mmci.c revision 17ee083b7897ab27b4949c42de805889ebd2b4c5
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32
33#include <asm/div64.h>
34#include <asm/io.h>
35#include <asm/sizes.h>
36
37#include "mmci.h"
38
39#define DRIVER_NAME "mmci-pl18x"
40
41static unsigned int fmax = 515633;
42
43/**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 *	      is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 *		  is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
55 */
56struct variant_data {
57	unsigned int		clkreg;
58	unsigned int		clkreg_enable;
59	unsigned int		datalength_bits;
60	unsigned int		fifosize;
61	unsigned int		fifohalfsize;
62	bool			sdio;
63	bool			st_clkdiv;
64	bool			blksz_datactrl16;
65};
66
67static struct variant_data variant_arm = {
68	.fifosize		= 16 * 4,
69	.fifohalfsize		= 8 * 4,
70	.datalength_bits	= 16,
71};
72
73static struct variant_data variant_arm_extended_fifo = {
74	.fifosize		= 128 * 4,
75	.fifohalfsize		= 64 * 4,
76	.datalength_bits	= 16,
77};
78
79static struct variant_data variant_u300 = {
80	.fifosize		= 16 * 4,
81	.fifohalfsize		= 8 * 4,
82	.clkreg_enable		= MCI_ST_U300_HWFCEN,
83	.datalength_bits	= 16,
84	.sdio			= true,
85};
86
87static struct variant_data variant_ux500 = {
88	.fifosize		= 30 * 4,
89	.fifohalfsize		= 8 * 4,
90	.clkreg			= MCI_CLK_ENABLE,
91	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
92	.datalength_bits	= 24,
93	.sdio			= true,
94	.st_clkdiv		= true,
95};
96
97static struct variant_data variant_ux500v2 = {
98	.fifosize		= 30 * 4,
99	.fifohalfsize		= 8 * 4,
100	.clkreg			= MCI_CLK_ENABLE,
101	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
102	.datalength_bits	= 24,
103	.sdio			= true,
104	.st_clkdiv		= true,
105	.blksz_datactrl16	= true,
106};
107
108/*
109 * This must be called with host->lock held
110 */
111static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
112{
113	struct variant_data *variant = host->variant;
114	u32 clk = variant->clkreg;
115
116	if (desired) {
117		if (desired >= host->mclk) {
118			clk = MCI_CLK_BYPASS;
119			if (variant->st_clkdiv)
120				clk |= MCI_ST_UX500_NEG_EDGE;
121			host->cclk = host->mclk;
122		} else if (variant->st_clkdiv) {
123			/*
124			 * DB8500 TRM says f = mclk / (clkdiv + 2)
125			 * => clkdiv = (mclk / f) - 2
126			 * Round the divider up so we don't exceed the max
127			 * frequency
128			 */
129			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130			if (clk >= 256)
131				clk = 255;
132			host->cclk = host->mclk / (clk + 2);
133		} else {
134			/*
135			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136			 * => clkdiv = mclk / (2 * f) - 1
137			 */
138			clk = host->mclk / (2 * desired) - 1;
139			if (clk >= 256)
140				clk = 255;
141			host->cclk = host->mclk / (2 * (clk + 1));
142		}
143
144		clk |= variant->clkreg_enable;
145		clk |= MCI_CLK_ENABLE;
146		/* This hasn't proven to be worthwhile */
147		/* clk |= MCI_CLK_PWRSAVE; */
148	}
149
150	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151		clk |= MCI_4BIT_BUS;
152	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153		clk |= MCI_ST_8BIT_BUS;
154
155	writel(clk, host->base + MMCICLOCK);
156}
157
158static void
159mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
160{
161	writel(0, host->base + MMCICOMMAND);
162
163	BUG_ON(host->data);
164
165	host->mrq = NULL;
166	host->cmd = NULL;
167
168	/*
169	 * Need to drop the host lock here; mmc_request_done may call
170	 * back into the driver...
171	 */
172	spin_unlock(&host->lock);
173	mmc_request_done(host->mmc, mrq);
174	spin_lock(&host->lock);
175}
176
177static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
178{
179	void __iomem *base = host->base;
180
181	if (host->singleirq) {
182		unsigned int mask0 = readl(base + MMCIMASK0);
183
184		mask0 &= ~MCI_IRQ1MASK;
185		mask0 |= mask;
186
187		writel(mask0, base + MMCIMASK0);
188	}
189
190	writel(mask, base + MMCIMASK1);
191}
192
193static void mmci_stop_data(struct mmci_host *host)
194{
195	writel(0, host->base + MMCIDATACTRL);
196	mmci_set_mask1(host, 0);
197	host->data = NULL;
198}
199
200static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
201{
202	unsigned int flags = SG_MITER_ATOMIC;
203
204	if (data->flags & MMC_DATA_READ)
205		flags |= SG_MITER_TO_SG;
206	else
207		flags |= SG_MITER_FROM_SG;
208
209	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
210}
211
212/*
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
216 */
217#ifdef CONFIG_DMA_ENGINE
218static void __devinit mmci_dma_setup(struct mmci_host *host)
219{
220	struct mmci_platform_data *plat = host->plat;
221	const char *rxname, *txname;
222	dma_cap_mask_t mask;
223
224	if (!plat || !plat->dma_filter) {
225		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226		return;
227	}
228
229	/* Try to acquire a generic DMA engine slave channel */
230	dma_cap_zero(mask);
231	dma_cap_set(DMA_SLAVE, mask);
232
233	/*
234	 * If only an RX channel is specified, the driver will
235	 * attempt to use it bidirectionally, however if it is
236	 * is specified but cannot be located, DMA will be disabled.
