mmci.c revision 3a37298ada749897ec2c5c1cdcd5932218eb2928
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 *	      is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 *		  is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 */
65struct variant_data {
66	unsigned int		clkreg;
67	unsigned int		clkreg_enable;
68	unsigned int		datalength_bits;
69	unsigned int		fifosize;
70	unsigned int		fifohalfsize;
71	bool			sdio;
72	bool			st_clkdiv;
73	bool			blksz_datactrl16;
74	u32			pwrreg_powerup;
75	bool			signal_direction;
76	bool			pwrreg_clkgate;
77};
78
79static struct variant_data variant_arm = {
80	.fifosize		= 16 * 4,
81	.fifohalfsize		= 8 * 4,
82	.datalength_bits	= 16,
83	.pwrreg_powerup		= MCI_PWR_UP,
84};
85
86static struct variant_data variant_arm_extended_fifo = {
87	.fifosize		= 128 * 4,
88	.fifohalfsize		= 64 * 4,
89	.datalength_bits	= 16,
90	.pwrreg_powerup		= MCI_PWR_UP,
91};
92
93static struct variant_data variant_arm_extended_fifo_hwfc = {
94	.fifosize		= 128 * 4,
95	.fifohalfsize		= 64 * 4,
96	.clkreg_enable		= MCI_ARM_HWFCEN,
97	.datalength_bits	= 16,
98	.pwrreg_powerup		= MCI_PWR_UP,
99};
100
101static struct variant_data variant_u300 = {
102	.fifosize		= 16 * 4,
103	.fifohalfsize		= 8 * 4,
104	.clkreg_enable		= MCI_ST_U300_HWFCEN,
105	.datalength_bits	= 16,
106	.sdio			= true,
107	.pwrreg_powerup		= MCI_PWR_ON,
108	.signal_direction	= true,
109	.pwrreg_clkgate		= true,
110};
111
112static struct variant_data variant_nomadik = {
113	.fifosize		= 16 * 4,
114	.fifohalfsize		= 8 * 4,
115	.clkreg			= MCI_CLK_ENABLE,
116	.datalength_bits	= 24,
117	.sdio			= true,
118	.st_clkdiv		= true,
119	.pwrreg_powerup		= MCI_PWR_ON,
120	.signal_direction	= true,
121	.pwrreg_clkgate		= true,
122};
123
124static struct variant_data variant_ux500 = {
125	.fifosize		= 30 * 4,
126	.fifohalfsize		= 8 * 4,
127	.clkreg			= MCI_CLK_ENABLE,
128	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
129	.datalength_bits	= 24,
130	.sdio			= true,
131	.st_clkdiv		= true,
132	.pwrreg_powerup		= MCI_PWR_ON,
133	.signal_direction	= true,
134	.pwrreg_clkgate		= true,
135};
136
137static struct variant_data variant_ux500v2 = {
138	.fifosize		= 30 * 4,
139	.fifohalfsize		= 8 * 4,
140	.clkreg			= MCI_CLK_ENABLE,
141	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
142	.datalength_bits	= 24,
143	.sdio			= true,
144	.st_clkdiv		= true,
145	.blksz_datactrl16	= true,
146	.pwrreg_powerup		= MCI_PWR_ON,
147	.signal_direction	= true,
148	.pwrreg_clkgate		= true,
149};
150
151/*
152 * This must be called with host->lock held
153 */
154static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
155{
156	if (host->clk_reg != clk) {
157		host->clk_reg = clk;
158		writel(clk, host->base + MMCICLOCK);
159	}
160}
161
162/*
163 * This must be called with host->lock held
164 */
165static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
166{
167	if (host->pwr_reg != pwr) {
168		host->pwr_reg = pwr;
169		writel(pwr, host->base + MMCIPOWER);
170	}
171}
172
173/*
174 * This must be called with host->lock held
175 */
176static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
177{
178	struct variant_data *variant = host->variant;
179	u32 clk = variant->clkreg;
180
181	if (desired) {
182		if (desired >= host->mclk) {
183			clk = MCI_CLK_BYPASS;
184			if (variant->st_clkdiv)
185				clk |= MCI_ST_UX500_NEG_EDGE;
186			host->cclk = host->mclk;
187		} else if (variant->st_clkdiv) {
188			/*
189			 * DB8500 TRM says f = mclk / (clkdiv + 2)
190			 * => clkdiv = (mclk / f) - 2
191			 * Round the divider up so we don't exceed the max
192			 * frequency
193			 */
194			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
195			if (clk >= 256)
196				clk = 255;
197			host->cclk = host->mclk / (clk + 2);
198		} else {
199			/*
200			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
201			 * => clkdiv = mclk / (2 * f) - 1
202			 */
203			clk = host->mclk / (2 * desired) - 1;
204			if (clk >= 256)
205				clk = 255;
206			host->cclk = host->mclk / (2 * (clk + 1));
207		}
208
209		clk |= variant->clkreg_enable;
210		clk |= MCI_CLK_ENABLE;
211		/* This hasn't proven to be worthwhile */
212		/* clk |= MCI_CLK_PWRSAVE; */
213	}
214
215	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
216		clk |= MCI_4BIT_BUS;
217	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
218		clk |= MCI_ST_8BIT_BUS;
219
220	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
221		clk |= MCI_ST_UX500_NEG_EDGE;
222
223	mmci_write_clkreg(host, clk);
224}
225
226static void
227mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
228{
229	writel(0, host->base + MMCICOMMAND);
230
231	BUG_ON(host->data);
232
233	host->mrq = NULL;
234	host->cmd = NULL;
235
236	mmc_request_done(host->mmc, mrq);
237
238	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
239	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
240}
241
242static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
243{
244	void __iomem *base = host->base;
245
246	if (host->singleirq) {
247		unsigned int mask0 = readl(base + MMCIMASK0);
248
249		mask0 &= ~MCI_IRQ1MASK;
250		mask0 |= mask;
251
252		writel(mask0, base + MMCIMASK0);
253	}
254
255	writel(mask, base + MMCIMASK1);
256}
257
258static void mmci_stop_data(struct mmci_host *host)
259{
260	writel(0, host->base + MMCIDATACTRL);
261	mmci_set_mask1(host, 0);
262	host->data = NULL;
263}
264
265static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
266{
267	unsigned int flags = SG_MITER_ATOMIC;
268
269	if (data->flags & MMC_DATA_READ)
270		flags |= SG_MITER_TO_SG;
271	else
272		flags |= SG_MITER_FROM_SG;
273
274	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
275}
276
277/*
278 * All the DMA operation mode stuff goes inside this ifdef.
