mmci.c revision 06c1a121805d7870abbf037d3ccd9a609a5219f2
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/amba/bus.h>
26#include <linux/clk.h>
27#include <linux/scatterlist.h>
28#include <linux/gpio.h>
29#include <linux/of_gpio.h>
30#include <linux/regulator/consumer.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/amba/mmci.h>
34#include <linux/pm_runtime.h>
35#include <linux/types.h>
36
37#include <asm/div64.h>
38#include <asm/io.h>
39#include <asm/sizes.h>
40
41#include "mmci.h"
42
43#define DRIVER_NAME "mmci-pl18x"
44
45static unsigned int fmax = 515633;
46
47/**
48 * struct variant_data - MMCI variant-specific quirks
49 * @clkreg: default value for MCICLOCK register
50 * @clkreg_enable: enable value for MMCICLOCK register
51 * @datalength_bits: number of bits in the MMCIDATALENGTH register
52 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
53 *	      is asserted (likewise for RX)
54 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
55 *		  is asserted (likewise for RX)
56 * @sdio: variant supports SDIO
57 * @st_clkdiv: true if using a ST-specific clock divider algorithm
58 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
59 * @pwrreg_powerup: power up value for MMCIPOWER register
60 * @signal_direction: input/out direction of bus signals can be indicated
61 */
62struct variant_data {
63	unsigned int		clkreg;
64	unsigned int		clkreg_enable;
65	unsigned int		datalength_bits;
66	unsigned int		fifosize;
67	unsigned int		fifohalfsize;
68	bool			sdio;
69	bool			st_clkdiv;
70	bool			blksz_datactrl16;
71	u32			pwrreg_powerup;
72	bool			signal_direction;
73};
74
75static struct variant_data variant_arm = {
76	.fifosize		= 16 * 4,
77	.fifohalfsize		= 8 * 4,
78	.datalength_bits	= 16,
79	.pwrreg_powerup		= MCI_PWR_UP,
80};
81
82static struct variant_data variant_arm_extended_fifo = {
83	.fifosize		= 128 * 4,
84	.fifohalfsize		= 64 * 4,
85	.datalength_bits	= 16,
86	.pwrreg_powerup		= MCI_PWR_UP,
87};
88
89static struct variant_data variant_u300 = {
90	.fifosize		= 16 * 4,
91	.fifohalfsize		= 8 * 4,
92	.clkreg_enable		= MCI_ST_U300_HWFCEN,
93	.datalength_bits	= 16,
94	.sdio			= true,
95	.pwrreg_powerup		= MCI_PWR_ON,
96	.signal_direction	= true,
97};
98
99static struct variant_data variant_nomadik = {
100	.fifosize		= 16 * 4,
101	.fifohalfsize		= 8 * 4,
102	.clkreg			= MCI_CLK_ENABLE,
103	.datalength_bits	= 24,
104	.sdio			= true,
105	.st_clkdiv		= true,
106	.pwrreg_powerup		= MCI_PWR_ON,
107	.signal_direction	= true,
108};
109
110static struct variant_data variant_ux500 = {
111	.fifosize		= 30 * 4,
112	.fifohalfsize		= 8 * 4,
113	.clkreg			= MCI_CLK_ENABLE,
114	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
115	.datalength_bits	= 24,
116	.sdio			= true,
117	.st_clkdiv		= true,
118	.pwrreg_powerup		= MCI_PWR_ON,
119	.signal_direction	= true,
120};
121
122static struct variant_data variant_ux500v2 = {
123	.fifosize		= 30 * 4,
124	.fifohalfsize		= 8 * 4,
125	.clkreg			= MCI_CLK_ENABLE,
126	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
127	.datalength_bits	= 24,
128	.sdio			= true,
129	.st_clkdiv		= true,
130	.blksz_datactrl16	= true,
131	.pwrreg_powerup		= MCI_PWR_ON,
132	.signal_direction	= true,
133};
134
135/*
136 * This must be called with host->lock held
137 */
138static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
139{
140	if (host->clk_reg != clk) {
141		host->clk_reg = clk;
142		writel(clk, host->base + MMCICLOCK);
143	}
144}
145
146/*
147 * This must be called with host->lock held
148 */
149static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
150{
151	if (host->pwr_reg != pwr) {
152		host->pwr_reg = pwr;
153		writel(pwr, host->base + MMCIPOWER);
154	}
155}
156
157/*
158 * This must be called with host->lock held
159 */
160static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
161{
162	struct variant_data *variant = host->variant;
163	u32 clk = variant->clkreg;
164
165	if (desired) {
166		if (desired >= host->mclk) {
167			clk = MCI_CLK_BYPASS;
168			if (variant->st_clkdiv)
169				clk |= MCI_ST_UX500_NEG_EDGE;
170			host->cclk = host->mclk;
171		} else if (variant->st_clkdiv) {
172			/*
173			 * DB8500 TRM says f = mclk / (clkdiv + 2)
174			 * => clkdiv = (mclk / f) - 2
175			 * Round the divider up so we don't exceed the max
176			 * frequency
177			 */
178			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
179			if (clk >= 256)
180				clk = 255;
181			host->cclk = host->mclk / (clk + 2);
182		} else {
183			/*
184			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
185			 * => clkdiv = mclk / (2 * f) - 1
186			 */
187			clk = host->mclk / (2 * desired) - 1;
188			if (clk >= 256)
189				clk = 255;
190			host->cclk = host->mclk / (2 * (clk + 1));
191		}
192
193		clk |= variant->clkreg_enable;
194		clk |= MCI_CLK_ENABLE;
195		/* This hasn't proven to be worthwhile */
196		/* clk |= MCI_CLK_PWRSAVE; */
197	}
198
199	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
200		clk |= MCI_4BIT_BUS;
201	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
202		clk |= MCI_ST_8BIT_BUS;
203
204	mmci_write_clkreg(host, clk);
205}
206
207static void
208mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
209{
210	writel(0, host->base + MMCICOMMAND);
211
212	BUG_ON(host->data);
213
214	host->mrq = NULL;
215	host->cmd = NULL;
216
217	mmc_request_done(host->mmc, mrq);
218
219	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
220	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
221}
222
223static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
224{
225	void __iomem *base = host->base;
226
227	if (host->singleirq) {
228		unsigned int mask0 = readl(base + MMCIMASK0);
229
230		mask0 &= ~MCI_IRQ1MASK;
231		mask0 |= mask;
232
233		writel(mask0, base + MMCIMASK0);
234	}
235
236	writel(mask, base + MMCIMASK1);
237}
238
239static void mmci_stop_data(struct mmci_host *host)
240{
241	writel(0, host->base + MMCIDATACTRL);
242	mmci_set_mask1(host, 0);
243	host->data = NULL;
244}
245
246static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
247{
248	unsigned int flags = SG_MITER_ATOMIC;
249
250	if (data->flags & MMC_DATA_READ)
251		flags |= SG_MITER_TO_SG;
252	else
253		flags |= SG_MITER_FROM_SG;
254
255	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
256}
257
258/*
259 * All the DMA operation mode stuff goes inside this ifdef.
