mmci.c revision 3b6e3c73851a9a4b0e6ed9d378206341dd65e8a5
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32#include <linux/pm_runtime.h>
33
34#include <asm/div64.h>
35#include <asm/io.h>
36#include <asm/sizes.h>
37
38#include "mmci.h"
39
40#define DRIVER_NAME "mmci-pl18x"
41
42static unsigned int fmax = 515633;
43
44/**
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 *	      is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 *		  is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 */
57struct variant_data {
58	unsigned int		clkreg;
59	unsigned int		clkreg_enable;
60	unsigned int		datalength_bits;
61	unsigned int		fifosize;
62	unsigned int		fifohalfsize;
63	bool			sdio;
64	bool			st_clkdiv;
65	bool			blksz_datactrl16;
66};
67
68static struct variant_data variant_arm = {
69	.fifosize		= 16 * 4,
70	.fifohalfsize		= 8 * 4,
71	.datalength_bits	= 16,
72};
73
74static struct variant_data variant_arm_extended_fifo = {
75	.fifosize		= 128 * 4,
76	.fifohalfsize		= 64 * 4,
77	.datalength_bits	= 16,
78};
79
80static struct variant_data variant_u300 = {
81	.fifosize		= 16 * 4,
82	.fifohalfsize		= 8 * 4,
83	.clkreg_enable		= MCI_ST_U300_HWFCEN,
84	.datalength_bits	= 16,
85	.sdio			= true,
86};
87
88static struct variant_data variant_ux500 = {
89	.fifosize		= 30 * 4,
90	.fifohalfsize		= 8 * 4,
91	.clkreg			= MCI_CLK_ENABLE,
92	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
93	.datalength_bits	= 24,
94	.sdio			= true,
95	.st_clkdiv		= true,
96};
97
98static struct variant_data variant_ux500v2 = {
99	.fifosize		= 30 * 4,
100	.fifohalfsize		= 8 * 4,
101	.clkreg			= MCI_CLK_ENABLE,
102	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
103	.datalength_bits	= 24,
104	.sdio			= true,
105	.st_clkdiv		= true,
106	.blksz_datactrl16	= true,
107};
108
109/*
110 * This must be called with host->lock held
111 */
112static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113{
114	struct variant_data *variant = host->variant;
115	u32 clk = variant->clkreg;
116
117	if (desired) {
118		if (desired >= host->mclk) {
119			clk = MCI_CLK_BYPASS;
120			if (variant->st_clkdiv)
121				clk |= MCI_ST_UX500_NEG_EDGE;
122			host->cclk = host->mclk;
123		} else if (variant->st_clkdiv) {
124			/*
125			 * DB8500 TRM says f = mclk / (clkdiv + 2)
126			 * => clkdiv = (mclk / f) - 2
127			 * Round the divider up so we don't exceed the max
128			 * frequency
129			 */
130			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
131			if (clk >= 256)
132				clk = 255;
133			host->cclk = host->mclk / (clk + 2);
134		} else {
135			/*
136			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137			 * => clkdiv = mclk / (2 * f) - 1
138			 */
139			clk = host->mclk / (2 * desired) - 1;
140			if (clk >= 256)
141				clk = 255;
142			host->cclk = host->mclk / (2 * (clk + 1));
143		}
144
145		clk |= variant->clkreg_enable;
146		clk |= MCI_CLK_ENABLE;
147		/* This hasn't proven to be worthwhile */
148		/* clk |= MCI_CLK_PWRSAVE; */
149	}
150
151	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
152		clk |= MCI_4BIT_BUS;
153	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
154		clk |= MCI_ST_8BIT_BUS;
155
156	writel(clk, host->base + MMCICLOCK);
157}
158
159static void
160mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161{
162	writel(0, host->base + MMCICOMMAND);
163
164	BUG_ON(host->data);
165
166	host->mrq = NULL;
167	host->cmd = NULL;
168
169	/*
170	 * Need to drop the host lock here; mmc_request_done may call
171	 * back into the driver...