279 * This assumes that you have a generic DMA device interface,
280 * no custom DMA interfaces are supported.
281 */
282#ifdef CONFIG_DMA_ENGINE
283static void mmci_dma_setup(struct mmci_host *host)
284{
285	struct mmci_platform_data *plat = host->plat;
286	const char *rxname, *txname;
287	dma_cap_mask_t mask;
288
289	if (!plat || !plat->dma_filter) {
290		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
291		return;
292	}
293
294	/* initialize pre request cookie */
295	host->next_data.cookie = 1;
296
297	/* Try to acquire a generic DMA engine slave channel */
298	dma_cap_zero(mask);
299	dma_cap_set(DMA_SLAVE, mask);
300
301	/*
302	 * If only an RX channel is specified, the driver will
303	 * attempt to use it bidirectionally, however if it is
304	 * is specified but cannot be located, DMA will be disabled.
305	 */
306	if (plat->dma_rx_param) {
307		host->dma_rx_channel = dma_request_channel(mask,
308							   plat->dma_filter,
309							   plat->dma_rx_param);
310		/* E.g if no DMA hardware is present */
311		if (!host->dma_rx_channel)
312			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
313	}
314
315	if (plat->dma_tx_param) {
316		host->dma_tx_channel = dma_request_channel(mask,
317							   plat->dma_filter,
318							   plat->dma_tx_param);
319		if (!host->dma_tx_channel)
320			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
321	} else {
322		host->dma_tx_channel = host->dma_rx_channel;
323	}
324
325	if (host->dma_rx_channel)
326		rxname = dma_chan_name(host->dma_rx_channel);
327	else
328		rxname = "none";
329
330	if (host->dma_tx_channel)
331		txname = dma_chan_name(host->dma_tx_channel);
332	else
333		txname = "none";
334
335	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
336		 rxname, txname);
337
338	/*
339	 * Limit the maximum segment size in any SG entry according to
340	 * the parameters of the DMA engine device.
341	 */
342	if (host->dma_tx_channel) {
343		struct device *dev = host->dma_tx_channel->device->dev;
344		unsigned int max_seg_size = dma_get_max_seg_size(dev);
345
346		if (max_seg_size < host->mmc->max_seg_size)
347			host->mmc->max_seg_size = max_seg_size;
348	}
349	if (host->dma_rx_channel) {
350		struct device *dev = host->dma_rx_channel->device->dev;
351		unsigned int max_seg_size = dma_get_max_seg_size(dev);
352
353		if (max_seg_size < host->mmc->max_seg_size)
354			host->mmc->max_seg_size = max_seg_size;
355	}
356}
357
358/*
359 * This is used in or so inline it
360 * so it can be discarded.
361 */
362static inline void mmci_dma_release(struct mmci_host *host)
363{
364	struct mmci_platform_data *plat = host->plat;
365
366	if (host->dma_rx_channel)
367		dma_release_channel(host->dma_rx_channel);
368	if (host->dma_tx_channel && plat->dma_tx_param)
369		dma_release_channel(host->dma_tx_channel);
370	host->dma_rx_channel = host->dma_tx_channel = NULL;
371}
372
373static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
374{
375	struct dma_chan *chan = host->dma_current;
376	enum dma_data_direction dir;
377	u32 status;
378	int i;
379
380	/* Wait up to 1ms for the DMA to complete */
381	for (i = 0; ; i++) {
382		status = readl(host->base + MMCISTATUS);
383		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
384			break;
385		udelay(10);
386	}
387
388	/*
389	 * Check to see whether we still have some data left in the FIFO -
390	 * this catches DMA controllers which are unable to monitor the
391	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
392	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
393	 */
394	if (status & MCI_RXDATAAVLBLMASK) {
395		dmaengine_terminate_all(chan);
396		if (!data->error)
397			data->error = -EIO;
398	}
399
400	if (data->flags & MMC_DATA_WRITE) {
401		dir = DMA_TO_DEVICE;
402	} else {
403		dir = DMA_FROM_DEVICE;
404	}
405
406	if (!data->host_cookie)
407		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
408
409	/*
410	 * Use of DMA with scatter-gather is impossible.
411	 * Give up with DMA and switch back to PIO mode.