237	 */
238	if (plat->dma_rx_param) {
239		host->dma_rx_channel = dma_request_channel(mask,
240							   plat->dma_filter,
241							   plat->dma_rx_param);
242		/* E.g if no DMA hardware is present */
243		if (!host->dma_rx_channel)
244			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
245	}
246
247	if (plat->dma_tx_param) {
248		host->dma_tx_channel = dma_request_channel(mask,
249							   plat->dma_filter,
250							   plat->dma_tx_param);
251		if (!host->dma_tx_channel)
252			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
253	} else {
254		host->dma_tx_channel = host->dma_rx_channel;
255	}
256
257	if (host->dma_rx_channel)
258		rxname = dma_chan_name(host->dma_rx_channel);
259	else
260		rxname = "none";
261
262	if (host->dma_tx_channel)
263		txname = dma_chan_name(host->dma_tx_channel);
264	else
265		txname = "none";
266
267	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
268		 rxname, txname);
269
270	/*
271	 * Limit the maximum segment size in any SG entry according to
272	 * the parameters of the DMA engine device.
273	 */
274	if (host->dma_tx_channel) {
275		struct device *dev = host->dma_tx_channel->device->dev;
276		unsigned int max_seg_size = dma_get_max_seg_size(dev);
277
278		if (max_seg_size < host->mmc->max_seg_size)
279			host->mmc->max_seg_size = max_seg_size;
280	}
281	if (host->dma_rx_channel) {
282		struct device *dev = host->dma_rx_channel->device->dev;
283		unsigned int max_seg_size = dma_get_max_seg_size(dev);
284
285		if (max_seg_size < host->mmc->max_seg_size)
286			host->mmc->max_seg_size = max_seg_size;
287	}
288}
289
290/*
291 * This is used in __devinit or __devexit so inline it
292 * so it can be discarded.
293 */
294static inline void mmci_dma_release(struct mmci_host *host)
295{
296	struct mmci_platform_data *plat = host->plat;
297
298	if (host->dma_rx_channel)
299		dma_release_channel(host->dma_rx_channel);
300	if (host->dma_tx_channel && plat->dma_tx_param)
301		dma_release_channel(host->dma_tx_channel);
302	host->dma_rx_channel = host->dma_tx_channel = NULL;
303}
304
305static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
306{
307	struct dma_chan *chan = host->dma_current;
308	enum dma_data_direction dir;
309	u32 status;
310	int i;
311
312	/* Wait up to 1ms for the DMA to complete */
313	for (i = 0; ; i++) {
314		status = readl(host->base + MMCISTATUS);
315		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
316			break;
317		udelay(10);
318	}
319
320	/*
321	 * Check to see whether we still have some data left in the FIFO -
322	 * this catches DMA controllers which are unable to monitor the
323	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
324	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
325	 */
326	if (status & MCI_RXDATAAVLBLMASK) {
327		dmaengine_terminate_all(chan);
328		if (!data->error)
329			data->error = -EIO;
330	}
331
332	if (data->flags & MMC_DATA_WRITE) {
333		dir = DMA_TO_DEVICE;
334	} else {
335		dir = DMA_FROM_DEVICE;
336	}
337
338	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
339
340	/*
341	 * Use of DMA with scatter-gather is impossible.
342	 * Give up with DMA and switch back to PIO mode.