260 * This assumes that you have a generic DMA device interface,
261 * no custom DMA interfaces are supported.
262 */
263#ifdef CONFIG_DMA_ENGINE
264static void __devinit mmci_dma_setup(struct mmci_host *host)
265{
266	struct mmci_platform_data *plat = host->plat;
267	const char *rxname, *txname;
268	dma_cap_mask_t mask;
269
270	if (!plat || !plat->dma_filter) {
271		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
272		return;
273	}
274
275	/* initialize pre request cookie */
276	host->next_data.cookie = 1;
277
278	/* Try to acquire a generic DMA engine slave channel */
279	dma_cap_zero(mask);
280	dma_cap_set(DMA_SLAVE, mask);
281
282	/*
283	 * If only an RX channel is specified, the driver will
284	 * attempt to use it bidirectionally, however if it is
285	 * is specified but cannot be located, DMA will be disabled.
286	 */
287	if (plat->dma_rx_param) {
288		host->dma_rx_channel = dma_request_channel(mask,
289							   plat->dma_filter,
290							   plat->dma_rx_param);
291		/* E.g if no DMA hardware is present */
292		if (!host->dma_rx_channel)
293			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
294	}
295
296	if (plat->dma_tx_param) {
297		host->dma_tx_channel = dma_request_channel(mask,
298							   plat->dma_filter,
299							   plat->dma_tx_param);
300		if (!host->dma_tx_channel)
301			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
302	} else {
303		host->dma_tx_channel = host->dma_rx_channel;
304	}
305
306	if (host->dma_rx_channel)
307		rxname = dma_chan_name(host->dma_rx_channel);
308	else
309		rxname = "none";
310
311	if (host->dma_tx_channel)
312		txname = dma_chan_name(host->dma_tx_channel);
313	else
314		txname = "none";
315
316	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
317		 rxname, txname);
318
319	/*
320	 * Limit the maximum segment size in any SG entry according to
321	 * the parameters of the DMA engine device.
322	 */
323	if (host->dma_tx_channel) {
324		struct device *dev = host->dma_tx_channel->device->dev;
325		unsigned int max_seg_size = dma_get_max_seg_size(dev);
326
327		if (max_seg_size < host->mmc->max_seg_size)
328			host->mmc->max_seg_size = max_seg_size;
329	}
330	if (host->dma_rx_channel) {
331		struct device *dev = host->dma_rx_channel->device->dev;
332		unsigned int max_seg_size = dma_get_max_seg_size(dev);
333
334		if (max_seg_size < host->mmc->max_seg_size)
335			host->mmc->max_seg_size = max_seg_size;
336	}
337}
338
339/*
340 * This is used in __devinit or __devexit so inline it
341 * so it can be discarded.
342 */
343static inline void mmci_dma_release(struct mmci_host *host)
344{
345	struct mmci_platform_data *plat = host->plat;
346
347	if (host->dma_rx_channel)
348		dma_release_channel(host->dma_rx_channel);
349	if (host->dma_tx_channel && plat->dma_tx_param)
350		dma_release_channel(host->dma_tx_channel);
351	host->dma_rx_channel = host->dma_tx_channel = NULL;
352}
353
354static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
355{
356	struct dma_chan *chan = host->dma_current;
357	enum dma_data_direction dir;
358	u32 status;
359	int i;
360
361	/* Wait up to 1ms for the DMA to complete */
362	for (i = 0; ; i++) {
363		status = readl(host->base + MMCISTATUS);
364		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
365			break;
366		udelay(10);
367	}
368
369	/*
370	 * Check to see whether we still have some data left in the FIFO -
371	 * this catches DMA controllers which are unable to monitor the
372	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
373	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
374	 */
375	if (status & MCI_RXDATAAVLBLMASK) {
376		dmaengine_terminate_all(chan);
377		if (!data->error)
378			data->error = -EIO;
379	}
380
381	if (data->flags & MMC_DATA_WRITE) {
382		dir = DMA_TO_DEVICE;
383	} else {
384		dir = DMA_FROM_DEVICE;
385	}
386
387	if (!data->host_cookie)
388		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
389
390	/*
391	 * Use of DMA with scatter-gather is impossible.
392	 * Give up with DMA and switch back to PIO mode.