412	 */
413	if (status & MCI_RXDATAAVLBLMASK) {
414		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
415		mmci_dma_release(host);
416	}
417}
418
419static void mmci_dma_data_error(struct mmci_host *host)
420{
421	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
422	dmaengine_terminate_all(host->dma_current);
423}
424
425static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
426			      struct mmci_host_next *next)
427{
428	struct variant_data *variant = host->variant;
429	struct dma_slave_config conf = {
430		.src_addr = host->phybase + MMCIFIFO,
431		.dst_addr = host->phybase + MMCIFIFO,
432		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
433		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
434		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
435		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
436		.device_fc = false,
437	};
438	struct dma_chan *chan;
439	struct dma_device *device;
440	struct dma_async_tx_descriptor *desc;
441	enum dma_data_direction buffer_dirn;
442	int nr_sg;
443
444	/* Check if next job is already prepared */
445	if (data->host_cookie && !next &&
446	    host->dma_current && host->dma_desc_current)
447		return 0;
448
449	if (!next) {
450		host->dma_current = NULL;
451		host->dma_desc_current = NULL;
452	}
453
454	if (data->flags & MMC_DATA_READ) {
455		conf.direction = DMA_DEV_TO_MEM;
456		buffer_dirn = DMA_FROM_DEVICE;
457		chan = host->dma_rx_channel;
458	} else {
459		conf.direction = DMA_MEM_TO_DEV;
460		buffer_dirn = DMA_TO_DEVICE;
461		chan = host->dma_tx_channel;
462	}
463
464	/* If there's no DMA channel, fall back to PIO */
465	if (!chan)
466		return -EINVAL;
467
468	/* If less than or equal to the fifo size, don't bother with DMA */
469	if (data->blksz * data->blocks <= variant->fifosize)
470		return -EINVAL;
471
472	device = chan->device;
473	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
474	if (nr_sg == 0)
475		return -EINVAL;
476
477	dmaengine_slave_config(chan, &conf);
478	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
479					    conf.direction, DMA_CTRL_ACK);
480	if (!desc)
481		goto unmap_exit;
482
483	if (next) {
484		next->dma_chan = chan;
485		next->dma_desc = desc;
486	} else {
487		host->dma_current = chan;
488		host->dma_desc_current = desc;
489	}
490
491	return 0;
492
493 unmap_exit:
494	if (!next)
495		dmaengine_terminate_all(chan);
496	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
497	return -ENOMEM;
498}
499
500static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
501{
502	int ret;
503	struct mmc_data *data = host->data;
504
505	ret = mmci_dma_prep_data(host, host->data, NULL);
506	if (ret)
507		return ret;
508
509	/* Okay, go for it. */
510	dev_vdbg(mmc_dev(host->mmc),
511		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
512		 data->sg_len, data->blksz, data->blocks, data->flags);
513	dmaengine_submit(host->dma_desc_current);
514	dma_async_issue_pending(host->dma_current);
515
516	datactrl |= MCI_DPSM_DMAENABLE;
517
518	/* Trigger the DMA transfer */
519	writel(datactrl, host->base + MMCIDATACTRL);
520
521	/*
522	 * Let the MMCI say when the data is ended and it's time
523	 * to fire next DMA request. When that happens, MMCI will
524	 * call mmci_data_end()
525	 */
526	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
527	       host->base + MMCIMASK0);
528	return 0;
529}
530
531static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532{
533	struct mmci_host_next *next = &host->next_data;
534
535	if (data->host_cookie && data->host_cookie != next->cookie) {
536		pr_warning("[%s] invalid cookie: data->host_cookie %d"
537		       " host->next_data.cookie %d\n",
538		       __func__, data->host_cookie, host->next_data.cookie);
539		data->host_cookie = 0;
540	}
541
542	if (!data->host_cookie)
543		return;
544
545	host->dma_desc_current = next->dma_desc;
546	host->dma_current = next->dma_chan;
547
548	next->dma_desc = NULL;
549	next->dma_chan = NULL;
550}
551
552static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
553			     bool is_first_req)
554{
555	struct mmci_host *host = mmc_priv(mmc);
556	struct mmc_data *data = mrq->data;
557	struct mmci_host_next *nd = &host->next_data;
558
559	if (!data)
560		return;
561
562	if (data->host_cookie) {
563		data->host_cookie = 0;
564		return;
565	}
566
567	/* if config for dma */
568	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
569	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
570		if (mmci_dma_prep_data(host, data, nd))
571			data->host_cookie = 0;
572		else
573			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
574	}
575}
576
577static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
578			      int err)
579{
580	struct mmci_host *host = mmc_priv(mmc);
581	struct mmc_data *data = mrq->data;
582	struct dma_chan *chan;
583	enum dma_data_direction dir;
584
585	if (!data)
586		return;
587
588	if (data->flags & MMC_DATA_READ) {
589		dir = DMA_FROM_DEVICE;
590		chan = host->dma_rx_channel;
591	} else {
592		dir = DMA_TO_DEVICE;
593		chan = host->dma_tx_channel;
594	}
595
596
597	/* if config for dma */
598	if (chan) {
599		if (err)
600			dmaengine_terminate_all(chan);
601		if (data->host_cookie)
602			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
603				     data->sg_len, dir);
604		mrq->data->host_cookie = 0;
605	}
606}
607
608#else
609/* Blank functions if the DMA engine is not available */
610static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
611{
612}
613static inline void mmci_dma_setup(struct mmci_host *host)
614{
615}
616
617static inline void mmci_dma_release(struct mmci_host *host)
618{
619}
620
621static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
622{
623}
624
625static inline void mmci_dma_data_error(struct mmci_host *host)
626{
627}
628
629static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
630{
631	return -ENOSYS;
632}
633
634#define mmci_pre_request NULL
635#define mmci_post_request NULL
636
637#endif
638
639static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
640{
641	struct variant_data *variant = host->variant;
642	unsigned int datactrl, timeout, irqmask;
643	unsigned long long clks;
644	void __iomem *base;
645	int blksz_bits;
646
647	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
648		data->blksz, data->blocks, data->flags);
649
650	host->data = data;
651	host->size = data->blksz * data->blocks;
652	data->bytes_xfered = 0;
653
654	clks = (unsigned long long)data->timeout_ns * host->cclk;
655	do_div(clks, 1000000000UL);
656
657	timeout = data->timeout_clks + (unsigned int)clks;
658
659	base = host->base;
660	writel(timeout, base + MMCIDATATIMER);
661	writel(host->size, base + MMCIDATALENGTH);
662
663	blksz_bits = ffs(data->blksz) - 1;
664	BUG_ON(1 << blksz_bits != data->blksz);
665
666	if (variant->blksz_datactrl16)
667		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
668	else
669		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
670
671	if (data->flags & MMC_DATA_READ)
672		datactrl |= MCI_DPSM_DIRECTION;
673
674	/* The ST Micro variants has a special bit to enable SDIO */
675	if (variant->sdio && host->mmc->card)
676		if (mmc_card_sdio(host->mmc->card)) {
677			/*
678			 * The ST Micro variants has a special bit
679			 * to enable SDIO.
680			 */
681			u32 clk;
682
683			datactrl |= MCI_ST_DPSM_SDIOEN;
684
685			/*
686			 * The ST Micro variant for SDIO small write transfers
687			 * needs to have clock H/W flow control disabled,
688			 * otherwise the transfer will not start. The threshold
689			 * depends on the rate of MCLK.