172	 */
173	spin_unlock(&host->lock);
174	pm_runtime_put(mmc_dev(host->mmc));
175	mmc_request_done(host->mmc, mrq);
176	spin_lock(&host->lock);
177}
178
179static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
180{
181	void __iomem *base = host->base;
182
183	if (host->singleirq) {
184		unsigned int mask0 = readl(base + MMCIMASK0);
185
186		mask0 &= ~MCI_IRQ1MASK;
187		mask0 |= mask;
188
189		writel(mask0, base + MMCIMASK0);
190	}
191
192	writel(mask, base + MMCIMASK1);
193}
194
195static void mmci_stop_data(struct mmci_host *host)
196{
197	writel(0, host->base + MMCIDATACTRL);
198	mmci_set_mask1(host, 0);
199	host->data = NULL;
200}
201
202static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
203{
204	unsigned int flags = SG_MITER_ATOMIC;
205
206	if (data->flags & MMC_DATA_READ)
207		flags |= SG_MITER_TO_SG;
208	else
209		flags |= SG_MITER_FROM_SG;
210
211	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
212}
213
214/*
215 * All the DMA operation mode stuff goes inside this ifdef.
216 * This assumes that you have a generic DMA device interface,
217 * no custom DMA interfaces are supported.
218 */
219#ifdef CONFIG_DMA_ENGINE
220static void __devinit mmci_dma_setup(struct mmci_host *host)
221{
222	struct mmci_platform_data *plat = host->plat;
223	const char *rxname, *txname;
224	dma_cap_mask_t mask;
225
226	if (!plat || !plat->dma_filter) {
227		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
228		return;
229	}
230
231	/* initialize pre request cookie */
232	host->next_data.cookie = 1;
233
234	/* Try to acquire a generic DMA engine slave channel */
235	dma_cap_zero(mask);
236	dma_cap_set(DMA_SLAVE, mask);
237
238	/*
239	 * If only an RX channel is specified, the driver will
240	 * attempt to use it bidirectionally, however if it is
241	 * is specified but cannot be located, DMA will be disabled.
242	 */
243	if (plat->dma_rx_param) {
244		host->dma_rx_channel = dma_request_channel(mask,
245							   plat->dma_filter,
246							   plat->dma_rx_param);
247		/* E.g if no DMA hardware is present */
248		if (!host->dma_rx_channel)
249			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
250	}
251
252	if (plat->dma_tx_param) {
253		host->dma_tx_channel = dma_request_channel(mask,
254							   plat->dma_filter,
255							   plat->dma_tx_param);
256		if (!host->dma_tx_channel)
257			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
258	} else {
259		host->dma_tx_channel = host->dma_rx_channel;
260	}
261
262	if (host->dma_rx_channel)
263		rxname = dma_chan_name(host->dma_rx_channel);
264	else
265		rxname = "none";
266
267	if (host->dma_tx_channel)
268		txname = dma_chan_name(host->dma_tx_channel);
269	else
270		txname = "none";
271
272	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
273		 rxname, txname);
274
275	/*
276	 * Limit the maximum segment size in any SG entry according to
277	 * the parameters of the DMA engine device.
278	 */
279	if (host->dma_tx_channel) {
280		struct device *dev = host->dma_tx_channel->device->dev;
281		unsigned int max_seg_size = dma_get_max_seg_size(dev);
282
283		if (max_seg_size < host->mmc->max_seg_size)
284			host->mmc->max_seg_size = max_seg_size;
285	}
286	if (host->dma_rx_channel) {
287		struct device *dev = host->dma_rx_channel->device->dev;
288		unsigned int max_seg_size = dma_get_max_seg_size(dev);
289
290		if (max_seg_size < host->mmc->max_seg_size)
291			host->mmc->max_seg_size = max_seg_size;
292	}
293}
294
295/*
296 * This is used in __devinit or __devexit so inline it
297 * so it can be discarded.