393	 */
394	if (status & MCI_RXDATAAVLBLMASK) {
395		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
396		mmci_dma_release(host);
397	}
398}
399
400static void mmci_dma_data_error(struct mmci_host *host)
401{
402	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
403	dmaengine_terminate_all(host->dma_current);
404}
405
406static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
407			      struct mmci_host_next *next)
408{
409	struct variant_data *variant = host->variant;
410	struct dma_slave_config conf = {
411		.src_addr = host->phybase + MMCIFIFO,
412		.dst_addr = host->phybase + MMCIFIFO,
413		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
414		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
415		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
416		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
417		.device_fc = false,
418	};
419	struct dma_chan *chan;
420	struct dma_device *device;
421	struct dma_async_tx_descriptor *desc;
422	enum dma_data_direction buffer_dirn;
423	int nr_sg;
424
425	/* Check if next job is already prepared */
426	if (data->host_cookie && !next &&
427	    host->dma_current && host->dma_desc_current)
428		return 0;
429
430	if (!next) {
431		host->dma_current = NULL;
432		host->dma_desc_current = NULL;
433	}
434
435	if (data->flags & MMC_DATA_READ) {
436		conf.direction = DMA_DEV_TO_MEM;
437		buffer_dirn = DMA_FROM_DEVICE;
438		chan = host->dma_rx_channel;
439	} else {
440		conf.direction = DMA_MEM_TO_DEV;
441		buffer_dirn = DMA_TO_DEVICE;
442		chan = host->dma_tx_channel;
443	}
444
445	/* If there's no DMA channel, fall back to PIO */
446	if (!chan)
447		return -EINVAL;
448
449	/* If less than or equal to the fifo size, don't bother with DMA */
450	if (data->blksz * data->blocks <= variant->fifosize)
451		return -EINVAL;
452
453	device = chan->device;
454	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
455	if (nr_sg == 0)
456		return -EINVAL;
457
458	dmaengine_slave_config(chan, &conf);
459	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
460					    conf.direction, DMA_CTRL_ACK);
461	if (!desc)
462		goto unmap_exit;
463
464	if (next) {
465		next->dma_chan = chan;
466		next->dma_desc = desc;
467	} else {
468		host->dma_current = chan;
469		host->dma_desc_current = desc;
470	}
471
472	return 0;
473
474 unmap_exit:
475	if (!next)
476		dmaengine_terminate_all(chan);
477	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
478	return -ENOMEM;
479}
480
481static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
482{
483	int ret;
484	struct mmc_data *data = host->data;
485
486	ret = mmci_dma_prep_data(host, host->data, NULL);
487	if (ret)
488		return ret;
489
490	/* Okay, go for it. */
491	dev_vdbg(mmc_dev(host->mmc),
492		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
493		 data->sg_len, data->blksz, data->blocks, data->flags);
494	dmaengine_submit(host->dma_desc_current);
495	dma_async_issue_pending(host->dma_current);
496
497	datactrl |= MCI_DPSM_DMAENABLE;
498
499	/* Trigger the DMA transfer */
500	writel(datactrl, host->base + MMCIDATACTRL);
501
502	/*
503	 * Let the MMCI say when the data is ended and it's time
504	 * to fire next DMA request. When that happens, MMCI will
505	 * call mmci_data_end()
506	 */
507	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
508	       host->base + MMCIMASK0);
509	return 0;
510}
511
512static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
513{
514	struct mmci_host_next *next = &host->next_data;
515
516	if (data->host_cookie && data->host_cookie != next->cookie) {
517		pr_warning("[%s] invalid cookie: data->host_cookie %d"
518		       " host->next_data.cookie %d\n",
519		       __func__, data->host_cookie, host->next_data.cookie);
520		data->host_cookie = 0;
521	}
522
523	if (!data->host_cookie)
524		return;
525
526	host->dma_desc_current = next->dma_desc;
527	host->dma_current = next->dma_chan;
528
529	next->dma_desc = NULL;
530	next->dma_chan = NULL;
531}
532
533static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
534			     bool is_first_req)
535{
536	struct mmci_host *host = mmc_priv(mmc);
537	struct mmc_data *data = mrq->data;
538	struct mmci_host_next *nd = &host->next_data;
539
540	if (!data)
541		return;
542
543	if (data->host_cookie) {
544		data->host_cookie = 0;
545		return;
546	}
547
548	/* if config for dma */
549	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
550	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
551		if (mmci_dma_prep_data(host, data, nd))
552			data->host_cookie = 0;
553		else
554			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
555	}
556}
557
558static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
559			      int err)
560{
561	struct mmci_host *host = mmc_priv(mmc);
562	struct mmc_data *data = mrq->data;
563	struct dma_chan *chan;
564	enum dma_data_direction dir;
565
566	if (!data)
567		return;
568
569	if (data->flags & MMC_DATA_READ) {
570		dir = DMA_FROM_DEVICE;
571		chan = host->dma_rx_channel;
572	} else {
573		dir = DMA_TO_DEVICE;
574		chan = host->dma_tx_channel;
575	}
576
577
578	/* if config for dma */
579	if (chan) {
580		if (err)
581			dmaengine_terminate_all(chan);
582		if (data->host_cookie)
583			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
584				     data->sg_len, dir);
585		mrq->data->host_cookie = 0;
586	}
587}
588
589#else
590/* Blank functions if the DMA engine is not available */
591static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
592{
593}
594static inline void mmci_dma_setup(struct mmci_host *host)
595{
596}
597
598static inline void mmci_dma_release(struct mmci_host *host)
599{
600}
601
602static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
603{
604}
605
606static inline void mmci_dma_data_error(struct mmci_host *host)
607{
608}
609
610static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
611{
612	return -ENOSYS;
613}
614
615#define mmci_pre_request NULL
616#define mmci_post_request NULL
617
618#endif
619
620static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
621{
622	struct variant_data *variant = host->variant;
623	unsigned int datactrl, timeout, irqmask;
624	unsigned long long clks;
625	void __iomem *base;
626	int blksz_bits;
627
628	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
629		data->blksz, data->blocks, data->flags);
630
631	host->data = data;
632	host->size = data->blksz * data->blocks;
633	data->bytes_xfered = 0;
634
635	clks = (unsigned long long)data->timeout_ns * host->cclk;
636	do_div(clks, 1000000000UL);
637
638	timeout = data->timeout_clks + (unsigned int)clks;
639
640	base = host->base;
641	writel(timeout, base + MMCIDATATIMER);
642	writel(host->size, base + MMCIDATALENGTH);
643
644	blksz_bits = ffs(data->blksz) - 1;
645	BUG_ON(1 << blksz_bits != data->blksz);
646
647	if (variant->blksz_datactrl16)
648		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
649	else
650		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
651
652	if (data->flags & MMC_DATA_READ)
653		datactrl |= MCI_DPSM_DIRECTION;
654
655	/* The ST Micro variants has a special bit to enable SDIO */
656	if (variant->sdio && host->mmc->card)
657		if (mmc_card_sdio(host->mmc->card)) {
658			/*
659			 * The ST Micro variants has a special bit
660			 * to enable SDIO.