690			 */
691			if (data->flags & MMC_DATA_WRITE &&
692			    (host->size < 8 ||
693			     (host->size <= 8 && host->mclk > 50000000)))
694				clk = host->clk_reg & ~variant->clkreg_enable;
695			else
696				clk = host->clk_reg | variant->clkreg_enable;
697
698			mmci_write_clkreg(host, clk);
699		}
700
701	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
702		datactrl |= MCI_ST_DPSM_DDRMODE;
703
704	/*
705	 * Attempt to use DMA operation mode, if this
706	 * should fail, fall back to PIO mode
707	 */
708	if (!mmci_dma_start_data(host, datactrl))
709		return;
710
711	/* IRQ mode, map the SG list for CPU reading/writing */
712	mmci_init_sg(host, data);
713
714	if (data->flags & MMC_DATA_READ) {
715		irqmask = MCI_RXFIFOHALFFULLMASK;
716
717		/*
718		 * If we have less than the fifo 'half-full' threshold to
719		 * transfer, trigger a PIO interrupt as soon as any data
720		 * is available.
721		 */
722		if (host->size < variant->fifohalfsize)
723			irqmask |= MCI_RXDATAAVLBLMASK;
724	} else {
725		/*
726		 * We don't actually need to include "FIFO empty" here
727		 * since its implicit in "FIFO half empty".
728		 */
729		irqmask = MCI_TXFIFOHALFEMPTYMASK;
730	}
731
732	writel(datactrl, base + MMCIDATACTRL);
733	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
734	mmci_set_mask1(host, irqmask);
735}
736
737static void
738mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
739{
740	void __iomem *base = host->base;
741
742	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
743	    cmd->opcode, cmd->arg, cmd->flags);
744
745	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
746		writel(0, base + MMCICOMMAND);
747		udelay(1);
748	}
749
750	c |= cmd->opcode | MCI_CPSM_ENABLE;
751	if (cmd->flags & MMC_RSP_PRESENT) {
752		if (cmd->flags & MMC_RSP_136)
753			c |= MCI_CPSM_LONGRSP;
754		c |= MCI_CPSM_RESPONSE;
755	}
756	if (/*interrupt*/0)
757		c |= MCI_CPSM_INTERRUPT;
758
759	host->cmd = cmd;
760
761	writel(cmd->arg, base + MMCIARGUMENT);
762	writel(c, base + MMCICOMMAND);
763}
764
765static void
766mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
767	      unsigned int status)
768{
769	/* First check for errors */
770	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
771		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
772		u32 remain, success;
773
774		/* Terminate the DMA transfer */
775		if (dma_inprogress(host))
776			mmci_dma_data_error(host);
777
778		/*
779		 * Calculate how far we are into the transfer.  Note that
780		 * the data counter gives the number of bytes transferred
781		 * on the MMC bus, not on the host side.  On reads, this
782		 * can be as much as a FIFO-worth of data ahead.  This
783		 * matters for FIFO overruns only.
784		 */
785		remain = readl(host->base + MMCIDATACNT);
786		success = data->blksz * data->blocks - remain;
787
788		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
789			status, success);
790		if (status & MCI_DATACRCFAIL) {
791			/* Last block was not successful */
792			success -= 1;
793			data->error = -EILSEQ;
794		} else if (status & MCI_DATATIMEOUT) {
795			data->error = -ETIMEDOUT;
796		} else if (status & MCI_STARTBITERR) {
797			data->error = -ECOMM;
798		} else if (status & MCI_TXUNDERRUN) {
799			data->error = -EIO;
800		} else if (status & MCI_RXOVERRUN) {
801			if (success > host->variant->fifosize)
802				success -= host->variant->fifosize;
803			else
804				success = 0;
805			data->error = -EIO;
806		}
807		data->bytes_xfered = round_down(success, data->blksz);
808	}
809
810	if (status & MCI_DATABLOCKEND)
811		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
812
813	if (status & MCI_DATAEND || data->error) {
814		if (dma_inprogress(host))
815			mmci_dma_unmap(host, data);
816		mmci_stop_data(host);
817
818		if (!data->error)
819			/* The error clause is handled above, success! */
820			data->bytes_xfered = data->blksz * data->blocks;
821
822		if (!data->stop) {
823			mmci_request_end(host, data->mrq);
824		} else {
825			mmci_start_command(host, data->stop, 0);
826		}
827	}
828}
829
830static void
831mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
832	     unsigned int status)
833{
834	void __iomem *base = host->base;
835
836	host->cmd = NULL;
837
838	if (status & MCI_CMDTIMEOUT) {
839		cmd->error = -ETIMEDOUT;
840	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
841		cmd->error = -EILSEQ;
842	} else {
843		cmd->resp[0] = readl(base + MMCIRESPONSE0);
844		cmd->resp[1] = readl(base + MMCIRESPONSE1);
845		cmd->resp[2] = readl(base + MMCIRESPONSE2);
846		cmd->resp[3] = readl(base + MMCIRESPONSE3);
847	}
848
849	if (!cmd->data || cmd->error) {
850		if (host->data) {
851			/* Terminate the DMA transfer */
852			if (dma_inprogress(host))
853				mmci_dma_data_error(host);
854			mmci_stop_data(host);
855		}
856		mmci_request_end(host, cmd->mrq);
857	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
858		mmci_start_data(host, cmd->data);
859	}
860}
861
862static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
863{
864	void __iomem *base = host->base;
865	char *ptr = buffer;
866	u32 status;
867	int host_remain = host->size;
868
869	do {
870		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
871
872		if (count > remain)
873			count = remain;
874
875		if (count <= 0)
876			break;
877
878		/*
879		 * SDIO especially may want to send something that is
880		 * not divisible by 4 (as opposed to card sectors
881		 * etc). Therefore make sure to always read the last bytes
882		 * while only doing full 32-bit reads towards the FIFO.
883		 */
884		if (unlikely(count & 0x3)) {
885			if (count < 4) {
886				unsigned char buf[4];
887				ioread32_rep(base + MMCIFIFO, buf, 1);
888				memcpy(ptr, buf, count);
889			} else {
890				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
891				count &= ~0x3;
892			}
893		} else {
894			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
895		}
896
897		ptr += count;
898		remain -= count;
899		host_remain -= count;
900
901		if (remain == 0)
902			break;
903
904		status = readl(base + MMCISTATUS);
905	} while (status & MCI_RXDATAAVLBL);
906
907	return ptr - buffer;
908}
909
910static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
911{
912	struct variant_data *variant = host->variant;
913	void __iomem *base = host->base;
914	char *ptr = buffer;
915
916	do {
917		unsigned int count, maxcnt;
918
919		maxcnt = status & MCI_TXFIFOEMPTY ?
