
269	int ret = -ENXIO;
270
271	mutex_lock(&block_mutex);
272	if (md) {
273		if (md->usage == 2)
274			check_disk_change(bdev);
275		ret = 0;
276
277		if ((mode & FMODE_WRITE) && md->read_only) {
278			mmc_blk_put(md);
279			ret = -EROFS;
280		}
281	}
282	mutex_unlock(&block_mutex);
283
284	return ret;
285}
286
287static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
288{
289	struct mmc_blk_data *md = disk->private_data;
290
291	mutex_lock(&block_mutex);
292	mmc_blk_put(md);
293	mutex_unlock(&block_mutex);
294	return 0;
295}
296
297static int
298mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
299{
300	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
301	geo->heads = 4;
302	geo->sectors = 16;
303	return 0;
304}
305
306struct mmc_blk_ioc_data {
307	struct mmc_ioc_cmd ic;
308	unsigned char *buf;
309	u64 buf_bytes;
310};
311
312static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
313	struct mmc_ioc_cmd __user *user)
314{
315	struct mmc_blk_ioc_data *idata;
316	int err;
317
318	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
319	if (!idata) {
320		err = -ENOMEM;
321		goto out;
322	}
323
324	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
325		err = -EFAULT;
326		goto idata_err;
327	}
328
329	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
330	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
331		err = -EOVERFLOW;
332		goto idata_err;
333	}
334
335	if (!idata->buf_bytes)
336		return idata;
337
338	idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
339	if (!idata->buf) {
340		err = -ENOMEM;
341		goto idata_err;
342	}
343
344	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345					idata->ic.data_ptr, idata->buf_bytes)) {
346		err = -EFAULT;
347		goto copy_err;
348	}
349
350	return idata;
351
352copy_err:
353	kfree(idata->buf);
354idata_err:
355	kfree(idata);
356out:
357	return ERR_PTR(err);
358}
359
360static int mmc_blk_ioctl_cmd(struct block_device *bdev,
361	struct mmc_ioc_cmd __user *ic_ptr)
362{
363	struct mmc_blk_ioc_data *idata;
364	struct mmc_blk_data *md;
365	struct mmc_card *card;
366	struct mmc_command cmd = {0};
367	struct mmc_data data = {0};
368	struct mmc_request mrq = {NULL};
369	struct scatterlist sg;
370	int err;
371
372	/*
373	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
374	 * whole block device, not on a partition.  This prevents overspray
375	 * between sibling partitions.
376	 */
377	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
378		return -EPERM;
379
380	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
381	if (IS_ERR(idata))
382		return PTR_ERR(idata);
383
384	md = mmc_blk_get(bdev->bd_disk);
385	if (!md) {
386		err = -EINVAL;
387		goto cmd_err;
388	}
389
390	card = md->queue.card;
391	if (IS_ERR(card)) {
392		err = PTR_ERR(card);
393		goto cmd_done;
394	}
395
396	cmd.opcode = idata->ic.opcode;
397	cmd.arg = idata->ic.arg;
398	cmd.flags = idata->ic.flags;
399
400	if (idata->buf_bytes) {
401		data.sg = &sg;
402		data.sg_len = 1;
403		data.blksz = idata->ic.blksz;
404		data.blocks = idata->ic.blocks;
405
406		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
407
408		if (idata->ic.write_flag)
409			data.flags = MMC_DATA_WRITE;
410		else
411			data.flags = MMC_DATA_READ;
412
413		/* data.flags must already be set before doing this. */
414		mmc_set_data_timeout(&data, card);
415
416		/* Allow overriding the timeout_ns for empirical tuning. */
417		if (idata->ic.data_timeout_ns)
418			data.timeout_ns = idata->ic.data_timeout_ns;
419
420		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
421			/*
422			 * Pretend this is a data transfer and rely on the
423			 * host driver to compute timeout.  When all host
424			 * drivers support cmd.cmd_timeout for R1B, this
425			 * can be changed to:
426			 *
427			 *     mrq.data = NULL;
428			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
429			 */
430			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
431		}
432
433		mrq.data = &data;
434	}
435
436	mrq.cmd = &cmd;
437
438	mmc_claim_host(card->host);
439
440	if (idata->ic.is_acmd) {
441		err = mmc_app_cmd(card->host, card);
442		if (err)
443			goto cmd_rel_host;
444	}
445
446	mmc_wait_for_req(card->host, &mrq);
447
448	if (cmd.error) {
449		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
450						__func__, cmd.error);
451		err = cmd.error;
452		goto cmd_rel_host;
453	}
454	if (data.error) {
455		dev_err(mmc_dev(card->host), "%s: data error %d\n",
456						__func__, data.error);
457		err = data.error;
458		goto cmd_rel_host;
459	}
460
461	/*
462	 * According to the SD specs, some commands require a delay after
463	 * issuing the command.