661			 */
662			u32 clk;
663
664			datactrl |= MCI_ST_DPSM_SDIOEN;
665
666			/*
667			 * The ST Micro variant for SDIO transfer sizes
668			 * less then 8 bytes should have clock H/W flow
669			 * control disabled.
670			 */
671			if ((host->size < 8) &&
672			    (data->flags & MMC_DATA_WRITE))
673				clk = host->clk_reg & ~variant->clkreg_enable;
674			else
675				clk = host->clk_reg | variant->clkreg_enable;
676
677			mmci_write_clkreg(host, clk);
678		}
679
680	/*
681	 * Attempt to use DMA operation mode, if this
682	 * should fail, fall back to PIO mode
683	 */
684	if (!mmci_dma_start_data(host, datactrl))
685		return;
686
687	/* IRQ mode, map the SG list for CPU reading/writing */
688	mmci_init_sg(host, data);
689
690	if (data->flags & MMC_DATA_READ) {
691		irqmask = MCI_RXFIFOHALFFULLMASK;
692
693		/*
694		 * If we have less than the fifo 'half-full' threshold to
695		 * transfer, trigger a PIO interrupt as soon as any data
696		 * is available.
697		 */
698		if (host->size < variant->fifohalfsize)
699			irqmask |= MCI_RXDATAAVLBLMASK;
700	} else {
701		/*
702		 * We don't actually need to include "FIFO empty" here
703		 * since its implicit in "FIFO half empty".
704		 */
705		irqmask = MCI_TXFIFOHALFEMPTYMASK;
706	}
707
708	writel(datactrl, base + MMCIDATACTRL);
709	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
710	mmci_set_mask1(host, irqmask);
711}
712
713static void
714mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
715{
716	void __iomem *base = host->base;
717
718	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
719	    cmd->opcode, cmd->arg, cmd->flags);
720
721	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
722		writel(0, base + MMCICOMMAND);
723		udelay(1);
724	}
725
726	c |= cmd->opcode | MCI_CPSM_ENABLE;
727	if (cmd->flags & MMC_RSP_PRESENT) {
728		if (cmd->flags & MMC_RSP_136)
729			c |= MCI_CPSM_LONGRSP;
730		c |= MCI_CPSM_RESPONSE;
731	}
732	if (/*interrupt*/0)
733		c |= MCI_CPSM_INTERRUPT;
734
735	host->cmd = cmd;
736
737	writel(cmd->arg, base + MMCIARGUMENT);
738	writel(c, base + MMCICOMMAND);
739}
740
741static void
742mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
743	      unsigned int status)
744{
745	/* First check for errors */
746	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
747		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
748		u32 remain, success;
749
750		/* Terminate the DMA transfer */
751		if (dma_inprogress(host))
752			mmci_dma_data_error(host);
753
754		/*
755		 * Calculate how far we are into the transfer.  Note that
756		 * the data counter gives the number of bytes transferred
757		 * on the MMC bus, not on the host side.  On reads, this
758		 * can be as much as a FIFO-worth of data ahead.  This
759		 * matters for FIFO overruns only.
760		 */
761		remain = readl(host->base + MMCIDATACNT);
762		success = data->blksz * data->blocks - remain;
763
764		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
765			status, success);
766		if (status & MCI_DATACRCFAIL) {
767			/* Last block was not successful */
768			success -= 1;
769			data->error = -EILSEQ;
770		} else if (status & MCI_DATATIMEOUT) {
771			data->error = -ETIMEDOUT;
772		} else if (status & MCI_STARTBITERR) {
773			data->error = -ECOMM;
774		} else if (status & MCI_TXUNDERRUN) {
775			data->error = -EIO;
776		} else if (status & MCI_RXOVERRUN) {
777			if (success > host->variant->fifosize)
778				success -= host->variant->fifosize;
779			else
780				success = 0;
781			data->error = -EIO;
782		}
783		data->bytes_xfered = round_down(success, data->blksz);
784	}
785
786	if (status & MCI_DATABLOCKEND)
787		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
788
789	if (status & MCI_DATAEND || data->error) {
790		if (dma_inprogress(host))
791			mmci_dma_unmap(host, data);
792		mmci_stop_data(host);
793
794		if (!data->error)
795			/* The error clause is handled above, success! */
796			data->bytes_xfered = data->blksz * data->blocks;
797
798		if (!data->stop) {
799			mmci_request_end(host, data->mrq);
800		} else {
801			mmci_start_command(host, data->stop, 0);
802		}
803	}
804}
805
806static void
807mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
808	     unsigned int status)
809{
810	void __iomem *base = host->base;
811
812	host->cmd = NULL;
813
814	if (status & MCI_CMDTIMEOUT) {
815		cmd->error = -ETIMEDOUT;
816	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
817		cmd->error = -EILSEQ;
818	} else {
819		cmd->resp[0] = readl(base + MMCIRESPONSE0);
820		cmd->resp[1] = readl(base + MMCIRESPONSE1);
821		cmd->resp[2] = readl(base + MMCIRESPONSE2);
822		cmd->resp[3] = readl(base + MMCIRESPONSE3);
823	}
824
825	if (!cmd->data || cmd->error) {
826		if (host->data) {
827			/* Terminate the DMA transfer */
828			if (dma_inprogress(host))
829				mmci_dma_data_error(host);
830			mmci_stop_data(host);
831		}
832		mmci_request_end(host, cmd->mrq);
833	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
834		mmci_start_data(host, cmd->data);
835	}
836}
837
838static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
839{
840	void __iomem *base = host->base;
841	char *ptr = buffer;
842	u32 status;
843	int host_remain = host->size;
844
845	do {
846		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
847
848		if (count > remain)
849			count = remain;
850
851		if (count <= 0)
852			break;
853
854		/*
855		 * SDIO especially may want to send something that is
856		 * not divisible by 4 (as opposed to card sectors
857		 * etc). Therefore make sure to always read the last bytes
858		 * while only doing full 32-bit reads towards the FIFO.