343	 */
344	if (status & MCI_RXDATAAVLBLMASK) {
345		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
346		mmci_dma_release(host);
347	}
348}
349
350static void mmci_dma_data_error(struct mmci_host *host)
351{
352	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
353	dmaengine_terminate_all(host->dma_current);
354}
355
356static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
357{
358	struct variant_data *variant = host->variant;
359	struct dma_slave_config conf = {
360		.src_addr = host->phybase + MMCIFIFO,
361		.dst_addr = host->phybase + MMCIFIFO,
362		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
363		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
364		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
365		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
366	};
367	struct mmc_data *data = host->data;
368	struct dma_chan *chan;
369	struct dma_device *device;
370	struct dma_async_tx_descriptor *desc;
371	int nr_sg;
372
373	host->dma_current = NULL;
374
375	if (data->flags & MMC_DATA_READ) {
376		conf.direction = DMA_FROM_DEVICE;
377		chan = host->dma_rx_channel;
378	} else {
379		conf.direction = DMA_TO_DEVICE;
380		chan = host->dma_tx_channel;
381	}
382
383	/* If there's no DMA channel, fall back to PIO */
384	if (!chan)
385		return -EINVAL;
386
387	/* If less than or equal to the fifo size, don't bother with DMA */
388	if (host->size <= variant->fifosize)
389		return -EINVAL;
390
391	device = chan->device;
392	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
393	if (nr_sg == 0)
394		return -EINVAL;
395
396	dmaengine_slave_config(chan, &conf);
397	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
398					    conf.direction, DMA_CTRL_ACK);
399	if (!desc)
400		goto unmap_exit;
401
402	/* Okay, go for it. */
403	host->dma_current = chan;
404
405	dev_vdbg(mmc_dev(host->mmc),
406		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
407		 data->sg_len, data->blksz, data->blocks, data->flags);
408	dmaengine_submit(desc);
409	dma_async_issue_pending(chan);
410
411	datactrl |= MCI_DPSM_DMAENABLE;
412
413	/* Trigger the DMA transfer */
414	writel(datactrl, host->base + MMCIDATACTRL);
415
416	/*
417	 * Let the MMCI say when the data is ended and it's time
418	 * to fire next DMA request. When that happens, MMCI will
419	 * call mmci_data_end()
420	 */
421	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
422	       host->base + MMCIMASK0);
423	return 0;
424
425unmap_exit:
426	dmaengine_terminate_all(chan);
427	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428	return -ENOMEM;
429}
430#else
431/* Blank functions if the DMA engine is not available */
432static inline void mmci_dma_setup(struct mmci_host *host)
433{
434}
435
436static inline void mmci_dma_release(struct mmci_host *host)
437{
438}
439
440static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
441{
442}
443
444static inline void mmci_dma_data_error(struct mmci_host *host)
445{
446}
447
448static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
449{
450	return -ENOSYS;
451}
452#endif
453
454static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
455{
456	struct variant_data *variant = host->variant;
457	unsigned int datactrl, timeout, irqmask;
458	unsigned long long clks;
459	void __iomem *base;
460	int blksz_bits;
461
462	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
463		data->blksz, data->blocks, data->flags);
464
465	host->data = data;
466	host->size = data->blksz * data->blocks;
467	data->bytes_xfered = 0;
468
469	clks = (unsigned long long)data->timeout_ns * host->cclk;
470	do_div(clks, 1000000000UL);
471
472	timeout = data->timeout_clks + (unsigned int)clks;
473
474	base = host->base;
475	writel(timeout, base + MMCIDATATIMER);
476	writel(host->size, base + MMCIDATALENGTH);
477
478	blksz_bits = ffs(data->blksz) - 1;
479	BUG_ON(1 << blksz_bits != data->blksz);
480
481	if (variant->blksz_datactrl16)
482		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
483	else
484		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
485
486	if (data->flags & MMC_DATA_READ)
487		datactrl |= MCI_DPSM_DIRECTION;
488
489	/*
490	 * Attempt to use DMA operation mode, if this
491	 * should fail, fall back to PIO mode
492	 */
493	if (!mmci_dma_start_data(host, datactrl))
494		return;
495
496	/* IRQ mode, map the SG list for CPU reading/writing */
497	mmci_init_sg(host, data);
498
499	if (data->flags & MMC_DATA_READ) {
500		irqmask = MCI_RXFIFOHALFFULLMASK;
501
502		/*
503		 * If we have less than the fifo 'half-full' threshold to
504		 * transfer, trigger a PIO interrupt as soon as any data
505		 * is available.
506		 */
507		if (host->size < variant->fifohalfsize)
508			irqmask |= MCI_RXDATAAVLBLMASK;
509	} else {
510		/*
511		 * We don't actually need to include "FIFO empty" here
512		 * since its implicit in "FIFO half empty".