464	 */
465	if (idata->ic.postsleep_min_us)
466		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
467
468	if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
469		err = -EFAULT;
470		goto cmd_rel_host;
471	}
472
473	if (!idata->ic.write_flag) {
474		if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
475						idata->buf, idata->buf_bytes)) {
476			err = -EFAULT;
477			goto cmd_rel_host;
478		}
479	}
480
481cmd_rel_host:
482	mmc_release_host(card->host);
483
484cmd_done:
485	mmc_blk_put(md);
486cmd_err:
487	kfree(idata->buf);
488	kfree(idata);
489	return err;
490}
491
492static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493	unsigned int cmd, unsigned long arg)
494{
495	int ret = -EINVAL;
496	if (cmd == MMC_IOC_CMD)
497		ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498	return ret;
499}
500
501#ifdef CONFIG_COMPAT
502static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503	unsigned int cmd, unsigned long arg)
504{
505	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
506}
507#endif
508
509static const struct block_device_operations mmc_bdops = {
510	.open			= mmc_blk_open,
511	.release		= mmc_blk_release,
512	.getgeo			= mmc_blk_getgeo,
513	.owner			= THIS_MODULE,
514	.ioctl			= mmc_blk_ioctl,
515#ifdef CONFIG_COMPAT
516	.compat_ioctl		= mmc_blk_compat_ioctl,
517#endif
518};
519
520static inline int mmc_blk_part_switch(struct mmc_card *card,
521				      struct mmc_blk_data *md)
522{
523	int ret;
524	struct mmc_blk_data *main_md = mmc_get_drvdata(card);
525
526	if (main_md->part_curr == md->part_type)
527		return 0;
528
529	if (mmc_card_mmc(card)) {
530		u8 part_config = card->ext_csd.part_config;
531
532		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533		part_config |= md->part_type;
534
535		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
536				 EXT_CSD_PART_CONFIG, part_config,
537				 card->ext_csd.part_time);
538		if (ret)
539			return ret;
540
541		card->ext_csd.part_config = part_config;
542	}
543
544	main_md->part_curr = md->part_type;
545	return 0;
546}
547
548static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
549{
550	int err;
551	u32 result;
552	__be32 *blocks;
553
554	struct mmc_request mrq = {NULL};
555	struct mmc_command cmd = {0};
556	struct mmc_data data = {0};
557
558	struct scatterlist sg;
559
560	cmd.opcode = MMC_APP_CMD;
561	cmd.arg = card->rca << 16;
562	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
563
564	err = mmc_wait_for_cmd(card->host, &cmd, 0);
565	if (err)
566		return (u32)-1;
567	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
568		return (u32)-1;
569
570	memset(&cmd, 0, sizeof(struct mmc_command));
571
572	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
573	cmd.arg = 0;
574	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
575
576	data.blksz = 4;
577	data.blocks = 1;
578	data.flags = MMC_DATA_READ;
579	data.sg = &sg;
580	data.sg_len = 1;
581	mmc_set_data_timeout(&data, card);
582
583	mrq.cmd = &cmd;
584	mrq.data = &data;
585
586	blocks = kmalloc(4, GFP_KERNEL);
587	if (!blocks)
588		return (u32)-1;
589
590	sg_init_one(&sg, blocks, 4);
591
592	mmc_wait_for_req(card->host, &mrq);
593
594	result = ntohl(*blocks);
595	kfree(blocks);
596
597	if (cmd.error || data.error)
598		result = (u32)-1;
599
600	return result;
601}
602
603static int send_stop(struct mmc_card *card, u32 *status)
604{
605	struct mmc_command cmd = {0};
606	int err;
607
608	cmd.opcode = MMC_STOP_TRANSMISSION;
609	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
610	err = mmc_wait_for_cmd(card->host, &cmd, 5);
611	if (err == 0)
612		*status = cmd.resp[0];
613	return err;
614}
615
616static int get_card_status(struct mmc_card *card, u32 *status, int retries)
617{
618	struct mmc_command cmd = {0};
619	int err;
620
621	cmd.opcode = MMC_SEND_STATUS;
622	if (!mmc_host_is_spi(card->host))
623		cmd.arg = card->rca << 16;
624	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
625	err = mmc_wait_for_cmd(card->host, &cmd, retries);
626	if (err == 0)
627		*status = cmd.resp[0];
628	return err;
629}
630
631#define ERR_NOMEDIUM	3
632#define ERR_RETRY	2
633#define ERR_ABORT	1
634#define ERR_CONTINUE	0
635
636static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
637	bool status_valid, u32 status)
638{
639	switch (error) {
640	case -EILSEQ:
641		/* response crc error, retry the r/w cmd */
642		pr_err("%s: %s sending %s command, card status %#x\n",
643			req->rq_disk->disk_name, "response CRC error",
644			name, status);
645		return ERR_RETRY;
646
647	case -ETIMEDOUT:
648		pr_err("%s: %s sending %s command, card status %#x\n",
649			req->rq_disk->disk_name, "timed out", name, status);
650
651		/* If the status cmd initially failed, retry the r/w cmd */
652		if (!status_valid)
653			return ERR_RETRY;
654
655		/*
656		 * If it was a r/w cmd crc error, or illegal command
657		 * (eg, issued in wrong state) then retry - we should
658		 * have corrected the state problem above.
659		 */
660		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
661			return ERR_RETRY;
662
663		/* Otherwise abort the command */
664		return ERR_ABORT;
665
666	default:
667		/* We don't understand the error code the driver gave us */
668		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
669		       req->rq_disk->disk_name, error, status);
670		return ERR_ABORT;
671	}
672}
673
674/*
675 * Initial r/w and stop cmd error recovery.
676 * We don't know whether the card received the r/w cmd or not, so try to
677 * restore things back to a sane state.  Essentially, we do this as follows:
678 * - Obtain card status.  If the first attempt to obtain card status fails,
679 *   the status word will reflect the failed status cmd, not the failed
680 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
681 *   longer communicate with the card.
682 * - Check the card state.  If the card received the cmd but there was a
683 *   transient problem with the response, it might still be in a data transfer
684 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
685 * - If the r/w cmd failed due to a response CRC error, it was probably
686 *   transient, so retry the cmd.
687 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
688 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
689 *   illegal cmd, retry.
690 * Otherwise we don't understand what happened, so abort.
691 */
692static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
693	struct mmc_blk_request *brq, int *ecc_err)
694{
695	bool prev_cmd_status_valid = true;
696	u32 status, stop_status = 0;
697	int err, retry;
698
699	if (mmc_card_removed(card))
700		return ERR_NOMEDIUM;
701
702	/*
703	 * Try to get card status which indicates both the card state
704	 * and why there was no response.  If the first attempt fails,
705	 * we can't be sure the returned status is for the r/w command.
706	 */
707	for (retry = 2; retry >= 0; retry--) {
708		err = get_card_status(card, &status, 0);
709		if (!err)
710			break;
711
712		prev_cmd_status_valid = false;
713		pr_err("%s: error %d sending status command, %sing\n",
714		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
715	}
716
717	/* We couldn't get a response from the card.  Give up. */
718	if (err) {
719		/* Check if the card is removed */
720		if (mmc_detect_card_removed(card->host))
721			return ERR_NOMEDIUM;
722		return ERR_ABORT;
723	}
724
725	/* Flag ECC errors */
726	if ((status & R1_CARD_ECC_FAILED) ||
727	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
728	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
729		*ecc_err = 1;
730
731	/*
732	 * Check the current card state.  If it is in some data transfer
733	 * mode, tell it to stop (and hopefully transition back to TRAN.)