920			 variant->fifosize : variant->fifohalfsize;
921		count = min(remain, maxcnt);
922
923		/*
924		 * SDIO especially may want to send something that is
925		 * not divisible by 4 (as opposed to card sectors
926		 * etc), and the FIFO only accept full 32-bit writes.
927		 * So compensate by adding +3 on the count, a single
928		 * byte become a 32bit write, 7 bytes will be two
929		 * 32bit writes etc.
930		 */
931		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
932
933		ptr += count;
934		remain -= count;
935
936		if (remain == 0)
937			break;
938
939		status = readl(base + MMCISTATUS);
940	} while (status & MCI_TXFIFOHALFEMPTY);
941
942	return ptr - buffer;
943}
944
945/*
946 * PIO data transfer IRQ handler.
947 */
948static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
949{
950	struct mmci_host *host = dev_id;
951	struct sg_mapping_iter *sg_miter = &host->sg_miter;
952	struct variant_data *variant = host->variant;
953	void __iomem *base = host->base;
954	unsigned long flags;
955	u32 status;
956
957	status = readl(base + MMCISTATUS);
958
959	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
960
961	local_irq_save(flags);
962
963	do {
964		unsigned int remain, len;
965		char *buffer;
966
967		/*
968		 * For write, we only need to test the half-empty flag
969		 * here - if the FIFO is completely empty, then by
970		 * definition it is more than half empty.
971		 *
972		 * For read, check for data available.
973		 */
974		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
975			break;
976
977		if (!sg_miter_next(sg_miter))
978			break;
979
980		buffer = sg_miter->addr;
981		remain = sg_miter->length;
982
983		len = 0;
984		if (status & MCI_RXACTIVE)
985			len = mmci_pio_read(host, buffer, remain);
986		if (status & MCI_TXACTIVE)
987			len = mmci_pio_write(host, buffer, remain, status);
988
989		sg_miter->consumed = len;
990
991		host->size -= len;
992		remain -= len;
993
994		if (remain)
995			break;
996
997		status = readl(base + MMCISTATUS);
998	} while (1);
999
1000	sg_miter_stop(sg_miter);
1001
1002	local_irq_restore(flags);
1003
1004	/*
1005	 * If we have less than the fifo 'half-full' threshold to transfer,
1006	 * trigger a PIO interrupt as soon as any data is available.
1007	 */
1008	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1009		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1010
1011	/*
1012	 * If we run out of data, disable the data IRQs; this
1013	 * prevents a race where the FIFO becomes empty before
1014	 * the chip itself has disabled the data path, and
1015	 * stops us racing with our data end IRQ.
1016	 */
1017	if (host->size == 0) {
1018		mmci_set_mask1(host, 0);
1019		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1020	}
1021
1022	return IRQ_HANDLED;
1023}
1024
1025/*
1026 * Handle completion of command and data transfers.
1027 */
1028static irqreturn_t mmci_irq(int irq, void *dev_id)
1029{
1030	struct mmci_host *host = dev_id;
1031	u32 status;
1032	int ret = 0;
1033
1034	spin_lock(&host->lock);
1035
1036	do {
1037		struct mmc_command *cmd;
1038		struct mmc_data *data;
1039
1040		status = readl(host->base + MMCISTATUS);
1041
1042		if (host->singleirq) {
1043			if (status & readl(host->base + MMCIMASK1))
1044				mmci_pio_irq(irq, dev_id);
1045
1046			status &= ~MCI_IRQ1MASK;
1047		}
1048
1049		status &= readl(host->base + MMCIMASK0);
1050		writel(status, host->base + MMCICLEAR);
1051
1052		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1053
1054		data = host->data;
1055		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1056			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1057			      MCI_DATABLOCKEND) && data)
1058			mmci_data_irq(host, data, status);
1059
1060		cmd = host->cmd;
1061		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1062			mmci_cmd_irq(host, cmd, status);
1063
1064		ret = 1;
1065	} while (status);
1066
1067	spin_unlock(&host->lock);
1068
1069	return IRQ_RETVAL(ret);
1070}
1071
1072static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1073{
1074	struct mmci_host *host = mmc_priv(mmc);
1075	unsigned long flags;
1076
1077	WARN_ON(host->mrq != NULL);
1078
1079	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1080		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1081			mrq->data->blksz);
1082		mrq->cmd->error = -EINVAL;
1083		mmc_request_done(mmc, mrq);
1084		return;
1085	}
1086
1087	pm_runtime_get_sync(mmc_dev(mmc));
1088
1089	spin_lock_irqsave(&host->lock, flags);
1090
1091	host->mrq = mrq;
1092
1093	if (mrq->data)
1094		mmci_get_next_data(host, mrq->data);
1095
1096	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1097		mmci_start_data(host, mrq->data);
1098
1099	mmci_start_command(host, mrq->cmd, 0);
1100
1101	spin_unlock_irqrestore(&host->lock, flags);
1102}
1103
1104static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1105{
1106	struct mmci_host *host = mmc_priv(mmc);
1107	struct variant_data *variant = host->variant;
1108	u32 pwr = 0;
1109	unsigned long flags;
1110
1111	pm_runtime_get_sync(mmc_dev(mmc));
1112
1113	if (host->plat->ios_handler &&
1114		host->plat->ios_handler(mmc_dev(mmc), ios))
1115			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1116
1117	switch (ios->power_mode) {
1118	case MMC_POWER_OFF:
1119		if (!IS_ERR(mmc->supply.vmmc))
1120			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1121		break;
1122	case MMC_POWER_UP:
1123		if (!IS_ERR(mmc->supply.vmmc))
1124			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1125
1126		/*
1127		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1128		 * and instead uses MCI_PWR_ON so apply whatever value is
1129		 * configured in the variant data.
1130		 */
1131		pwr |= variant->pwrreg_powerup;
1132
1133		break;
1134	case MMC_POWER_ON:
1135		pwr |= MCI_PWR_ON;
1136		break;
1137	}
1138
1139	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1140		/*
1141		 * The ST Micro variant has some additional bits
1142		 * indicating signal direction for the signals in
1143		 * the SD/MMC bus and feedback-clock usage.