513		 */
514		irqmask = MCI_TXFIFOHALFEMPTYMASK;
515	}
516
517	/* The ST Micro variants has a special bit to enable SDIO */
518	if (variant->sdio && host->mmc->card)
519		if (mmc_card_sdio(host->mmc->card))
520			datactrl |= MCI_ST_DPSM_SDIOEN;
521
522	writel(datactrl, base + MMCIDATACTRL);
523	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
524	mmci_set_mask1(host, irqmask);
525}
526
527static void
528mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
529{
530	void __iomem *base = host->base;
531
532	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
533	    cmd->opcode, cmd->arg, cmd->flags);
534
535	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
536		writel(0, base + MMCICOMMAND);
537		udelay(1);
538	}
539
540	c |= cmd->opcode | MCI_CPSM_ENABLE;
541	if (cmd->flags & MMC_RSP_PRESENT) {
542		if (cmd->flags & MMC_RSP_136)
543			c |= MCI_CPSM_LONGRSP;
544		c |= MCI_CPSM_RESPONSE;
545	}
546	if (/*interrupt*/0)
547		c |= MCI_CPSM_INTERRUPT;
548
549	host->cmd = cmd;
550
551	writel(cmd->arg, base + MMCIARGUMENT);
552	writel(c, base + MMCICOMMAND);
553}
554
555static void
556mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
557	      unsigned int status)
558{
559	/* First check for errors */
560	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
561		u32 remain, success;
562
563		/* Terminate the DMA transfer */
564		if (dma_inprogress(host))
565			mmci_dma_data_error(host);
566
567		/*
568		 * Calculate how far we are into the transfer.  Note that
569		 * the data counter gives the number of bytes transferred
570		 * on the MMC bus, not on the host side.  On reads, this
571		 * can be as much as a FIFO-worth of data ahead.  This
572		 * matters for FIFO overruns only.
573		 */
574		remain = readl(host->base + MMCIDATACNT);
575		success = data->blksz * data->blocks - remain;
576
577		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
578			status, success);
579		if (status & MCI_DATACRCFAIL) {
580			/* Last block was not successful */
581			success -= 1;
582			data->error = -EILSEQ;
583		} else if (status & MCI_DATATIMEOUT) {
584			data->error = -ETIMEDOUT;
585		} else if (status & MCI_TXUNDERRUN) {
586			data->error = -EIO;
587		} else if (status & MCI_RXOVERRUN) {
588			if (success > host->variant->fifosize)
589				success -= host->variant->fifosize;
590			else
591				success = 0;
592			data->error = -EIO;
593		}
594		data->bytes_xfered = round_down(success, data->blksz);
595	}
596
597	if (status & MCI_DATABLOCKEND)
598		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
599
600	if (status & MCI_DATAEND || data->error) {
601		if (dma_inprogress(host))
602			mmci_dma_unmap(host, data);
603		mmci_stop_data(host);
604
605		if (!data->error)
606			/* The error clause is handled above, success! */
607			data->bytes_xfered = data->blksz * data->blocks;
608
609		if (!data->stop) {
610			mmci_request_end(host, data->mrq);
611		} else {
612			mmci_start_command(host, data->stop, 0);
613		}
614	}
615}
616
617static void
618mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
619	     unsigned int status)
620{
621	void __iomem *base = host->base;
622
623	host->cmd = NULL;
624
625	if (status & MCI_CMDTIMEOUT) {
626		cmd->error = -ETIMEDOUT;
627	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
628		cmd->error = -EILSEQ;
629	} else {
630		cmd->resp[0] = readl(base + MMCIRESPONSE0);
631		cmd->resp[1] = readl(base + MMCIRESPONSE1);
632		cmd->resp[2] = readl(base + MMCIRESPONSE2);
633		cmd->resp[3] = readl(base + MMCIRESPONSE3);
634	}
635
636	if (!cmd->data || cmd->error) {
637		if (host->data)
638			mmci_stop_data(host);
639		mmci_request_end(host, cmd->mrq);
640	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
641		mmci_start_data(host, cmd->data);
642	}
643}
644
645static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
646{
647	void __iomem *base = host->base;
648	char *ptr = buffer;
649	u32 status;
650	int host_remain = host->size;
651
652	do {
653		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
654
655		if (count > remain)
656			count = remain;
657
658		if (count <= 0)
659			break;
660
661		readsl(base + MMCIFIFO, ptr, count >> 2);
662
663		ptr += count;
664		remain -= count;
665		host_remain -= count;
666
667		if (remain == 0)
668			break;
669
670		status = readl(base + MMCISTATUS);
671	} while (status & MCI_RXDATAAVLBL);
672
673	return ptr - buffer;
674}
675
676static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
677{
678	struct variant_data *variant = host->variant;
679	void __iomem *base = host->base;
680	char *ptr = buffer;
681
682	do {
683		unsigned int count, maxcnt;
684
685		maxcnt = status & MCI_TXFIFOEMPTY ?
686			 variant->fifosize : variant->fifohalfsize;
687		count = min(remain, maxcnt);
688
689		/*
690		 * The ST Micro variant for SDIO transfer sizes
691		 * less then 8 bytes should have clock H/W flow
692		 * control disabled.
693		 */
694		if (variant->sdio &&
695		    mmc_card_sdio(host->mmc->card)) {
696			if (count < 8)
697				writel(readl(host->base + MMCICLOCK) &
698					~variant->clkreg_enable,
699					host->base + MMCICLOCK);
700			else
701				writel(readl(host->base + MMCICLOCK) |
702					variant->clkreg_enable,
703					host->base + MMCICLOCK);
704		}
705
706		/*
707		 * SDIO especially may want to send something that is
708		 * not divisible by 4 (as opposed to card sectors
709		 * etc), and the FIFO only accept full 32-bit writes.