859		 */
860		if (unlikely(count & 0x3)) {
861			if (count < 4) {
862				unsigned char buf[4];
863				readsl(base + MMCIFIFO, buf, 1);
864				memcpy(ptr, buf, count);
865			} else {
866				readsl(base + MMCIFIFO, ptr, count >> 2);
867				count &= ~0x3;
868			}
869		} else {
870			readsl(base + MMCIFIFO, ptr, count >> 2);
871		}
872
873		ptr += count;
874		remain -= count;
875		host_remain -= count;
876
877		if (remain == 0)
878			break;
879
880		status = readl(base + MMCISTATUS);
881	} while (status & MCI_RXDATAAVLBL);
882
883	return ptr - buffer;
884}
885
886static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
887{
888	struct variant_data *variant = host->variant;
889	void __iomem *base = host->base;
890	char *ptr = buffer;
891
892	do {
893		unsigned int count, maxcnt;
894
895		maxcnt = status & MCI_TXFIFOEMPTY ?
896			 variant->fifosize : variant->fifohalfsize;
897		count = min(remain, maxcnt);
898
899		/*
900		 * SDIO especially may want to send something that is
901		 * not divisible by 4 (as opposed to card sectors
902		 * etc), and the FIFO only accept full 32-bit writes.
903		 * So compensate by adding +3 on the count, a single
904		 * byte become a 32bit write, 7 bytes will be two
905		 * 32bit writes etc.
906		 */
907		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
908
909		ptr += count;
910		remain -= count;
911
912		if (remain == 0)
913			break;
914
915		status = readl(base + MMCISTATUS);
916	} while (status & MCI_TXFIFOHALFEMPTY);
917
918	return ptr - buffer;
919}
920
921/*
922 * PIO data transfer IRQ handler.
923 */
924static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
925{
926	struct mmci_host *host = dev_id;
927	struct sg_mapping_iter *sg_miter = &host->sg_miter;
928	struct variant_data *variant = host->variant;
929	void __iomem *base = host->base;
930	unsigned long flags;
931	u32 status;
932
933	status = readl(base + MMCISTATUS);
934
935	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
936
937	local_irq_save(flags);
938
939	do {
940		unsigned int remain, len;
941		char *buffer;
942
943		/*
944		 * For write, we only need to test the half-empty flag
945		 * here - if the FIFO is completely empty, then by
946		 * definition it is more than half empty.
947		 *
948		 * For read, check for data available.
949		 */
950		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
951			break;
952
953		if (!sg_miter_next(sg_miter))
954			break;
955
956		buffer = sg_miter->addr;
957		remain = sg_miter->length;
958
959		len = 0;
960		if (status & MCI_RXACTIVE)
961			len = mmci_pio_read(host, buffer, remain);
962		if (status & MCI_TXACTIVE)
963			len = mmci_pio_write(host, buffer, remain, status);
964
965		sg_miter->consumed = len;
966
967		host->size -= len;
968		remain -= len;
969
970		if (remain)
971			break;
972
973		status = readl(base + MMCISTATUS);
974	} while (1);
975
976	sg_miter_stop(sg_miter);
977
978	local_irq_restore(flags);
979
980	/*
981	 * If we have less than the fifo 'half-full' threshold to transfer,
982	 * trigger a PIO interrupt as soon as any data is available.
983	 */
984	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
985		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
986
987	/*
988	 * If we run out of data, disable the data IRQs; this
989	 * prevents a race where the FIFO becomes empty before
990	 * the chip itself has disabled the data path, and
991	 * stops us racing with our data end IRQ.
992	 */
993	if (host->size == 0) {
994		mmci_set_mask1(host, 0);
995		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
996	}
997
998	return IRQ_HANDLED;
999}
1000
1001/*
1002 * Handle completion of command and data transfers.
1003 */
1004static irqreturn_t mmci_irq(int irq, void *dev_id)
1005{
1006	struct mmci_host *host = dev_id;
1007	u32 status;
1008	int ret = 0;
1009
1010	spin_lock(&host->lock);
1011
1012	do {
1013		struct mmc_command *cmd;
1014		struct mmc_data *data;
1015
1016		status = readl(host->base + MMCISTATUS);
1017
1018		if (host->singleirq) {
1019			if (status & readl(host->base + MMCIMASK1))
1020				mmci_pio_irq(irq, dev_id);
1021
1022			status &= ~MCI_IRQ1MASK;
1023		}
1024
1025		status &= readl(host->base + MMCIMASK0);
1026		writel(status, host->base + MMCICLEAR);
1027
1028		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1029
1030		data = host->data;
1031		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1032			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1033			      MCI_DATABLOCKEND) && data)
1034			mmci_data_irq(host, data, status);
1035
1036		cmd = host->cmd;
1037		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1038			mmci_cmd_irq(host, cmd, status);
1039
1040		ret = 1;
1041	} while (status);
1042
1043	spin_unlock(&host->lock);
1044
1045	return IRQ_RETVAL(ret);
1046}
1047
1048static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1049{
1050	struct mmci_host *host = mmc_priv(mmc);
1051	unsigned long flags;
1052
1053	WARN_ON(host->mrq != NULL);
1054
1055	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1056		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1057			mrq->data->blksz);
1058		mrq->cmd->error = -EINVAL;
1059		mmc_request_done(mmc, mrq);
1060		return;
1061	}
1062
1063	pm_runtime_get_sync(mmc_dev(mmc));
1064
1065	spin_lock_irqsave(&host->lock, flags);
1066
1067	host->mrq = mrq;
1068
1069	if (mrq->data)
1070		mmci_get_next_data(host, mrq->data);
1071
1072	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1073		mmci_start_data(host, mrq->data);
1074
1075	mmci_start_command(host, mrq->cmd, 0);
1076
1077	spin_unlock_irqrestore(&host->lock, flags);
1078}
1079
1080static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1081{
1082	struct mmci_host *host = mmc_priv(mmc);
1083	struct variant_data *variant = host->variant;
1084	u32 pwr = 0;
1085	unsigned long flags;
1086	int ret;
1087
1088	pm_runtime_get_sync(mmc_dev(mmc));
1089
1090	if (host->plat->ios_handler &&
1091		host->plat->ios_handler(mmc_dev(mmc), ios))
1092			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1093
1094	switch (ios->power_mode) {
1095	case MMC_POWER_OFF:
1096		if (host->vcc)
1097			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1098		break;
1099	case MMC_POWER_UP:
1100		if (host->vcc) {
1101			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1102			if (ret) {
1103				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1104				/*
1105				 * The .set_ios() function in the mmc_host_ops
1106				 * struct return void, and failing to set the
1107				 * power should be rare so we print an error
1108				 * and return here.