734	 */
735	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
736	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
737		err = send_stop(card, &stop_status);
738		if (err)
739			pr_err("%s: error %d sending stop command\n",
740			       req->rq_disk->disk_name, err);
741
742		/*
743		 * If the stop cmd also timed out, the card is probably
744		 * not present, so abort.  Other errors are bad news too.
745		 */
746		if (err)
747			return ERR_ABORT;
748		if (stop_status & R1_CARD_ECC_FAILED)
749			*ecc_err = 1;
750	}
751
752	/* Check for set block count errors */
753	if (brq->sbc.error)
754		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
755				prev_cmd_status_valid, status);
756
757	/* Check for r/w command errors */
758	if (brq->cmd.error)
759		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
760				prev_cmd_status_valid, status);
761
762	/* Data errors */
763	if (!brq->stop.error)
764		return ERR_CONTINUE;
765
766	/* Now for stop errors.  These aren't fatal to the transfer. */
767	pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
768	       req->rq_disk->disk_name, brq->stop.error,
769	       brq->cmd.resp[0], status);
770
771	/*
772	 * Subsitute in our own stop status as this will give the error
773	 * state which happened during the execution of the r/w command.
774	 */
775	if (stop_status) {
776		brq->stop.resp[0] = stop_status;
777		brq->stop.error = 0;
778	}
779	return ERR_CONTINUE;
780}
781
782static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
783			 int type)
784{
785	int err;
786
787	if (md->reset_done & type)
788		return -EEXIST;
789
790	md->reset_done |= type;
791	err = mmc_hw_reset(host);
792	/* Ensure we switch back to the correct partition */
793	if (err != -EOPNOTSUPP) {
794		struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
795		int part_err;
796
797		main_md->part_curr = main_md->part_type;
798		part_err = mmc_blk_part_switch(host->card, md);
799		if (part_err) {
800			/*
801			 * We have failed to get back into the correct
802			 * partition, so we need to abort the whole request.
803			 */
804			return -ENODEV;
805		}
806	}
807	return err;
808}
809
810static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
811{
812	md->reset_done &= ~type;
813}
814
815static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
816{
817	struct mmc_blk_data *md = mq->data;
818	struct mmc_card *card = md->queue.card;
819	unsigned int from, nr, arg;
820	int err = 0, type = MMC_BLK_DISCARD;
821
822	if (!mmc_can_erase(card)) {
823		err = -EOPNOTSUPP;
824		goto out;
825	}
826
827	from = blk_rq_pos(req);
828	nr = blk_rq_sectors(req);
829
830	if (mmc_can_discard(card))
831		arg = MMC_DISCARD_ARG;
832	else if (mmc_can_trim(card))
833		arg = MMC_TRIM_ARG;
834	else
835		arg = MMC_ERASE_ARG;
836retry:
837	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
838		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
839				 INAND_CMD38_ARG_EXT_CSD,
840				 arg == MMC_TRIM_ARG ?
841				 INAND_CMD38_ARG_TRIM :
842				 INAND_CMD38_ARG_ERASE,
843				 0);
844		if (err)
845			goto out;
846	}
847	err = mmc_erase(card, from, nr, arg);
848out:
849	if (err == -EIO && !mmc_blk_reset(md, card->host, type))
850		goto retry;
851	if (!err)
852		mmc_blk_reset_success(md, type);
853	spin_lock_irq(&md->lock);
854	__blk_end_request(req, err, blk_rq_bytes(req));
855	spin_unlock_irq(&md->lock);
856
857	return err ? 0 : 1;
858}
859
860static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
861				       struct request *req)
862{
863	struct mmc_blk_data *md = mq->data;
864	struct mmc_card *card = md->queue.card;
865	unsigned int from, nr, arg, trim_arg, erase_arg;
866	int err = 0, type = MMC_BLK_SECDISCARD;
867
868	if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
869		err = -EOPNOTSUPP;
870		goto out;
871	}
872
873	from = blk_rq_pos(req);
874	nr = blk_rq_sectors(req);
875
876	/* The sanitize operation is supported at v4.5 only */
877	if (mmc_can_sanitize(card)) {
878		erase_arg = MMC_ERASE_ARG;
879		trim_arg = MMC_TRIM_ARG;
880	} else {
881		erase_arg = MMC_SECURE_ERASE_ARG;
882		trim_arg = MMC_SECURE_TRIM1_ARG;
883	}
884
885	if (mmc_erase_group_aligned(card, from, nr))
886		arg = erase_arg;
887	else if (mmc_can_trim(card))
888		arg = trim_arg;
889	else {
890		err = -EINVAL;
891		goto out;
892	}
893retry:
894	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
895		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
896				 INAND_CMD38_ARG_EXT_CSD,
897				 arg == MMC_SECURE_TRIM1_ARG ?
898				 INAND_CMD38_ARG_SECTRIM1 :
899				 INAND_CMD38_ARG_SECERASE,
900				 0);
901		if (err)
902			goto out_retry;
903	}
904
905	err = mmc_erase(card, from, nr, arg);
906	if (err == -EIO)
907		goto out_retry;
908	if (err)
909		goto out;
910
911	if (arg == MMC_SECURE_TRIM1_ARG) {
912		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
913			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
914					 INAND_CMD38_ARG_EXT_CSD,
915					 INAND_CMD38_ARG_SECTRIM2,
916					 0);
917			if (err)
918				goto out_retry;
919		}
920
921		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
922		if (err == -EIO)
923			goto out_retry;
924		if (err)
925			goto out;
926	}
927
928	if (mmc_can_sanitize(card))
929		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
930				 EXT_CSD_SANITIZE_START, 1, 0);
931out_retry:
932	if (err && !mmc_blk_reset(md, card->host, type))
933		goto retry;
934	if (!err)
935		mmc_blk_reset_success(md, type);
936out:
937	spin_lock_irq(&md->lock);
938	__blk_end_request(req, err, blk_rq_bytes(req));
939	spin_unlock_irq(&md->lock);
940
941	return err ? 0 : 1;
942}
943
944static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
945{
946	struct mmc_blk_data *md = mq->data;
947	struct mmc_card *card = md->queue.card;
948	int ret = 0;
949
950	ret = mmc_flush_cache(card);
951	if (ret)
952		ret = -EIO;
953
954	spin_lock_irq(&md->lock);
955	__blk_end_request_all(req, ret);
956	spin_unlock_irq(&md->lock);
957
958	return ret ? 0 : 1;
959}
960
961/*
962 * Reformat current write as a reliable write, supporting
963 * both legacy and the enhanced reliable write MMC cards.