710		 * So compensate by adding +3 on the count, a single
711		 * byte become a 32bit write, 7 bytes will be two
712		 * 32bit writes etc.
713		 */
714		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
715
716		ptr += count;
717		remain -= count;
718
719		if (remain == 0)
720			break;
721
722		status = readl(base + MMCISTATUS);
723	} while (status & MCI_TXFIFOHALFEMPTY);
724
725	return ptr - buffer;
726}
727
728/*
729 * PIO data transfer IRQ handler.
730 */
731static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
732{
733	struct mmci_host *host = dev_id;
734	struct sg_mapping_iter *sg_miter = &host->sg_miter;
735	struct variant_data *variant = host->variant;
736	void __iomem *base = host->base;
737	unsigned long flags;
738	u32 status;
739
740	status = readl(base + MMCISTATUS);
741
742	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
743
744	local_irq_save(flags);
745
746	do {
747		unsigned int remain, len;
748		char *buffer;
749
750		/*
751		 * For write, we only need to test the half-empty flag
752		 * here - if the FIFO is completely empty, then by
753		 * definition it is more than half empty.
754		 *
755		 * For read, check for data available.
756		 */
757		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
758			break;
759
760		if (!sg_miter_next(sg_miter))
761			break;
762
763		buffer = sg_miter->addr;
764		remain = sg_miter->length;
765
766		len = 0;
767		if (status & MCI_RXACTIVE)
768			len = mmci_pio_read(host, buffer, remain);
769		if (status & MCI_TXACTIVE)
770			len = mmci_pio_write(host, buffer, remain, status);
771
772		sg_miter->consumed = len;
773
774		host->size -= len;
775		remain -= len;
776
777		if (remain)
778			break;
779
780		status = readl(base + MMCISTATUS);
781	} while (1);
782
783	sg_miter_stop(sg_miter);
784
785	local_irq_restore(flags);
786
787	/*
788	 * If we have less than the fifo 'half-full' threshold to transfer,
789	 * trigger a PIO interrupt as soon as any data is available.
790	 */
791	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
792		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
793
794	/*
795	 * If we run out of data, disable the data IRQs; this
796	 * prevents a race where the FIFO becomes empty before
797	 * the chip itself has disabled the data path, and
798	 * stops us racing with our data end IRQ.
799	 */
800	if (host->size == 0) {
801		mmci_set_mask1(host, 0);
802		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
803	}
804
805	return IRQ_HANDLED;
806}
807
808/*
809 * Handle completion of command and data transfers.
810 */
811static irqreturn_t mmci_irq(int irq, void *dev_id)
812{
813	struct mmci_host *host = dev_id;
814	u32 status;
815	int ret = 0;
816
817	spin_lock(&host->lock);
818
819	do {
820		struct mmc_command *cmd;
821		struct mmc_data *data;
822
823		status = readl(host->base + MMCISTATUS);
824
825		if (host->singleirq) {
826			if (status & readl(host->base + MMCIMASK1))
827				mmci_pio_irq(irq, dev_id);
828
829			status &= ~MCI_IRQ1MASK;
830		}
831
832		status &= readl(host->base + MMCIMASK0);
833		writel(status, host->base + MMCICLEAR);
834
835		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
836
837		data = host->data;
838		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
839			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
840			mmci_data_irq(host, data, status);
841
842		cmd = host->cmd;
843		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
844			mmci_cmd_irq(host, cmd, status);
845
846		ret = 1;
847	} while (status);
848
849	spin_unlock(&host->lock);
850
851	return IRQ_RETVAL(ret);
852}
853
854static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
855{
856	struct mmci_host *host = mmc_priv(mmc);
857	unsigned long flags;
858
859	WARN_ON(host->mrq != NULL);
860
861	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
862		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
863			mrq->data->blksz);
864		mrq->cmd->error = -EINVAL;
865		mmc_request_done(mmc, mrq);
866		return;
867	}
868
869	spin_lock_irqsave(&host->lock, flags);
870
871	host->mrq = mrq;
872
873	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
874		mmci_start_data(host, mrq->data);
875
876	mmci_start_command(host, mrq->cmd, 0);
877
878	spin_unlock_irqrestore(&host->lock, flags);
879}
880
881static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
882{
883	struct mmci_host *host = mmc_priv(mmc);
884	u32 pwr = 0;
885	unsigned long flags;
886	int ret;
887
888	switch (ios->power_mode) {
889	case MMC_POWER_OFF:
890		if (host->vcc)
891			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
892		break;
893	case MMC_POWER_UP:
894		if (host->vcc) {
895			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
896			if (ret) {
897				dev_err(mmc_dev(mmc), "unable to set OCR\n");
898				/*
899				 * The .set_ios() function in the mmc_host_ops
900				 * struct return void, and failing to set the
901				 * power should be rare so we print an error
902				 * and return here.