1109				 */
1110				goto out;
1111			}
1112		}
1113		/*
1114		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1115		 * and instead uses MCI_PWR_ON so apply whatever value is
1116		 * configured in the variant data.
1117		 */
1118		pwr |= variant->pwrreg_powerup;
1119
1120		break;
1121	case MMC_POWER_ON:
1122		pwr |= MCI_PWR_ON;
1123		break;
1124	}
1125
1126	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1127		/*
1128		 * The ST Micro variant has some additional bits
1129		 * indicating signal direction for the signals in
1130		 * the SD/MMC bus and feedback-clock usage.
1131		 */
1132		pwr |= host->plat->sigdir;
1133
1134		if (ios->bus_width == MMC_BUS_WIDTH_4)
1135			pwr &= ~MCI_ST_DATA74DIREN;
1136		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1137			pwr &= (~MCI_ST_DATA74DIREN &
1138				~MCI_ST_DATA31DIREN &
1139				~MCI_ST_DATA2DIREN);
1140	}
1141
1142	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1143		if (host->hw_designer != AMBA_VENDOR_ST)
1144			pwr |= MCI_ROD;
1145		else {
1146			/*
1147			 * The ST Micro variant use the ROD bit for something
1148			 * else and only has OD (Open Drain).
1149			 */
1150			pwr |= MCI_OD;
1151		}
1152	}
1153
1154	spin_lock_irqsave(&host->lock, flags);
1155
1156	mmci_set_clkreg(host, ios->clock);
1157	mmci_write_pwrreg(host, pwr);
1158
1159	spin_unlock_irqrestore(&host->lock, flags);
1160
1161 out:
1162	pm_runtime_mark_last_busy(mmc_dev(mmc));
1163	pm_runtime_put_autosuspend(mmc_dev(mmc));
1164}
1165
1166static int mmci_get_ro(struct mmc_host *mmc)
1167{
1168	struct mmci_host *host = mmc_priv(mmc);
1169
1170	if (host->gpio_wp == -ENOSYS)
1171		return -ENOSYS;
1172
1173	return gpio_get_value_cansleep(host->gpio_wp);
1174}
1175
1176static int mmci_get_cd(struct mmc_host *mmc)
1177{
1178	struct mmci_host *host = mmc_priv(mmc);
1179	struct mmci_platform_data *plat = host->plat;
1180	unsigned int status;
1181
1182	if (host->gpio_cd == -ENOSYS) {
1183		if (!plat->status)
1184			return 1; /* Assume always present */
1185
1186		status = plat->status(mmc_dev(host->mmc));
1187	} else
1188		status = !!gpio_get_value_cansleep(host->gpio_cd)
1189			^ plat->cd_invert;
1190
1191	/*
1192	 * Use positive logic throughout - status is zero for no card,
1193	 * non-zero for card inserted.
1194	 */
1195	return status;
1196}
1197
1198static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1199{
1200	struct mmci_host *host = dev_id;
1201
1202	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1203
1204	return IRQ_HANDLED;
1205}
1206
1207static const struct mmc_host_ops mmci_ops = {
1208	.request	= mmci_request,
1209	.pre_req	= mmci_pre_request,
1210	.post_req	= mmci_post_request,
1211	.set_ios	= mmci_set_ios,
1212	.get_ro		= mmci_get_ro,
1213	.get_cd		= mmci_get_cd,
1214};
1215
1216#ifdef CONFIG_OF
1217static void mmci_dt_populate_generic_pdata(struct device_node *np,
1218					struct mmci_platform_data *pdata)
1219{
1220	int bus_width = 0;
1221
1222	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1223	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1224
1225	if (of_get_property(np, "cd-inverted", NULL))
1226		pdata->cd_invert = true;
1227	else
1228		pdata->cd_invert = false;
1229
1230	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1231	if (!pdata->f_max)
1232		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1233
1234	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1235		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1236	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1237		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1238
1239	of_property_read_u32(np, "bus-width", &bus_width);
1240	switch (bus_width) {
1241	case 0 :
1242		/* No bus-width supplied. */
1243		break;
1244	case 4 :
1245		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1246		break;
1247	case 8 :
1248		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1249		break;
1250	default :
1251		pr_warn("%s: Unsupported bus width\n", np->full_name);
1252	}
1253}
1254#else
1255static void mmci_dt_populate_generic_pdata(struct device_node *np,
1256					struct mmci_platform_data *pdata)
1257{
1258	return;
1259}
1260#endif
1261
1262static int __devinit mmci_probe(struct amba_device *dev,
1263	const struct amba_id *id)
1264{
1265	struct mmci_platform_data *plat = dev->dev.platform_data;
1266	struct device_node *np = dev->dev.of_node;
1267	struct variant_data *variant = id->data;
1268	struct mmci_host *host;
1269	struct mmc_host *mmc;
1270	int ret;
1271
1272	/* Must have platform data or Device Tree. */
1273	if (!plat && !np) {
1274		dev_err(&dev->dev, "No plat data or DT found\n");
1275		return -EINVAL;
1276	}
1277
1278	if (!plat) {
1279		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1280		if (!plat)
1281			return -ENOMEM;
1282	}
1283
1284	if (np)
1285		mmci_dt_populate_generic_pdata(np, plat);
1286
1287	ret = amba_request_regions(dev, DRIVER_NAME);
1288	if (ret)
1289		goto out;
1290
1291	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1292	if (!mmc) {
1293		ret = -ENOMEM;
1294		goto rel_regions;
1295	}
1296
1297	host = mmc_priv(mmc);
1298	host->mmc = mmc;
1299
1300	host->gpio_wp = -ENOSYS;
1301	host->gpio_cd = -ENOSYS;
1302	host->gpio_cd_irq = -1;
1303
1304	host->hw_designer = amba_manf(dev);
1305	host->hw_revision = amba_rev(dev);
1306	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1307	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1308
1309	host->clk = clk_get(&dev->dev, NULL);
1310	if (IS_ERR(host->clk)) {
1311		ret = PTR_ERR(host->clk);
1312		host->clk = NULL;
1313		goto host_free;
1314	}
1315
1316	ret = clk_prepare_enable(host->clk);
1317	if (ret)
1318		goto clk_free;
1319
1320	host->plat = plat;
1321	host->variant = variant;
1322	host->mclk = clk_get_rate(host->clk);
1323	/*
1324	 * According to the spec, mclk is max 100 MHz,
1325	 * so we try to adjust the clock down to this,
1326	 * (if possible).