298 */
299static inline void mmci_dma_release(struct mmci_host *host)
300{
301	struct mmci_platform_data *plat = host->plat;
302
303	if (host->dma_rx_channel)
304		dma_release_channel(host->dma_rx_channel);
305	if (host->dma_tx_channel && plat->dma_tx_param)
306		dma_release_channel(host->dma_tx_channel);
307	host->dma_rx_channel = host->dma_tx_channel = NULL;
308}
309
310static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
311{
312	struct dma_chan *chan = host->dma_current;
313	enum dma_data_direction dir;
314	u32 status;
315	int i;
316
317	/* Wait up to 1ms for the DMA to complete */
318	for (i = 0; ; i++) {
319		status = readl(host->base + MMCISTATUS);
320		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
321			break;
322		udelay(10);
323	}
324
325	/*
326	 * Check to see whether we still have some data left in the FIFO -
327	 * this catches DMA controllers which are unable to monitor the
328	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
330	 */
331	if (status & MCI_RXDATAAVLBLMASK) {
332		dmaengine_terminate_all(chan);
333		if (!data->error)
334			data->error = -EIO;
335	}
336
337	if (data->flags & MMC_DATA_WRITE) {
338		dir = DMA_TO_DEVICE;
339	} else {
340		dir = DMA_FROM_DEVICE;
341	}
342
343	if (!data->host_cookie)
344		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
345
346	/*
347	 * Use of DMA with scatter-gather is impossible.
348	 * Give up with DMA and switch back to PIO mode.
349	 */
350	if (status & MCI_RXDATAAVLBLMASK) {
351		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
352		mmci_dma_release(host);
353	}
354}
355
356static void mmci_dma_data_error(struct mmci_host *host)
357{
358	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
359	dmaengine_terminate_all(host->dma_current);
360}
361
362static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
363			      struct mmci_host_next *next)
364{
365	struct variant_data *variant = host->variant;
366	struct dma_slave_config conf = {
367		.src_addr = host->phybase + MMCIFIFO,
368		.dst_addr = host->phybase + MMCIFIFO,
369		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
370		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
372		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
373	};
374	struct dma_chan *chan;
375	struct dma_device *device;
376	struct dma_async_tx_descriptor *desc;
377	int nr_sg;
378
379	/* Check if next job is already prepared */
380	if (data->host_cookie && !next &&
381	    host->dma_current && host->dma_desc_current)
382		return 0;
383
384	if (!next) {
385		host->dma_current = NULL;
386		host->dma_desc_current = NULL;
387	}
388
389	if (data->flags & MMC_DATA_READ) {
390		conf.direction = DMA_FROM_DEVICE;
391		chan = host->dma_rx_channel;
392	} else {
393		conf.direction = DMA_TO_DEVICE;
394		chan = host->dma_tx_channel;
395	}
396
397	/* If there's no DMA channel, fall back to PIO */
398	if (!chan)
399		return -EINVAL;
400
401	/* If less than or equal to the fifo size, don't bother with DMA */
402	if (data->blksz * data->blocks <= variant->fifosize)
403		return -EINVAL;
404
405	device = chan->device;
406	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
407	if (nr_sg == 0)
408		return -EINVAL;
409
410	dmaengine_slave_config(chan, &conf);
411	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
412					    conf.direction, DMA_CTRL_ACK);
413	if (!desc)
414		goto unmap_exit;
415
416	if (next) {
417		next->dma_chan = chan;
418		next->dma_desc = desc;
419	} else {
420		host->dma_current = chan;
421		host->dma_desc_current = desc;
422	}
423
424	return 0;
425
426 unmap_exit:
427	if (!next)
428		dmaengine_terminate_all(chan);
429	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
430	return -ENOMEM;
431}
432
433static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
434{
435	int ret;
436	struct mmc_data *data = host->data;
437
438	ret = mmci_dma_prep_data(host, host->data, NULL);
439	if (ret)
440		return ret;
441
442	/* Okay, go for it. */
443	dev_vdbg(mmc_dev(host->mmc),
444		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
445		 data->sg_len, data->blksz, data->blocks, data->flags);
446	dmaengine_submit(host->dma_desc_current);
447	dma_async_issue_pending(host->dma_current);
448
449	datactrl |= MCI_DPSM_DMAENABLE;
450
451	/* Trigger the DMA transfer */
452	writel(datactrl, host->base + MMCIDATACTRL);
453
454	/*
455	 * Let the MMCI say when the data is ended and it's time
456	 * to fire next DMA request. When that happens, MMCI will
457	 * call mmci_data_end()
458	 */