903				 */
904				return;
905			}
906		}
907		if (host->plat->vdd_handler)
908			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
909						       ios->power_mode);
910		/* The ST version does not have this, fall through to POWER_ON */
911		if (host->hw_designer != AMBA_VENDOR_ST) {
912			pwr |= MCI_PWR_UP;
913			break;
914		}
915	case MMC_POWER_ON:
916		pwr |= MCI_PWR_ON;
917		break;
918	}
919
920	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
921		if (host->hw_designer != AMBA_VENDOR_ST)
922			pwr |= MCI_ROD;
923		else {
924			/*
925			 * The ST Micro variant use the ROD bit for something
926			 * else and only has OD (Open Drain).
927			 */
928			pwr |= MCI_OD;
929		}
930	}
931
932	spin_lock_irqsave(&host->lock, flags);
933
934	mmci_set_clkreg(host, ios->clock);
935
936	if (host->pwr != pwr) {
937		host->pwr = pwr;
938		writel(pwr, host->base + MMCIPOWER);
939	}
940
941	spin_unlock_irqrestore(&host->lock, flags);
942}
943
944static int mmci_get_ro(struct mmc_host *mmc)
945{
946	struct mmci_host *host = mmc_priv(mmc);
947
948	if (host->gpio_wp == -ENOSYS)
949		return -ENOSYS;
950
951	return gpio_get_value_cansleep(host->gpio_wp);
952}
953
954static int mmci_get_cd(struct mmc_host *mmc)
955{
956	struct mmci_host *host = mmc_priv(mmc);
957	struct mmci_platform_data *plat = host->plat;
958	unsigned int status;
959
960	if (host->gpio_cd == -ENOSYS) {
961		if (!plat->status)
962			return 1; /* Assume always present */
963
964		status = plat->status(mmc_dev(host->mmc));
965	} else
966		status = !!gpio_get_value_cansleep(host->gpio_cd)
967			^ plat->cd_invert;
968
969	/*
970	 * Use positive logic throughout - status is zero for no card,
971	 * non-zero for card inserted.
972	 */
973	return status;
974}
975
976static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
977{
978	struct mmci_host *host = dev_id;
979
980	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
981
982	return IRQ_HANDLED;
983}
984
985static const struct mmc_host_ops mmci_ops = {
986	.request	= mmci_request,
987	.set_ios	= mmci_set_ios,
988	.get_ro		= mmci_get_ro,
989	.get_cd		= mmci_get_cd,
990};
991
992static int __devinit mmci_probe(struct amba_device *dev,
993	const struct amba_id *id)
994{
995	struct mmci_platform_data *plat = dev->dev.platform_data;
996	struct variant_data *variant = id->data;
997	struct mmci_host *host;
998	struct mmc_host *mmc;
999	int ret;
1000
1001	/* must have platform data */
1002	if (!plat) {
1003		ret = -EINVAL;
1004		goto out;
1005	}
1006
1007	ret = amba_request_regions(dev, DRIVER_NAME);
1008	if (ret)
1009		goto out;
1010
1011	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1012	if (!mmc) {
1013		ret = -ENOMEM;
1014		goto rel_regions;
1015	}
1016
1017	host = mmc_priv(mmc);
1018	host->mmc = mmc;
1019
1020	host->gpio_wp = -ENOSYS;
1021	host->gpio_cd = -ENOSYS;
1022	host->gpio_cd_irq = -1;
1023
1024	host->hw_designer = amba_manf(dev);
1025	host->hw_revision = amba_rev(dev);
1026	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1027	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1028
1029	host->clk = clk_get(&dev->dev, NULL);
1030	if (IS_ERR(host->clk)) {
1031		ret = PTR_ERR(host->clk);
1032		host->clk = NULL;
1033		goto host_free;
1034	}
1035
1036	ret = clk_enable(host->clk);
1037	if (ret)
1038		goto clk_free;
1039
1040	host->plat = plat;
1041	host->variant = variant;
1042	host->mclk = clk_get_rate(host->clk);
1043	/*
1044	 * According to the spec, mclk is max 100 MHz,
1045	 * so we try to adjust the clock down to this,
1046	 * (if possible).
1047	 */
1048	if (host->mclk > 100000000) {
1049		ret = clk_set_rate(host->clk, 100000000);
1050		if (ret < 0)
1051			goto clk_disable;
1052		host->mclk = clk_get_rate(host->clk);
1053		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1054			host->mclk);
1055	}
1056	host->phybase = dev->res.start;
1057	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1058	if (!host->base) {
1059		ret = -ENOMEM;
1060		goto clk_disable;
1061	}
1062
1063	mmc->ops = &mmci_ops;
1064	mmc->f_min = (host->mclk + 511) / 512;
1065	/*
1066	 * If the platform data supplies a maximum operating
1067	 * frequency, this takes precedence. Else, we fall back
1068	 * to using the module parameter, which has a (low)
1069	 * default value in case it is not specified. Either
1070	 * value must not exceed the clock rate into the block,
1071	 * of course.