1327	 */
1328	if (host->mclk > 100000000) {
1329		ret = clk_set_rate(host->clk, 100000000);
1330		if (ret < 0)
1331			goto clk_disable;
1332		host->mclk = clk_get_rate(host->clk);
1333		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1334			host->mclk);
1335	}
1336	host->phybase = dev->res.start;
1337	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1338	if (!host->base) {
1339		ret = -ENOMEM;
1340		goto clk_disable;
1341	}
1342
1343	mmc->ops = &mmci_ops;
1344	/*
1345	 * The ARM and ST versions of the block have slightly different
1346	 * clock divider equations which means that the minimum divider
1347	 * differs too.
1348	 */
1349	if (variant->st_clkdiv)
1350		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1351	else
1352		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1353	/*
1354	 * If the platform data supplies a maximum operating
1355	 * frequency, this takes precedence. Else, we fall back
1356	 * to using the module parameter, which has a (low)
1357	 * default value in case it is not specified. Either
1358	 * value must not exceed the clock rate into the block,
1359	 * of course.
1360	 */
1361	if (plat->f_max)
1362		mmc->f_max = min(host->mclk, plat->f_max);
1363	else
1364		mmc->f_max = min(host->mclk, fmax);
1365	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1366
1367#ifdef CONFIG_REGULATOR
1368	/* If we're using the regulator framework, try to fetch a regulator */
1369	host->vcc = regulator_get(&dev->dev, "vmmc");
1370	if (IS_ERR(host->vcc))
1371		host->vcc = NULL;
1372	else {
1373		int mask = mmc_regulator_get_ocrmask(host->vcc);
1374
1375		if (mask < 0)
1376			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1377				mask);
1378		else {
1379			host->mmc->ocr_avail = (u32) mask;
1380			if (plat->ocr_mask)
1381				dev_warn(&dev->dev,
1382				 "Provided ocr_mask/setpower will not be used "
1383				 "(using regulator instead)\n");
1384		}
1385	}
1386#endif
1387	/* Fall back to platform data if no regulator is found */
1388	if (host->vcc == NULL)
1389		mmc->ocr_avail = plat->ocr_mask;
1390	mmc->caps = plat->capabilities;
1391	mmc->caps2 = plat->capabilities2;
1392
1393	/*
1394	 * We can do SGIO
1395	 */
1396	mmc->max_segs = NR_SG;
1397
1398	/*
1399	 * Since only a certain number of bits are valid in the data length
1400	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1401	 * single request.
1402	 */
1403	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1404
1405	/*
1406	 * Set the maximum segment size.  Since we aren't doing DMA
1407	 * (yet) we are only limited by the data length register.
1408	 */
1409	mmc->max_seg_size = mmc->max_req_size;
1410
1411	/*
1412	 * Block size can be up to 2048 bytes, but must be a power of two.
1413	 */
1414	mmc->max_blk_size = 1 << 11;
1415
1416	/*
1417	 * Limit the number of blocks transferred so that we don't overflow
1418	 * the maximum request size.
1419	 */
1420	mmc->max_blk_count = mmc->max_req_size >> 11;
1421
1422	spin_lock_init(&host->lock);
1423
1424	writel(0, host->base + MMCIMASK0);
1425	writel(0, host->base + MMCIMASK1);
1426	writel(0xfff, host->base + MMCICLEAR);
1427
1428	if (plat->gpio_cd == -EPROBE_DEFER) {
1429		ret = -EPROBE_DEFER;
1430		goto err_gpio_cd;
1431	}
1432	if (gpio_is_valid(plat->gpio_cd)) {
1433		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1434		if (ret == 0)
1435			ret = gpio_direction_input(plat->gpio_cd);
1436		if (ret == 0)
1437			host->gpio_cd = plat->gpio_cd;
1438		else if (ret != -ENOSYS)
1439			goto err_gpio_cd;
1440
1441		/*
1442		 * A gpio pin that will detect cards when inserted and removed
1443		 * will most likely want to trigger on the edges if it is
1444		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1445		 * for the inverted case) so we request triggers on both
1446		 * edges.