964 * In each transfer we'll handle only as much as a single
965 * reliable write can handle, thus finish the request in
966 * partial completions.
967 */
968static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
969				    struct mmc_card *card,
970				    struct request *req)
971{
972	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
973		/* Legacy mode imposes restrictions on transfers. */
974		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
975			brq->data.blocks = 1;
976
977		if (brq->data.blocks > card->ext_csd.rel_sectors)
978			brq->data.blocks = card->ext_csd.rel_sectors;
979		else if (brq->data.blocks < card->ext_csd.rel_sectors)
980			brq->data.blocks = 1;
981	}
982}
983
984#define CMD_ERRORS							\
985	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
986	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
987	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
988	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
989	 R1_CC_ERROR |		/* Card controller error */		\
990	 R1_ERROR)		/* General/unknown error */
991
992static int mmc_blk_err_check(struct mmc_card *card,
993			     struct mmc_async_req *areq)
994{
995	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
996						    mmc_active);
997	struct mmc_blk_request *brq = &mq_mrq->brq;
998	struct request *req = mq_mrq->req;
999	int ecc_err = 0;
1000
1001	/*
1002	 * sbc.error indicates a problem with the set block count
1003	 * command.  No data will have been transferred.
1004	 *
1005	 * cmd.error indicates a problem with the r/w command.  No
1006	 * data will have been transferred.
1007	 *
1008	 * stop.error indicates a problem with the stop command.  Data
1009	 * may have been transferred, or may still be transferring.
1010	 */
1011	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1012	    brq->data.error) {
1013		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1014		case ERR_RETRY:
1015			return MMC_BLK_RETRY;
1016		case ERR_ABORT:
1017			return MMC_BLK_ABORT;
1018		case ERR_NOMEDIUM:
1019			return MMC_BLK_NOMEDIUM;
1020		case ERR_CONTINUE:
1021			break;
1022		}
1023	}
1024
1025	/*
1026	 * Check for errors relating to the execution of the
1027	 * initial command - such as address errors.  No data
1028	 * has been transferred.
1029	 */
1030	if (brq->cmd.resp[0] & CMD_ERRORS) {
1031		pr_err("%s: r/w command failed, status = %#x\n",
1032		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1033		return MMC_BLK_ABORT;
1034	}
1035
1036	/*
1037	 * Everything else is either success, or a data error of some
1038	 * kind.  If it was a write, we may have transitioned to
1039	 * program mode, which we have to wait for it to complete.
1040	 */
1041	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1042		u32 status;
1043		do {
1044			int err = get_card_status(card, &status, 5);
1045			if (err) {
1046				pr_err("%s: error %d requesting status\n",
1047				       req->rq_disk->disk_name, err);
1048				return MMC_BLK_CMD_ERR;
1049			}
1050			/*
1051			 * Some cards mishandle the status bits,
1052			 * so make sure to check both the busy
1053			 * indication and the card state.
1054			 */
1055		} while (!(status & R1_READY_FOR_DATA) ||
1056			 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1057	}
1058
1059	if (brq->data.error) {
1060		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1061		       req->rq_disk->disk_name, brq->data.error,
1062		       (unsigned)blk_rq_pos(req),
1063		       (unsigned)blk_rq_sectors(req),
1064		       brq->cmd.resp[0], brq->stop.resp[0]);
1065
1066		if (rq_data_dir(req) == READ) {
1067			if (ecc_err)
1068				return MMC_BLK_ECC_ERR;
1069			return MMC_BLK_DATA_ERR;
1070		} else {
1071			return MMC_BLK_CMD_ERR;
1072		}
1073	}
1074
1075	if (!brq->data.bytes_xfered)
1076		return MMC_BLK_RETRY;
1077
1078	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1079		return MMC_BLK_PARTIAL;
1080
1081	return MMC_BLK_SUCCESS;
1082}
1083
1084static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1085			       struct mmc_card *card,
1086			       int disable_multi,
1087			       struct mmc_queue *mq)
1088{
1089	u32 readcmd, writecmd;
1090	struct mmc_blk_request *brq = &mqrq->brq;
1091	struct request *req = mqrq->req;
1092	struct mmc_blk_data *md = mq->data;
1093	bool do_data_tag;
1094
1095	/*
1096	 * Reliable writes are used to implement Forced Unit Access and
1097	 * REQ_META accesses, and are supported only on MMCs.
1098	 *
1099	 * XXX: this really needs a good explanation of why REQ_META
1100	 * is treated special.
1101	 */
1102	bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1103			  (req->cmd_flags & REQ_META)) &&
1104		(rq_data_dir(req) == WRITE) &&
1105		(md->flags & MMC_BLK_REL_WR);
1106
1107	memset(brq, 0, sizeof(struct mmc_blk_request));
1108	brq->mrq.cmd = &brq->cmd;
1109	brq->mrq.data = &brq->data;
1110
1111	brq->cmd.arg = blk_rq_pos(req);
1112	if (!mmc_card_blockaddr(card))
1113		brq->cmd.arg <<= 9;
1114	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1115	brq->data.blksz = 512;
1116	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1117	brq->stop.arg = 0;
1118	brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1119	brq->data.blocks = blk_rq_sectors(req);
1120
1121	/*
1122	 * The block layer doesn't support all sector count
1123	 * restrictions, so we need to be prepared for too big
1124	 * requests.
1125	 */
1126	if (brq->data.blocks > card->host->max_blk_count)
1127		brq->data.blocks = card->host->max_blk_count;
1128
1129	if (brq->data.blocks > 1) {
1130		/*
1131		 * After a read error, we redo the request one sector
1132		 * at a time in order to accurately determine which
1133		 * sectors can be read successfully.