459	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
460	       host->base + MMCIMASK0);
461	return 0;
462}
463
464static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
465{
466	struct mmci_host_next *next = &host->next_data;
467
468	if (data->host_cookie && data->host_cookie != next->cookie) {
469		pr_warning("[%s] invalid cookie: data->host_cookie %d"
470		       " host->next_data.cookie %d\n",
471		       __func__, data->host_cookie, host->next_data.cookie);
472		data->host_cookie = 0;
473	}
474
475	if (!data->host_cookie)
476		return;
477
478	host->dma_desc_current = next->dma_desc;
479	host->dma_current = next->dma_chan;
480
481	next->dma_desc = NULL;
482	next->dma_chan = NULL;
483}
484
485static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
486			     bool is_first_req)
487{
488	struct mmci_host *host = mmc_priv(mmc);
489	struct mmc_data *data = mrq->data;
490	struct mmci_host_next *nd = &host->next_data;
491
492	if (!data)
493		return;
494
495	if (data->host_cookie) {
496		data->host_cookie = 0;
497		return;
498	}
499
500	/* if config for dma */
501	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
502	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
503		if (mmci_dma_prep_data(host, data, nd))
504			data->host_cookie = 0;
505		else
506			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
507	}
508}
509
510static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
511			      int err)
512{
513	struct mmci_host *host = mmc_priv(mmc);
514	struct mmc_data *data = mrq->data;
515	struct dma_chan *chan;
516	enum dma_data_direction dir;
517
518	if (!data)
519		return;
520
521	if (data->flags & MMC_DATA_READ) {
522		dir = DMA_FROM_DEVICE;
523		chan = host->dma_rx_channel;
524	} else {
525		dir = DMA_TO_DEVICE;
526		chan = host->dma_tx_channel;
527	}
528
529
530	/* if config for dma */
531	if (chan) {
532		if (err)
533			dmaengine_terminate_all(chan);
534		if (data->host_cookie)
535			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
536				     data->sg_len, dir);
537		mrq->data->host_cookie = 0;
538	}
539}
540
541#else
542/* Blank functions if the DMA engine is not available */
543static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
544{
545}
546static inline void mmci_dma_setup(struct mmci_host *host)
547{
548}
549
550static inline void mmci_dma_release(struct mmci_host *host)
551{
552}
553
554static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
555{
556}
557
558static inline void mmci_dma_data_error(struct mmci_host *host)
559{
560}
561
562static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
563{
564	return -ENOSYS;
565}
566
567#define mmci_pre_request NULL
568#define mmci_post_request NULL
569
570#endif
571
572static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
573{
574	struct variant_data *variant = host->variant;
575	unsigned int datactrl, timeout, irqmask;
576	unsigned long long clks;
577	void __iomem *base;
578	int blksz_bits;
579
580	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
581		data->blksz, data->blocks, data->flags);
582
583	host->data = data;
584	host->size = data->blksz * data->blocks;
585	data->bytes_xfered = 0;
586
587	clks = (unsigned long long)data->timeout_ns * host->cclk;
588	do_div(clks, 1000000000UL);
589
590	timeout = data->timeout_clks + (unsigned int)clks;
591
592	base = host->base;
593	writel(timeout, base + MMCIDATATIMER);
594	writel(host->size, base + MMCIDATALENGTH);
595
596	blksz_bits = ffs(data->blksz) - 1;
597	BUG_ON(1 << blksz_bits != data->blksz);
598
599	if (variant->blksz_datactrl16)
600		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
601	else
602		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
603
604	if (data->flags & MMC_DATA_READ)
605		datactrl |= MCI_DPSM_DIRECTION;
606
607	/*
608	 * Attempt to use DMA operation mode, if this
609	 * should fail, fall back to PIO mode
610	 */
611	if (!mmci_dma_start_data(host, datactrl))
612		return;
613
614	/* IRQ mode, map the SG list for CPU reading/writing */
615	mmci_init_sg(host, data);
616
617	if (data->flags & MMC_DATA_READ) {
618		irqmask = MCI_RXFIFOHALFFULLMASK;
619
620		/*
621		 * If we have less than the fifo 'half-full' threshold to
622		 * transfer, trigger a PIO interrupt as soon as any data
623		 * is available.
624		 */
625		if (host->size < variant->fifohalfsize)
626			irqmask |= MCI_RXDATAAVLBLMASK;
627	} else {
628		/*
629		 * We don't actually need to include "FIFO empty" here
630		 * since its implicit in "FIFO half empty".