1447		 */
1448		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1449				mmci_cd_irq,
1450				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1451				DRIVER_NAME " (cd)", host);
1452		if (ret >= 0)
1453			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1454	}
1455	if (plat->gpio_wp == -EPROBE_DEFER) {
1456		ret = -EPROBE_DEFER;
1457		goto err_gpio_wp;
1458	}
1459	if (gpio_is_valid(plat->gpio_wp)) {
1460		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1461		if (ret == 0)
1462			ret = gpio_direction_input(plat->gpio_wp);
1463		if (ret == 0)
1464			host->gpio_wp = plat->gpio_wp;
1465		else if (ret != -ENOSYS)
1466			goto err_gpio_wp;
1467	}
1468
1469	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1470	    && host->gpio_cd_irq < 0)
1471		mmc->caps |= MMC_CAP_NEEDS_POLL;
1472
1473	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1474	if (ret)
1475		goto unmap;
1476
1477	if (!dev->irq[1])
1478		host->singleirq = true;
1479	else {
1480		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1481				  DRIVER_NAME " (pio)", host);
1482		if (ret)
1483			goto irq0_free;
1484	}
1485
1486	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1487
1488	amba_set_drvdata(dev, mmc);
1489
1490	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1491		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1492		 amba_rev(dev), (unsigned long long)dev->res.start,
1493		 dev->irq[0], dev->irq[1]);
1494
1495	mmci_dma_setup(host);
1496
1497	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1498	pm_runtime_use_autosuspend(&dev->dev);
1499	pm_runtime_put(&dev->dev);
1500
1501	mmc_add_host(mmc);
1502
1503	return 0;
1504
1505 irq0_free:
1506	free_irq(dev->irq[0], host);
1507 unmap:
1508	if (host->gpio_wp != -ENOSYS)
1509		gpio_free(host->gpio_wp);
1510 err_gpio_wp:
1511	if (host->gpio_cd_irq >= 0)
1512		free_irq(host->gpio_cd_irq, host);
1513	if (host->gpio_cd != -ENOSYS)
1514		gpio_free(host->gpio_cd);
1515 err_gpio_cd:
1516	iounmap(host->base);
1517 clk_disable:
1518	clk_disable_unprepare(host->clk);
1519 clk_free:
1520	clk_put(host->clk);
1521 host_free:
1522	mmc_free_host(mmc);
1523 rel_regions:
1524	amba_release_regions(dev);
1525 out:
1526	return ret;
1527}
1528
1529static int __devexit mmci_remove(struct amba_device *dev)
1530{
1531	struct mmc_host *mmc = amba_get_drvdata(dev);
1532
1533	amba_set_drvdata(dev, NULL);
1534
1535	if (mmc) {
1536		struct mmci_host *host = mmc_priv(mmc);
1537
1538		/*
1539		 * Undo pm_runtime_put() in probe.  We use the _sync
1540		 * version here so that we can access the primecell.
1541		 */
1542		pm_runtime_get_sync(&dev->dev);
1543
1544		mmc_remove_host(mmc);
1545
1546		writel(0, host->base + MMCIMASK0);
1547		writel(0, host->base + MMCIMASK1);
1548
1549		writel(0, host->base + MMCICOMMAND);
1550		writel(0, host->base + MMCIDATACTRL);
1551
1552		mmci_dma_release(host);
1553		free_irq(dev->irq[0], host);
1554		if (!host->singleirq)
1555			free_irq(dev->irq[1], host);
1556
1557		if (host->gpio_wp != -ENOSYS)
1558			gpio_free(host->gpio_wp);
1559		if (host->gpio_cd_irq >= 0)
1560			free_irq(host->gpio_cd_irq, host);
1561		if (host->gpio_cd != -ENOSYS)
1562			gpio_free(host->gpio_cd);
1563
1564		iounmap(host->base);
1565		clk_disable_unprepare(host->clk);
1566		clk_put(host->clk);
1567
1568		if (host->vcc)
1569			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1570		regulator_put(host->vcc);
1571
1572		mmc_free_host(mmc);
1573
1574		amba_release_regions(dev);
1575	}
1576
1577	return 0;
1578}
1579
1580#ifdef CONFIG_SUSPEND
1581static int mmci_suspend(struct device *dev)
1582{
1583	struct amba_device *adev = to_amba_device(dev);
1584	struct mmc_host *mmc = amba_get_drvdata(adev);
1585	int ret = 0;
1586
1587	if (mmc) {
1588		struct mmci_host *host = mmc_priv(mmc);
1589
1590		ret = mmc_suspend_host(mmc);
1591		if (ret == 0) {
1592			pm_runtime_get_sync(dev);
1593			writel(0, host->base + MMCIMASK0);
1594		}
1595	}
1596
1597	return ret;
1598}
1599
1600static int mmci_resume(struct device *dev)
1601{
1602	struct amba_device *adev = to_amba_device(dev);
1603	struct mmc_host *mmc = amba_get_drvdata(adev);
1604	int ret = 0;
1605
1606	if (mmc) {
1607		struct mmci_host *host = mmc_priv(mmc);
1608
1609		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1610		pm_runtime_put(dev);
1611
1612		ret = mmc_resume_host(mmc);
1613	}
1614
1615	return ret;
1616}
1617#endif
1618
1619static const struct dev_pm_ops mmci_dev_pm_ops = {
1620	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1621};
1622
1623static struct amba_id mmci_ids[] = {
1624	{
1625		.id	= 0x00041180,
1626		.mask	= 0xff0fffff,
1627		.data	= &variant_arm,
1628	},
1629	{
1630		.id	= 0x01041180,
1631		.mask	= 0xff0fffff,
1632		.data	= &variant_arm_extended_fifo,
1633	},
1634	{
1635		.id	= 0x00041181,
1636		.mask	= 0x000fffff,
1637		.data	= &variant_arm,
1638	},
1639	/* ST Micro variants */
1640	{
1641		.id     = 0x00180180,
1642		.mask   = 0x00ffffff,
1643		.data	= &variant_u300,
1644	},
1645	{
1646		.id     = 0x10180180,
1647		.mask   = 0xf0ffffff,
1648		.data	= &variant_nomadik,
1649	},
1650	{
1651		.id     = 0x00280180,
1652		.mask   = 0x00ffffff,
1653		.data	= &variant_u300,
1654	},
1655	{
1656		.id     = 0x00480180,
1657		.mask   = 0xf0ffffff,
1658		.data	= &variant_ux500,
1659	},
1660	{
1661		.id     = 0x10480180,
1662		.mask   = 0xf0ffffff,
1663		.data	= &variant_ux500v2,
1664	},
1665	{ 0, 0 },
1666};
1667
1668MODULE_DEVICE_TABLE(amba, mmci_ids);
1669
1670static struct amba_driver mmci_driver = {
1671	.drv		= {
1672		.name	= DRIVER_NAME,
1673		.pm	= &mmci_dev_pm_ops,
1674	},
1675	.probe		= mmci_probe,
1676	.remove		= __devexit_p(mmci_remove),
1677	.id_table	= mmci_ids,
1678};
1679
1680module_amba_driver(mmci_driver);
1681
1682module_param(fmax, uint, 0444);
1683
1684MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1685MODULE_LICENSE("GPL");
1686