1134		 */
1135		if (disable_multi)
1136			brq->data.blocks = 1;
1137
1138		/* Some controllers can't do multiblock reads due to hw bugs */
1139		if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1140		    rq_data_dir(req) == READ)
1141			brq->data.blocks = 1;
1142	}
1143
1144	if (brq->data.blocks > 1 || do_rel_wr) {
1145		/* SPI multiblock writes terminate using a special
1146		 * token, not a STOP_TRANSMISSION request.
1147		 */
1148		if (!mmc_host_is_spi(card->host) ||
1149		    rq_data_dir(req) == READ)
1150			brq->mrq.stop = &brq->stop;
1151		readcmd = MMC_READ_MULTIPLE_BLOCK;
1152		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1153	} else {
1154		brq->mrq.stop = NULL;
1155		readcmd = MMC_READ_SINGLE_BLOCK;
1156		writecmd = MMC_WRITE_BLOCK;
1157	}
1158	if (rq_data_dir(req) == READ) {
1159		brq->cmd.opcode = readcmd;
1160		brq->data.flags |= MMC_DATA_READ;
1161	} else {
1162		brq->cmd.opcode = writecmd;
1163		brq->data.flags |= MMC_DATA_WRITE;
1164	}
1165
1166	if (do_rel_wr)
1167		mmc_apply_rel_rw(brq, card, req);
1168
1169	/*
1170	 * Data tag is used only during writing meta data to speed
1171	 * up write and any subsequent read of this meta data
1172	 */
1173	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1174		(req->cmd_flags & REQ_META) &&
1175		(rq_data_dir(req) == WRITE) &&
1176		((brq->data.blocks * brq->data.blksz) >=
1177		 card->ext_csd.data_tag_unit_size);
1178
1179	/*
1180	 * Pre-defined multi-block transfers are preferable to
1181	 * open ended-ones (and necessary for reliable writes).
1182	 * However, it is not sufficient to just send CMD23,
1183	 * and avoid the final CMD12, as on an error condition
1184	 * CMD12 (stop) needs to be sent anyway. This, coupled
1185	 * with Auto-CMD23 enhancements provided by some
1186	 * hosts, means that the complexity of dealing
1187	 * with this is best left to the host. If CMD23 is
1188	 * supported by card and host, we'll fill sbc in and let
1189	 * the host deal with handling it correctly. This means
1190	 * that for hosts that don't expose MMC_CAP_CMD23, no
1191	 * change of behavior will be observed.
1192	 *
1193	 * N.B: Some MMC cards experience perf degradation.
1194	 * We'll avoid using CMD23-bounded multiblock writes for
1195	 * these, while retaining features like reliable writes.
1196	 */
1197	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1198	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1199	     do_data_tag)) {
1200		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1201		brq->sbc.arg = brq->data.blocks |
1202			(do_rel_wr ? (1 << 31) : 0) |
1203			(do_data_tag ? (1 << 29) : 0);
1204		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1205		brq->mrq.sbc = &brq->sbc;
1206	}
1207
1208	mmc_set_data_timeout(&brq->data, card);
1209
1210	brq->data.sg = mqrq->sg;
1211	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1212
1213	/*
1214	 * Adjust the sg list so it is the same size as the
1215	 * request.
1216	 */
1217	if (brq->data.blocks != blk_rq_sectors(req)) {
1218		int i, data_size = brq->data.blocks << 9;
1219		struct scatterlist *sg;
1220
1221		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1222			data_size -= sg->length;
1223			if (data_size <= 0) {
1224				sg->length += data_size;
1225				i++;
1226				break;
1227			}
1228		}
1229		brq->data.sg_len = i;
1230	}
1231
1232	mqrq->mmc_active.mrq = &brq->mrq;
1233	mqrq->mmc_active.err_check = mmc_blk_err_check;
1234
1235	mmc_queue_bounce_pre(mqrq);
1236}
1237
1238static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1239			   struct mmc_blk_request *brq, struct request *req,
1240			   int ret)
1241{
1242	/*
1243	 * If this is an SD card and we're writing, we can first
1244	 * mark the known good sectors as ok.
1245	 *
1246	 * If the card is not SD, we can still ok written sectors
1247	 * as reported by the controller (which might be less than
1248	 * the real number of written sectors, but never more).
1249	 */
1250	if (mmc_card_sd(card)) {
1251		u32 blocks;
1252
1253		blocks = mmc_sd_num_wr_blocks(card);
1254		if (blocks != (u32)-1) {
1255			spin_lock_irq(&md->lock);
1256			ret = __blk_end_request(req, 0, blocks << 9);
1257			spin_unlock_irq(&md->lock);
1258		}
1259	} else {
1260		spin_lock_irq(&md->lock);
1261		ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1262		spin_unlock_irq(&md->lock);
1263	}
1264	return ret;
1265}
1266
1267static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1268{
1269	struct mmc_blk_data *md = mq->data;
1270	struct mmc_card *card = md->queue.card;
1271	struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1272	int ret = 1, disable_multi = 0, retry = 0, type;
1273	enum mmc_blk_status status;
1274	struct mmc_queue_req *mq_rq;
1275	struct request *req = rqc;
1276	struct mmc_async_req *areq;
1277
1278	if (!rqc && !mq->mqrq_prev->req)
1279		return 0;
1280
1281	do {
1282		if (rqc) {
1283			/*
1284			 * When 4KB native sector is enabled, only 8 blocks
1285			 * multiple read or write is allowed
1286			 */
1287			if ((brq->data.blocks & 0x07) &&
1288			    (card->ext_csd.data_sector_size == 4096)) {
1289				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1290					req->rq_disk->disk_name);
1291				goto cmd_abort;
1292			}
1293			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1294			areq = &mq->mqrq_cur->mmc_active;
1295		} else
1296			areq = NULL;
1297		areq = mmc_start_req(card->host, areq, (int *) &status);
1298		if (!areq)
1299			return 0;
1300
1301		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1302		brq = &mq_rq->brq;
1303		req = mq_rq->req;
1304		type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1305		mmc_queue_bounce_post(mq_rq);
1306
1307		switch (status) {
1308		case MMC_BLK_SUCCESS:
1309		case MMC_BLK_PARTIAL:
1310			/*
1311			 * A block was successfully transferred.