1144		 */
1145		pwr |= host->plat->sigdir;
1146
1147		if (ios->bus_width == MMC_BUS_WIDTH_4)
1148			pwr &= ~MCI_ST_DATA74DIREN;
1149		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1150			pwr &= (~MCI_ST_DATA74DIREN &
1151				~MCI_ST_DATA31DIREN &
1152				~MCI_ST_DATA2DIREN);
1153	}
1154
1155	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1156		if (host->hw_designer != AMBA_VENDOR_ST)
1157			pwr |= MCI_ROD;
1158		else {
1159			/*
1160			 * The ST Micro variant use the ROD bit for something
1161			 * else and only has OD (Open Drain).
1162			 */
1163			pwr |= MCI_OD;
1164		}
1165	}
1166
1167	/*
1168	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1169	 * gating the clock, the MCI_PWR_ON bit is cleared.
1170	 */
1171	if (!ios->clock && variant->pwrreg_clkgate)
1172		pwr &= ~MCI_PWR_ON;
1173
1174	spin_lock_irqsave(&host->lock, flags);
1175
1176	mmci_set_clkreg(host, ios->clock);
1177	mmci_write_pwrreg(host, pwr);
1178
1179	spin_unlock_irqrestore(&host->lock, flags);
1180
1181	pm_runtime_mark_last_busy(mmc_dev(mmc));
1182	pm_runtime_put_autosuspend(mmc_dev(mmc));
1183}
1184
1185static int mmci_get_ro(struct mmc_host *mmc)
1186{
1187	struct mmci_host *host = mmc_priv(mmc);
1188
1189	if (host->gpio_wp == -ENOSYS)
1190		return -ENOSYS;
1191
1192	return gpio_get_value_cansleep(host->gpio_wp);
1193}
1194
1195static int mmci_get_cd(struct mmc_host *mmc)
1196{
1197	struct mmci_host *host = mmc_priv(mmc);
1198	struct mmci_platform_data *plat = host->plat;
1199	unsigned int status;
1200
1201	if (host->gpio_cd == -ENOSYS) {
1202		if (!plat->status)
1203			return 1; /* Assume always present */
1204
1205		status = plat->status(mmc_dev(host->mmc));
1206	} else
1207		status = !!gpio_get_value_cansleep(host->gpio_cd)
1208			^ plat->cd_invert;
1209
1210	/*
1211	 * Use positive logic throughout - status is zero for no card,
1212	 * non-zero for card inserted.
1213	 */
1214	return status;
1215}
1216
1217static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1218{
1219	struct mmci_host *host = dev_id;
1220
1221	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1222
1223	return IRQ_HANDLED;
1224}
1225
1226static const struct mmc_host_ops mmci_ops = {
1227	.request	= mmci_request,
1228	.pre_req	= mmci_pre_request,
1229	.post_req	= mmci_post_request,
1230	.set_ios	= mmci_set_ios,
1231	.get_ro		= mmci_get_ro,
1232	.get_cd		= mmci_get_cd,
1233};
1234
1235#ifdef CONFIG_OF
1236static void mmci_dt_populate_generic_pdata(struct device_node *np,
1237					struct mmci_platform_data *pdata)
1238{
1239	int bus_width = 0;
1240
1241	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1242	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1243
1244	if (of_get_property(np, "cd-inverted", NULL))
1245		pdata->cd_invert = true;
1246	else
1247		pdata->cd_invert = false;
1248
1249	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1250	if (!pdata->f_max)
1251		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1252
1253	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1254		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1255	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1256		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1257
1258	of_property_read_u32(np, "bus-width", &bus_width);
1259	switch (bus_width) {
1260	case 0 :
1261		/* No bus-width supplied. */
1262		break;
1263	case 4 :
1264		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1265		break;
1266	case 8 :
1267		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1268		break;
1269	default :
1270		pr_warn("%s: Unsupported bus width\n", np->full_name);
1271	}
1272}
1273#else
1274static void mmci_dt_populate_generic_pdata(struct device_node *np,
1275					struct mmci_platform_data *pdata)
1276{
1277	return;
1278}
1279#endif
1280
1281static int mmci_probe(struct amba_device *dev,
1282	const struct amba_id *id)
1283{
1284	struct mmci_platform_data *plat = dev->dev.platform_data;
1285	struct device_node *np = dev->dev.of_node;
1286	struct variant_data *variant = id->data;
1287	struct mmci_host *host;
1288	struct mmc_host *mmc;
1289	int ret;
1290
1291	/* Must have platform data or Device Tree. */
1292	if (!plat && !np) {
1293		dev_err(&dev->dev, "No plat data or DT found\n");
1294		return -EINVAL;
1295	}
1296
1297	if (!plat) {
1298		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1299		if (!plat)
1300			return -ENOMEM;
1301	}
1302
1303	if (np)
1304		mmci_dt_populate_generic_pdata(np, plat);
1305
1306	ret = amba_request_regions(dev, DRIVER_NAME);
1307	if (ret)
1308		goto out;
1309
1310	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1311	if (!mmc) {
1312		ret = -ENOMEM;
1313		goto rel_regions;
1314	}
1315
1316	host = mmc_priv(mmc);
1317	host->mmc = mmc;
1318
1319	host->gpio_wp = -ENOSYS;
1320	host->gpio_cd = -ENOSYS;
1321	host->gpio_cd_irq = -1;
1322
1323	host->hw_designer = amba_manf(dev);
1324	host->hw_revision = amba_rev(dev);
1325	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1326	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1327
1328	host->clk = clk_get(&dev->dev, NULL);
1329	if (IS_ERR(host->clk)) {
1330		ret = PTR_ERR(host->clk);
1331		host->clk = NULL;
1332		goto host_free;
1333	}
1334
1335	ret = clk_prepare_enable(host->clk);
1336	if (ret)
1337		goto clk_free;
1338
1339	host->plat = plat;
1340	host->variant = variant;
1341	host->mclk = clk_get_rate(host->clk);
1342	/*
1343	 * According to the spec, mclk is max 100 MHz,
1344	 * so we try to adjust the clock down to this,
1345	 * (if possible).