1072	 */
1073	if (plat->f_max)
1074		mmc->f_max = min(host->mclk, plat->f_max);
1075	else
1076		mmc->f_max = min(host->mclk, fmax);
1077	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1078
1079#ifdef CONFIG_REGULATOR
1080	/* If we're using the regulator framework, try to fetch a regulator */
1081	host->vcc = regulator_get(&dev->dev, "vmmc");
1082	if (IS_ERR(host->vcc))
1083		host->vcc = NULL;
1084	else {
1085		int mask = mmc_regulator_get_ocrmask(host->vcc);
1086
1087		if (mask < 0)
1088			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1089				mask);
1090		else {
1091			host->mmc->ocr_avail = (u32) mask;
1092			if (plat->ocr_mask)
1093				dev_warn(&dev->dev,
1094				 "Provided ocr_mask/setpower will not be used "
1095				 "(using regulator instead)\n");
1096		}
1097	}
1098#endif
1099	/* Fall back to platform data if no regulator is found */
1100	if (host->vcc == NULL)
1101		mmc->ocr_avail = plat->ocr_mask;
1102	mmc->caps = plat->capabilities;
1103
1104	/*
1105	 * We can do SGIO
1106	 */
1107	mmc->max_segs = NR_SG;
1108
1109	/*
1110	 * Since only a certain number of bits are valid in the data length
1111	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1112	 * single request.
1113	 */
1114	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1115
1116	/*
1117	 * Set the maximum segment size.  Since we aren't doing DMA
1118	 * (yet) we are only limited by the data length register.
1119	 */
1120	mmc->max_seg_size = mmc->max_req_size;
1121
1122	/*
1123	 * Block size can be up to 2048 bytes, but must be a power of two.
1124	 */
1125	mmc->max_blk_size = 2048;
1126
1127	/*
1128	 * No limit on the number of blocks transferred.
1129	 */
1130	mmc->max_blk_count = mmc->max_req_size;
1131
1132	spin_lock_init(&host->lock);
1133
1134	writel(0, host->base + MMCIMASK0);
1135	writel(0, host->base + MMCIMASK1);
1136	writel(0xfff, host->base + MMCICLEAR);
1137
1138	if (gpio_is_valid(plat->gpio_cd)) {
1139		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1140		if (ret == 0)
1141			ret = gpio_direction_input(plat->gpio_cd);
1142		if (ret == 0)
1143			host->gpio_cd = plat->gpio_cd;
1144		else if (ret != -ENOSYS)
1145			goto err_gpio_cd;
1146
1147		/*
1148		 * A gpio pin that will detect cards when inserted and removed
1149		 * will most likely want to trigger on the edges if it is
1150		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1151		 * for the inverted case) so we request triggers on both
1152		 * edges.
1153		 */
1154		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1155				mmci_cd_irq,
1156				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1157				DRIVER_NAME " (cd)", host);
1158		if (ret >= 0)
1159			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1160	}
1161	if (gpio_is_valid(plat->gpio_wp)) {
1162		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1163		if (ret == 0)
1164			ret = gpio_direction_input(plat->gpio_wp);
1165		if (ret == 0)
1166			host->gpio_wp = plat->gpio_wp;
1167		else if (ret != -ENOSYS)
1168			goto err_gpio_wp;
1169	}
1170
1171	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1172	    && host->gpio_cd_irq < 0)
1173		mmc->caps |= MMC_CAP_NEEDS_POLL;
1174
1175	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1176	if (ret)
1177		goto unmap;
1178
1179	if (dev->irq[1] == NO_IRQ)
1180		host->singleirq = true;
1181	else {
1182		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1183				  DRIVER_NAME " (pio)", host);
1184		if (ret)
1185			goto irq0_free;
1186	}
1187
1188	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1189
1190	amba_set_drvdata(dev, mmc);
1191
1192	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1193		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1194		 amba_rev(dev), (unsigned long long)dev->res.start,
1195		 dev->irq[0], dev->irq[1]);
1196
1197	mmci_dma_setup(host);
1198
1199	mmc_add_host(mmc);
1200
1201	return 0;
1202