1312			 */
1313			mmc_blk_reset_success(md, type);
1314			spin_lock_irq(&md->lock);
1315			ret = __blk_end_request(req, 0,
1316						brq->data.bytes_xfered);
1317			spin_unlock_irq(&md->lock);
1318			/*
1319			 * If the blk_end_request function returns non-zero even
1320			 * though all data has been transferred and no errors
1321			 * were returned by the host controller, it's a bug.
1322			 */
1323			if (status == MMC_BLK_SUCCESS && ret) {
1324				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1325				       __func__, blk_rq_bytes(req),
1326				       brq->data.bytes_xfered);
1327				rqc = NULL;
1328				goto cmd_abort;
1329			}
1330			break;
1331		case MMC_BLK_CMD_ERR:
1332			ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1333			if (!mmc_blk_reset(md, card->host, type))
1334				break;
1335			goto cmd_abort;
1336		case MMC_BLK_RETRY:
1337			if (retry++ < 5)
1338				break;
1339			/* Fall through */
1340		case MMC_BLK_ABORT:
1341			if (!mmc_blk_reset(md, card->host, type))
1342				break;
1343			goto cmd_abort;
1344		case MMC_BLK_DATA_ERR: {
1345			int err;
1346
1347			err = mmc_blk_reset(md, card->host, type);
1348			if (!err)
1349				break;
1350			if (err == -ENODEV)
1351				goto cmd_abort;
1352			/* Fall through */
1353		}
1354		case MMC_BLK_ECC_ERR:
1355			if (brq->data.blocks > 1) {
1356				/* Redo read one sector at a time */
1357				pr_warning("%s: retrying using single block read\n",
1358					   req->rq_disk->disk_name);
1359				disable_multi = 1;
1360				break;
1361			}
1362			/*
1363			 * After an error, we redo I/O one sector at a
1364			 * time, so we only reach here after trying to
1365			 * read a single sector.
1366			 */
1367			spin_lock_irq(&md->lock);
1368			ret = __blk_end_request(req, -EIO,
1369						brq->data.blksz);
1370			spin_unlock_irq(&md->lock);
1371			if (!ret)
1372				goto start_new_req;
1373			break;
1374		case MMC_BLK_NOMEDIUM:
1375			goto cmd_abort;
1376		}
1377
1378		if (ret) {
1379			/*
1380			 * In case of a incomplete request
1381			 * prepare it again and resend.
1382			 */
1383			mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1384			mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1385		}
1386	} while (ret);
1387
1388	return 1;
1389
1390 cmd_abort:
1391	spin_lock_irq(&md->lock);
1392	if (mmc_card_removed(card))
1393		req->cmd_flags |= REQ_QUIET;
1394	while (ret)
1395		ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1396	spin_unlock_irq(&md->lock);
1397
1398 start_new_req:
1399	if (rqc) {
1400		mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1401		mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1402	}
1403
1404	return 0;
1405}
1406
1407static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1408{
1409	int ret;
1410	struct mmc_blk_data *md = mq->data;
1411	struct mmc_card *card = md->queue.card;
1412
1413	if (req && !mq->mqrq_prev->req)
1414		/* claim host only for the first request */
1415		mmc_claim_host(card->host);
1416
1417	ret = mmc_blk_part_switch(card, md);
1418	if (ret) {
1419		if (req) {
1420			spin_lock_irq(&md->lock);
1421			__blk_end_request_all(req, -EIO);
1422			spin_unlock_irq(&md->lock);
1423		}
1424		ret = 0;
1425		goto out;
1426	}
1427
1428	if (req && req->cmd_flags & REQ_DISCARD) {
1429		/* complete ongoing async transfer before issuing discard */
1430		if (card->host->areq)
1431			mmc_blk_issue_rw_rq(mq, NULL);
1432		if (req->cmd_flags & REQ_SECURE)
1433			ret = mmc_blk_issue_secdiscard_rq(mq, req);
1434		else
1435			ret = mmc_blk_issue_discard_rq(mq, req);
1436	} else if (req && req->cmd_flags & REQ_FLUSH) {
1437		/* complete ongoing async transfer before issuing flush */
1438		if (card->host->areq)
1439			mmc_blk_issue_rw_rq(mq, NULL);
1440		ret = mmc_blk_issue_flush(mq, req);
1441	} else {
1442		ret = mmc_blk_issue_rw_rq(mq, req);
1443	}
1444
1445out:
1446	if (!req)
1447		/* release host only when there are no more requests */
1448		mmc_release_host(card->host);
1449	return ret;
1450}
1451
1452static inline int mmc_blk_readonly(struct mmc_card *card)
1453{
1454	return mmc_card_readonly(card) ||
1455	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1456}
1457
1458static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1459					      struct device *parent,
1460					      sector_t size,
1461					      bool default_ro,
1462					      const char *subname,
1463					      int area_type)
1464{
1465	struct mmc_blk_data *md;
1466	int devidx, ret;
1467
1468	devidx = find_first_zero_bit(dev_use, max_devices);
1469	if (devidx >= max_devices)
1470		return ERR_PTR(-ENOSPC);
1471	__set_bit(devidx, dev_use);
1472
1473	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1474	if (!md) {
1475		ret = -ENOMEM;
1476		goto out;
1477	}
1478
1479	/*
1480	 * !subname implies we are creating main mmc_blk_data that will be
1481	 * associated with mmc_card with mmc_set_drvdata. Due to device
1482	 * partitions, devidx will not coincide with a per-physical card
1483	 * index anymore so we keep track of a name index.
1484	 */
1485	if (!subname) {
1486		md->name_idx = find_first_zero_bit(name_use, max_devices);
1487		__set_bit(md->name_idx, name_use);
1488	} else
1489		md->name_idx = ((struct mmc_blk_data *)
1490				dev_to_disk(parent)->private_data)->name_idx;
1491
1492	md->area_type = area_type;
1493
1494	/*
1495	 * Set the read-only status based on the supported commands
1496	 * and the write protect switch.