1346	 */
1347	if (host->mclk > 100000000) {
1348		ret = clk_set_rate(host->clk, 100000000);
1349		if (ret < 0)
1350			goto clk_disable;
1351		host->mclk = clk_get_rate(host->clk);
1352		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1353			host->mclk);
1354	}
1355	host->phybase = dev->res.start;
1356	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1357	if (!host->base) {
1358		ret = -ENOMEM;
1359		goto clk_disable;
1360	}
1361
1362	mmc->ops = &mmci_ops;
1363	/*
1364	 * The ARM and ST versions of the block have slightly different
1365	 * clock divider equations which means that the minimum divider
1366	 * differs too.
1367	 */
1368	if (variant->st_clkdiv)
1369		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1370	else
1371		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1372	/*
1373	 * If the platform data supplies a maximum operating
1374	 * frequency, this takes precedence. Else, we fall back
1375	 * to using the module parameter, which has a (low)
1376	 * default value in case it is not specified. Either
1377	 * value must not exceed the clock rate into the block,
1378	 * of course.
1379	 */
1380	if (plat->f_max)
1381		mmc->f_max = min(host->mclk, plat->f_max);
1382	else
1383		mmc->f_max = min(host->mclk, fmax);
1384	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1385
1386	host->pinctrl = devm_pinctrl_get(&dev->dev);
1387	if (IS_ERR(host->pinctrl)) {
1388		ret = PTR_ERR(host->pinctrl);
1389		goto clk_disable;
1390	}
1391
1392	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1393			PINCTRL_STATE_DEFAULT);
1394
1395	/* enable pins to be muxed in and configured */
1396	if (!IS_ERR(host->pins_default)) {
1397		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1398		if (ret)
1399			dev_warn(&dev->dev, "could not set default pins\n");
1400	} else
1401		dev_warn(&dev->dev, "could not get default pinstate\n");
1402
1403	/* Get regulators and the supported OCR mask */
1404	mmc_regulator_get_supply(mmc);
1405	if (!mmc->ocr_avail)
1406		mmc->ocr_avail = plat->ocr_mask;
1407	else if (plat->ocr_mask)
1408		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1409
1410	mmc->caps = plat->capabilities;
1411	mmc->caps2 = plat->capabilities2;
1412
1413	/* We support these PM capabilities. */
1414	mmc->pm_caps = MMC_PM_KEEP_POWER;
1415
1416	/*
1417	 * We can do SGIO
1418	 */
1419	mmc->max_segs = NR_SG;
1420
1421	/*
1422	 * Since only a certain number of bits are valid in the data length
1423	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1424	 * single request.
1425	 */
1426	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1427
1428	/*
1429	 * Set the maximum segment size.  Since we aren't doing DMA
1430	 * (yet) we are only limited by the data length register.
1431	 */
1432	mmc->max_seg_size = mmc->max_req_size;
1433
1434	/*
1435	 * Block size can be up to 2048 bytes, but must be a power of two.
1436	 */
1437	mmc->max_blk_size = 1 << 11;
1438
1439	/*
1440	 * Limit the number of blocks transferred so that we don't overflow
1441	 * the maximum request size.
1442	 */
1443	mmc->max_blk_count = mmc->max_req_size >> 11;
1444
1445	spin_lock_init(&host->lock);
1446
1447	writel(0, host->base + MMCIMASK0);
1448	writel(0, host->base + MMCIMASK1);
1449	writel(0xfff, host->base + MMCICLEAR);
1450
1451	if (plat->gpio_cd == -EPROBE_DEFER) {
1452		ret = -EPROBE_DEFER;
1453		goto err_gpio_cd;
1454	}
1455	if (gpio_is_valid(plat->gpio_cd)) {
1456		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1457		if (ret == 0)
1458			ret = gpio_direction_input(plat->gpio_cd);
1459		if (ret == 0)
1460			host->gpio_cd = plat->gpio_cd;
1461		else if (ret != -ENOSYS)
1462			goto err_gpio_cd;
1463
1464		/*
1465		 * A gpio pin that will detect cards when inserted and removed
1466		 * will most likely want to trigger on the edges if it is
1467		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1468		 * for the inverted case) so we request triggers on both
1469		 * edges.
1470		 */
1471		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1472				mmci_cd_irq,
1473				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1474				DRIVER_NAME " (cd)", host);
1475		if (ret >= 0)
1476			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1477	}
1478	if (plat->gpio_wp == -EPROBE_DEFER) {
1479		ret = -EPROBE_DEFER;
1480		goto err_gpio_wp;
1481	}
1482	if (gpio_is_valid(plat->gpio_wp)) {
1483		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1484		if (ret == 0)
1485			ret = gpio_direction_input(plat->gpio_wp);
1486		if (ret == 0)
1487			host->gpio_wp = plat->gpio_wp;
1488		else if (ret != -ENOSYS)
1489			goto err_gpio_wp;
1490	}
1491
1492	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1493	    && host->gpio_cd_irq < 0)
1494		mmc->caps |= MMC_CAP_NEEDS_POLL;
1495
1496	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1497	if (ret)
1498		goto unmap;
1499
1500	if (!dev->irq[1])
1501		host->singleirq = true;
1502	else {
1503		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1504				  DRIVER_NAME " (pio)", host);
1505		if (ret)
1506			goto irq0_free;
1507	}
1508
1509	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1510
1511	amba_set_drvdata(dev, mmc);
1512
1513	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1514		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1515		 amba_rev(dev), (unsigned long long)dev->res.start,
1516		 dev->irq[0], dev->irq[1]);
1517
1518	mmci_dma_setup(host);
1519
1520	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1521	pm_runtime_use_autosuspend(&dev->dev);
1522	pm_runtime_put(&dev->dev);
1523
1524	mmc_add_host(mmc);
1525
1526	return 0;
1527
1528 irq0_free:
1529	free_irq(dev->irq[0], host);
1530 unmap:
1531	if (host->gpio_wp != -ENOSYS)
1532		gpio_free(host->gpio_wp);
1533 err_gpio_wp:
1534	if (host->gpio_cd_irq >= 0)
1535		free_irq(host->gpio_cd_irq, host);
1536	if (host->gpio_cd != -ENOSYS)
1537		gpio_free(host->gpio_cd);
1538 err_gpio_cd:
1539	iounmap(host->base);
1540 clk_disable:
1541	clk_disable_unprepare(host->clk);
1542 clk_free:
1543	clk_put(host->clk);
1544 host_free:
1545	mmc_free_host(mmc);
1546 rel_regions:
1547	amba_release_regions(dev);
1548 out:
1549	return ret;
1550}
1551
1552static int mmci_remove(struct amba_device *dev)
1553{
1554	struct mmc_host *mmc = amba_get_drvdata(dev);
1555
1556	amba_set_drvdata(dev, NULL);
1557
1558	if (mmc) {
1559		struct mmci_host *host = mmc_priv(mmc);
1560
1561		/*
1562		 * Undo pm_runtime_put() in probe.  We use the _sync
1563		 * version here so that we can access the primecell.