1203 irq0_free:
1204	free_irq(dev->irq[0], host);
1205 unmap:
1206	if (host->gpio_wp != -ENOSYS)
1207		gpio_free(host->gpio_wp);
1208 err_gpio_wp:
1209	if (host->gpio_cd_irq >= 0)
1210		free_irq(host->gpio_cd_irq, host);
1211	if (host->gpio_cd != -ENOSYS)
1212		gpio_free(host->gpio_cd);
1213 err_gpio_cd:
1214	iounmap(host->base);
1215 clk_disable:
1216	clk_disable(host->clk);
1217 clk_free:
1218	clk_put(host->clk);
1219 host_free:
1220	mmc_free_host(mmc);
1221 rel_regions:
1222	amba_release_regions(dev);
1223 out:
1224	return ret;
1225}
1226
1227static int __devexit mmci_remove(struct amba_device *dev)
1228{
1229	struct mmc_host *mmc = amba_get_drvdata(dev);
1230
1231	amba_set_drvdata(dev, NULL);
1232
1233	if (mmc) {
1234		struct mmci_host *host = mmc_priv(mmc);
1235
1236		mmc_remove_host(mmc);
1237
1238		writel(0, host->base + MMCIMASK0);
1239		writel(0, host->base + MMCIMASK1);
1240
1241		writel(0, host->base + MMCICOMMAND);
1242		writel(0, host->base + MMCIDATACTRL);
1243
1244		mmci_dma_release(host);
1245		free_irq(dev->irq[0], host);
1246		if (!host->singleirq)
1247			free_irq(dev->irq[1], host);
1248
1249		if (host->gpio_wp != -ENOSYS)
1250			gpio_free(host->gpio_wp);
1251		if (host->gpio_cd_irq >= 0)
1252			free_irq(host->gpio_cd_irq, host);
1253		if (host->gpio_cd != -ENOSYS)
1254			gpio_free(host->gpio_cd);
1255
1256		iounmap(host->base);
1257		clk_disable(host->clk);
1258		clk_put(host->clk);
1259
1260		if (host->vcc)
1261			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1262		regulator_put(host->vcc);
1263
1264		mmc_free_host(mmc);
1265
1266		amba_release_regions(dev);
1267	}
1268
1269	return 0;
1270}
1271
1272#ifdef CONFIG_PM
1273static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1274{
1275	struct mmc_host *mmc = amba_get_drvdata(dev);
1276	int ret = 0;
1277
1278	if (mmc) {
1279		struct mmci_host *host = mmc_priv(mmc);
1280
1281		ret = mmc_suspend_host(mmc);
1282		if (ret == 0)
1283			writel(0, host->base + MMCIMASK0);
1284	}
1285
1286	return ret;
1287}
1288
1289static int mmci_resume(struct amba_device *dev)
1290{
1291	struct mmc_host *mmc = amba_get_drvdata(dev);
1292	int ret = 0;
1293
1294	if (mmc) {
1295		struct mmci_host *host = mmc_priv(mmc);
1296
1297		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1298
1299		ret = mmc_resume_host(mmc);
1300	}
1301
1302	return ret;
1303}
1304#else
1305#define mmci_suspend	NULL
1306#define mmci_resume	NULL
1307#endif
1308
1309static struct amba_id mmci_ids[] = {
1310	{
1311		.id	= 0x00041180,
1312		.mask	= 0xff0fffff,
1313		.data	= &variant_arm,
1314	},
1315	{
1316		.id	= 0x01041180,
1317		.mask	= 0xff0fffff,
1318		.data	= &variant_arm_extended_fifo,
1319	},
1320	{
1321		.id	= 0x00041181,
1322		.mask	= 0x000fffff,
1323		.data	= &variant_arm,
1324	},
1325	/* ST Micro variants */
1326	{
1327		.id     = 0x00180180,
1328		.mask   = 0x00ffffff,
1329		.data	= &variant_u300,
1330	},
1331	{
1332		.id     = 0x00280180,
1333		.mask   = 0x00ffffff,
1334		.data	= &variant_u300,
1335	},
1336	{
1337		.id     = 0x00480180,
1338		.mask   = 0xf0ffffff,
1339		.data	= &variant_ux500,
1340	},
1341	{
1342		.id     = 0x10480180,
1343		.mask   = 0xf0ffffff,
1344		.data	= &variant_ux500v2,
1345	},
1346	{ 0, 0 },
1347};
1348
1349static struct amba_driver mmci_driver = {
1350	.drv		= {
1351		.name	= DRIVER_NAME,
1352	},
1353	.probe		= mmci_probe,
1354	.remove		= __devexit_p(mmci_remove),
1355	.suspend	= mmci_suspend,
1356	.resume		= mmci_resume,
1357	.id_table	= mmci_ids,
1358};
1359
1360static int __init mmci_init(void)
1361{
1362	return amba_driver_register(&mmci_driver);
1363}
1364
1365static void __exit mmci_exit(void)
1366{
1367	amba_driver_unregister(&mmci_driver);
1368}
1369
1370module_init(mmci_init);
1371module_exit(mmci_exit);
1372module_param(fmax, uint, 0444);
1373
1374MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1375MODULE_LICENSE("GPL");
1376