1497	 */
1498	md->read_only = mmc_blk_readonly(card);
1499
1500	md->disk = alloc_disk(perdev_minors);
1501	if (md->disk == NULL) {
1502		ret = -ENOMEM;
1503		goto err_kfree;
1504	}
1505
1506	spin_lock_init(&md->lock);
1507	INIT_LIST_HEAD(&md->part);
1508	md->usage = 1;
1509
1510	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1511	if (ret)
1512		goto err_putdisk;
1513
1514	md->queue.issue_fn = mmc_blk_issue_rq;
1515	md->queue.data = md;
1516
1517	md->disk->major	= MMC_BLOCK_MAJOR;
1518	md->disk->first_minor = devidx * perdev_minors;
1519	md->disk->fops = &mmc_bdops;
1520	md->disk->private_data = md;
1521	md->disk->queue = md->queue.queue;
1522	md->disk->driverfs_dev = parent;
1523	set_disk_ro(md->disk, md->read_only || default_ro);
1524
1525	/*
1526	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1527	 *
1528	 * - be set for removable media with permanent block devices
1529	 * - be unset for removable block devices with permanent media
1530	 *
1531	 * Since MMC block devices clearly fall under the second
1532	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1533	 * should use the block device creation/destruction hotplug
1534	 * messages to tell when the card is present.
1535	 */
1536
1537	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1538		 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1539
1540	if (mmc_card_mmc(card))
1541		blk_queue_logical_block_size(md->queue.queue,
1542					     card->ext_csd.data_sector_size);
1543	else
1544		blk_queue_logical_block_size(md->queue.queue, 512);
1545
1546	set_capacity(md->disk, size);
1547
1548	if (mmc_host_cmd23(card->host)) {
1549		if (mmc_card_mmc(card) ||
1550		    (mmc_card_sd(card) &&
1551		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1552			md->flags |= MMC_BLK_CMD23;
1553	}
1554
1555	if (mmc_card_mmc(card) &&
1556	    md->flags & MMC_BLK_CMD23 &&
1557	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1558	     card->ext_csd.rel_sectors)) {
1559		md->flags |= MMC_BLK_REL_WR;
1560		blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1561	}
1562
1563	return md;
1564
1565 err_putdisk:
1566	put_disk(md->disk);
1567 err_kfree:
1568	kfree(md);
1569 out:
1570	return ERR_PTR(ret);
1571}
1572
1573static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1574{
1575	sector_t size;
1576	struct mmc_blk_data *md;
1577
1578	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1579		/*
1580		 * The EXT_CSD sector count is in number or 512 byte
1581		 * sectors.
1582		 */
1583		size = card->ext_csd.sectors;
1584	} else {
1585		/*
1586		 * The CSD capacity field is in units of read_blkbits.
1587		 * set_capacity takes units of 512 bytes.
1588		 */
1589		size = card->csd.capacity << (card->csd.read_blkbits - 9);
1590	}
1591
1592	md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1593					MMC_BLK_DATA_AREA_MAIN);
1594	return md;
1595}
1596
1597static int mmc_blk_alloc_part(struct mmc_card *card,
1598			      struct mmc_blk_data *md,
1599			      unsigned int part_type,
1600			      sector_t size,
1601			      bool default_ro,
1602			      const char *subname,
1603			      int area_type)
1604{
1605	char cap_str[10];
1606	struct mmc_blk_data *part_md;
1607
1608	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1609				    subname, area_type);
1610	if (IS_ERR(part_md))
1611		return PTR_ERR(part_md);
1612	part_md->part_type = part_type;
1613	list_add(&part_md->part, &md->part);
1614
1615	string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1616			cap_str, sizeof(cap_str));
1617	pr_info("%s: %s %s partition %u %s\n",
1618	       part_md->disk->disk_name, mmc_card_id(card),
1619	       mmc_card_name(card), part_md->part_type, cap_str);
1620	return 0;
1621}
1622
1623/* MMC Physical partitions consist of two boot partitions and
1624 * up to four general purpose partitions.
1625 * For each partition enabled in EXT_CSD a block device will be allocatedi
1626 * to provide access to the partition.
1627 */
1628
1629static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1630{
1631	int idx, ret = 0;
1632
1633	if (!mmc_card_mmc(card))
1634		return 0;
1635
1636	for (idx = 0; idx < card->nr_parts; idx++) {
1637		if (card->part[idx].size) {
1638			ret = mmc_blk_alloc_part(card, md,
1639				card->part[idx].part_cfg,
1640				card->part[idx].size >> 9,
1641				card->part[idx].force_ro,
1642				card->part[idx].name,
1643				card->part[idx].area_type);
1644			if (ret)
1645				return ret;
1646		}
1647	}
1648
1649	return ret;
1650}
1651
1652static void mmc_blk_remove_req(struct mmc_blk_data *md)
1653{
1654	struct mmc_card *card;
1655
1656	if (md) {
1657		card = md->queue.card;
1658		if (md->disk->flags & GENHD_FL_UP) {
1659			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1660			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1661					card->ext_csd.boot_ro_lockable)
1662				device_remove_file(disk_to_dev(md->disk),
1663					&md->power_ro_lock);
1664
1665			/* Stop new requests from getting into the queue */
1666			del_gendisk(md->disk);
1667		}
1668
1669		/* Then flush out any already in there */
1670		mmc_cleanup_queue(&md->queue);
1671		mmc_blk_put(md);
1672	}
1673}
1674
1675static void mmc_blk_remove_parts(struct mmc_card *card,
1676				 struct mmc_blk_data *md)
1677{
1678	struct list_head *pos, *q;
1679	struct mmc_blk_data *part_md;
1680
1681	__clear_bit(md->name_idx, name_use);
1682	list_for_each_safe(pos, q, &md->part) {
1683		part_md = list_entry(pos, struct mmc_blk_data, part);
1684		list_del(pos);
1685		mmc_blk_remove_req(part_md);
1686	}
1687}
1688
1689static int mmc_add_disk(struct mmc_blk_data *md)
1690{
1691	int ret;
1692	struct mmc_card *card = md->queue.card;
1693
1694	add_disk(md->disk);
1695	md->force_ro.show = force_ro_show;
1696	md->force_ro.store = force_ro_store;
1697	sysfs_attr_init(&md->force_ro.attr);
1698	md->force_ro.attr.name = "force_ro";
1699	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1700	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1701	if (ret)
1702		goto force_ro_fail;
1703
1704	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1705	     card->ext_csd.boot_ro_lockable) {
1706		umode_t mode;
1707
1708		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1709			mode = S_IRUGO;
1710		else
1711			mode = S_IRUGO | S_IWUSR;
1712
1713		md->power_ro_lock.show = power_ro_lock_show;
1714		md->power_ro_lock.store = power_ro_lock_store;
1715		sysfs_attr_init(&md->power_ro_lock.attr);
1716		md->power_ro_lock.attr.mode = mode;
1717		md->power_ro_lock.attr.name =
1718					"ro_lock_until_next_power_on";
1719		ret = device_create_file(disk_to_dev(md->disk),
1720				&md->power_ro_lock);
1721		if (ret)
1722			goto power_ro_lock_fail;
1723	}
1724	return ret;
1725
1726power_ro_lock_fail:
1727	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1728force_ro_fail:
1729	del_gendisk(md->disk);
1730
1731	return ret;
1732}
1733
1734#define CID_MANFID_SANDISK	0x2
1735#define CID_MANFID_TOSHIBA	0x11
1736#define CID_MANFID_MICRON	0x13
1737
1738static const struct mmc_fixup blk_fixups[] =
1739{
1740	MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1741		  MMC_QUIRK_INAND_CMD38),
1742	MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1743		  MMC_QUIRK_INAND_CMD38),
1744	MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1745		  MMC_QUIRK_INAND_CMD38),
1746	MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1747		  MMC_QUIRK_INAND_CMD38),
1748	MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1749		  MMC_QUIRK_INAND_CMD38),
1750
1751	/*
1752	 * Some MMC cards experience performance degradation with CMD23
1753	 * instead of CMD12-bounded multiblock transfers. For now we'll
1754	 * black list what's bad...