1564		 */
1565		pm_runtime_get_sync(&dev->dev);
1566
1567		mmc_remove_host(mmc);
1568
1569		writel(0, host->base + MMCIMASK0);
1570		writel(0, host->base + MMCIMASK1);
1571
1572		writel(0, host->base + MMCICOMMAND);
1573		writel(0, host->base + MMCIDATACTRL);
1574
1575		mmci_dma_release(host);
1576		free_irq(dev->irq[0], host);
1577		if (!host->singleirq)
1578			free_irq(dev->irq[1], host);
1579
1580		if (host->gpio_wp != -ENOSYS)
1581			gpio_free(host->gpio_wp);
1582		if (host->gpio_cd_irq >= 0)
1583			free_irq(host->gpio_cd_irq, host);
1584		if (host->gpio_cd != -ENOSYS)
1585			gpio_free(host->gpio_cd);
1586
1587		iounmap(host->base);
1588		clk_disable_unprepare(host->clk);
1589		clk_put(host->clk);
1590
1591		mmc_free_host(mmc);
1592
1593		amba_release_regions(dev);
1594	}
1595
1596	return 0;
1597}
1598
1599#ifdef CONFIG_SUSPEND
1600static int mmci_suspend(struct device *dev)
1601{
1602	struct amba_device *adev = to_amba_device(dev);
1603	struct mmc_host *mmc = amba_get_drvdata(adev);
1604	int ret = 0;
1605
1606	if (mmc) {
1607		struct mmci_host *host = mmc_priv(mmc);
1608
1609		ret = mmc_suspend_host(mmc);
1610		if (ret == 0) {
1611			pm_runtime_get_sync(dev);
1612			writel(0, host->base + MMCIMASK0);
1613		}
1614	}
1615
1616	return ret;
1617}
1618
1619static int mmci_resume(struct device *dev)
1620{
1621	struct amba_device *adev = to_amba_device(dev);
1622	struct mmc_host *mmc = amba_get_drvdata(adev);
1623	int ret = 0;
1624
1625	if (mmc) {
1626		struct mmci_host *host = mmc_priv(mmc);
1627
1628		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1629		pm_runtime_put(dev);
1630
1631		ret = mmc_resume_host(mmc);
1632	}
1633
1634	return ret;
1635}
1636#endif
1637
1638#ifdef CONFIG_PM_RUNTIME
1639static int mmci_runtime_suspend(struct device *dev)
1640{
1641	struct amba_device *adev = to_amba_device(dev);
1642	struct mmc_host *mmc = amba_get_drvdata(adev);
1643
1644	if (mmc) {
1645		struct mmci_host *host = mmc_priv(mmc);
1646		clk_disable_unprepare(host->clk);
1647	}
1648
1649	return 0;
1650}
1651
1652static int mmci_runtime_resume(struct device *dev)
1653{
1654	struct amba_device *adev = to_amba_device(dev);
1655	struct mmc_host *mmc = amba_get_drvdata(adev);
1656
1657	if (mmc) {
1658		struct mmci_host *host = mmc_priv(mmc);
1659		clk_prepare_enable(host->clk);
1660	}
1661
1662	return 0;
1663}
1664#endif
1665
1666static const struct dev_pm_ops mmci_dev_pm_ops = {
1667	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1668	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1669};
1670
1671static struct amba_id mmci_ids[] = {
1672	{
1673		.id	= 0x00041180,
1674		.mask	= 0xff0fffff,
1675		.data	= &variant_arm,
1676	},
1677	{
1678		.id	= 0x01041180,
1679		.mask	= 0xff0fffff,
1680		.data	= &variant_arm_extended_fifo,
1681	},
1682	{
1683		.id	= 0x02041180,
1684		.mask	= 0xff0fffff,
1685		.data	= &variant_arm_extended_fifo_hwfc,
1686	},
1687	{
1688		.id	= 0x00041181,
1689		.mask	= 0x000fffff,
1690		.data	= &variant_arm,
1691	},
1692	/* ST Micro variants */
1693	{
1694		.id     = 0x00180180,
1695		.mask   = 0x00ffffff,
1696		.data	= &variant_u300,
1697	},
1698	{
1699		.id     = 0x10180180,
1700		.mask   = 0xf0ffffff,
1701		.data	= &variant_nomadik,
1702	},
1703	{
1704		.id     = 0x00280180,
1705		.mask   = 0x00ffffff,
1706		.data	= &variant_u300,
1707	},
1708	{
1709		.id     = 0x00480180,
1710		.mask   = 0xf0ffffff,
1711		.data	= &variant_ux500,
1712	},
1713	{
1714		.id     = 0x10480180,
1715		.mask   = 0xf0ffffff,
1716		.data	= &variant_ux500v2,
1717	},
1718	{ 0, 0 },
1719};
1720
1721MODULE_DEVICE_TABLE(amba, mmci_ids);
1722
1723static struct amba_driver mmci_driver = {
1724	.drv		= {
1725		.name	= DRIVER_NAME,
1726		.pm	= &mmci_dev_pm_ops,
1727	},
1728	.probe		= mmci_probe,
1729	.remove		= mmci_remove,
1730	.id_table	= mmci_ids,
1731};
1732
1733module_amba_driver(mmci_driver);
1734
1735module_param(fmax, uint, 0444);
1736
1737MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1738MODULE_LICENSE("GPL");
1739