1755	 * - Certain Toshiba cards.
1756	 *
1757	 * N.B. This doesn't affect SD cards.
1758	 */
1759	MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1760		  MMC_QUIRK_BLK_NO_CMD23),
1761	MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1762		  MMC_QUIRK_BLK_NO_CMD23),
1763	MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1764		  MMC_QUIRK_BLK_NO_CMD23),
1765
1766	/*
1767	 * Some Micron MMC cards needs longer data read timeout than
1768	 * indicated in CSD.
1769	 */
1770	MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1771		  MMC_QUIRK_LONG_READ_TIME),
1772
1773	END_FIXUP
1774};
1775
1776static int mmc_blk_probe(struct mmc_card *card)
1777{
1778	struct mmc_blk_data *md, *part_md;
1779	char cap_str[10];
1780
1781	/*
1782	 * Check that the card supports the command class(es) we need.
1783	 */
1784	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1785		return -ENODEV;
1786
1787	md = mmc_blk_alloc(card);
1788	if (IS_ERR(md))
1789		return PTR_ERR(md);
1790
1791	string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1792			cap_str, sizeof(cap_str));
1793	pr_info("%s: %s %s %s %s\n",
1794		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1795		cap_str, md->read_only ? "(ro)" : "");
1796
1797	if (mmc_blk_alloc_parts(card, md))
1798		goto out;
1799
1800	mmc_set_drvdata(card, md);
1801	mmc_fixup_device(card, blk_fixups);
1802
1803	if (mmc_add_disk(md))
1804		goto out;
1805
1806	list_for_each_entry(part_md, &md->part, part) {
1807		if (mmc_add_disk(part_md))
1808			goto out;
1809	}
1810	return 0;
1811
1812 out:
1813	mmc_blk_remove_parts(card, md);
1814	mmc_blk_remove_req(md);
1815	return 0;
1816}
1817
1818static void mmc_blk_remove(struct mmc_card *card)
1819{
1820	struct mmc_blk_data *md = mmc_get_drvdata(card);
1821
1822	mmc_blk_remove_parts(card, md);
1823	mmc_claim_host(card->host);
1824	mmc_blk_part_switch(card, md);
1825	mmc_release_host(card->host);
1826	mmc_blk_remove_req(md);
1827	mmc_set_drvdata(card, NULL);
1828}
1829
1830#ifdef CONFIG_PM
1831static int mmc_blk_suspend(struct mmc_card *card)
1832{
1833	struct mmc_blk_data *part_md;
1834	struct mmc_blk_data *md = mmc_get_drvdata(card);
1835
1836	if (md) {
1837		mmc_queue_suspend(&md->queue);
1838		list_for_each_entry(part_md, &md->part, part) {
1839			mmc_queue_suspend(&part_md->queue);
1840		}
1841	}
1842	return 0;
1843}
1844
1845static int mmc_blk_resume(struct mmc_card *card)
1846{
1847	struct mmc_blk_data *part_md;
1848	struct mmc_blk_data *md = mmc_get_drvdata(card);
1849
1850	if (md) {
1851		/*
1852		 * Resume involves the card going into idle state,
1853		 * so current partition is always the main one.
1854		 */
1855		md->part_curr = md->part_type;
1856		mmc_queue_resume(&md->queue);
1857		list_for_each_entry(part_md, &md->part, part) {
1858			mmc_queue_resume(&part_md->queue);
1859		}
1860	}
1861	return 0;
1862}
1863#else
1864#define	mmc_blk_suspend	NULL
1865#define mmc_blk_resume	NULL
1866#endif
1867
1868static struct mmc_driver mmc_driver = {
1869	.drv		= {
1870		.name	= "mmcblk",
1871	},
1872	.probe		= mmc_blk_probe,
1873	.remove		= mmc_blk_remove,
1874	.suspend	= mmc_blk_suspend,
1875	.resume		= mmc_blk_resume,
1876};
1877
1878static int __init mmc_blk_init(void)
1879{
1880	int res;
1881
1882	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1883		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1884
1885	max_devices = 256 / perdev_minors;
1886
1887	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1888	if (res)
1889		goto out;
1890
1891	res = mmc_register_driver(&mmc_driver);
1892	if (res)
1893		goto out2;
1894
1895	return 0;
1896 out2:
1897	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1898 out:
1899	return res;
1900}
1901
1902static void __exit mmc_blk_exit(void)
1903{
1904	mmc_unregister_driver(&mmc_driver);
1905	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1906}
1907
1908module_init(mmc_blk_init);
1909module_exit(mmc_blk_exit);
1910
1911MODULE_LICENSE("GPL");
1912MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1913
1914