631		 */
632		irqmask = MCI_TXFIFOHALFEMPTYMASK;
633	}
634
635	/* The ST Micro variants has a special bit to enable SDIO */
636	if (variant->sdio && host->mmc->card)
637		if (mmc_card_sdio(host->mmc->card))
638			datactrl |= MCI_ST_DPSM_SDIOEN;
639
640	writel(datactrl, base + MMCIDATACTRL);
641	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
642	mmci_set_mask1(host, irqmask);
643}
644
645static void
646mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
647{
648	void __iomem *base = host->base;
649
650	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
651	    cmd->opcode, cmd->arg, cmd->flags);
652
653	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
654		writel(0, base + MMCICOMMAND);
655		udelay(1);
656	}
657
658	c |= cmd->opcode | MCI_CPSM_ENABLE;
659	if (cmd->flags & MMC_RSP_PRESENT) {
660		if (cmd->flags & MMC_RSP_136)
661			c |= MCI_CPSM_LONGRSP;
662		c |= MCI_CPSM_RESPONSE;
663	}
664	if (/*interrupt*/0)
665		c |= MCI_CPSM_INTERRUPT;
666
667	host->cmd = cmd;
668
669	writel(cmd->arg, base + MMCIARGUMENT);
670	writel(c, base + MMCICOMMAND);
671}
672
673static void
674mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
675	      unsigned int status)
676{
677	/* First check for errors */
678	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
679		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
680		u32 remain, success;
681
682		/* Terminate the DMA transfer */
683		if (dma_inprogress(host))
684			mmci_dma_data_error(host);
685
686		/*
687		 * Calculate how far we are into the transfer.  Note that
688		 * the data counter gives the number of bytes transferred
689		 * on the MMC bus, not on the host side.  On reads, this
690		 * can be as much as a FIFO-worth of data ahead.  This
691		 * matters for FIFO overruns only.
692		 */
693		remain = readl(host->base + MMCIDATACNT);
694		success = data->blksz * data->blocks - remain;
695
696		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
697			status, success);
698		if (status & MCI_DATACRCFAIL) {
699			/* Last block was not successful */
700			success -= 1;
701			data->error = -EILSEQ;
702		} else if (status & MCI_DATATIMEOUT) {
703			data->error = -ETIMEDOUT;
704		} else if (status & MCI_STARTBITERR) {
705			data->error = -ECOMM;
706		} else if (status & MCI_TXUNDERRUN) {
707			data->error = -EIO;
708		} else if (status & MCI_RXOVERRUN) {
709			if (success > host->variant->fifosize)
710				success -= host->variant->fifosize;
711			else
712				success = 0;
713			data->error = -EIO;
714		}
715		data->bytes_xfered = round_down(success, data->blksz);
716	}
717
718	if (status & MCI_DATABLOCKEND)
719		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
720
721	if (status & MCI_DATAEND || data->error) {
722		if (dma_inprogress(host))
723			mmci_dma_unmap(host, data);
724		mmci_stop_data(host);
725
726		if (!data->error)
727			/* The error clause is handled above, success! */
728			data->bytes_xfered = data->blksz * data->blocks;
729
730		if (!data->stop) {
731			mmci_request_end(host, data->mrq);
732		} else {
733			mmci_start_command(host, data->stop, 0);
734		}
735	}
736}
737
738static void
739mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
740	     unsigned int status)
741{
742	void __iomem *base = host->base;
743
744	host->cmd = NULL;
745
746	if (status & MCI_CMDTIMEOUT) {
747		cmd->error = -ETIMEDOUT;
748	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
749		cmd->error = -EILSEQ;
750	} else {
751		cmd->resp[0] = readl(base + MMCIRESPONSE0);
752		cmd->resp[1] = readl(base + MMCIRESPONSE1);
753		cmd->resp[2] = readl(base + MMCIRESPONSE2);
754		cmd->resp[3] = readl(base + MMCIRESPONSE3);
755	}
756
757	if (!cmd->data || cmd->error) {
758		if (host->data) {
759			/* Terminate the DMA transfer */
760			if (dma_inprogress(host))
761				mmci_dma_data_error(host);
762			mmci_stop_data(host);
763		}
764		mmci_request_end(host, cmd->mrq);
765	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
766		mmci_start_data(host, cmd->data);
767	}
768}
769
770static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
771{
772	void __iomem *base = host->base;
773	char *ptr = buffer;
774	u32 status;
775	int host_remain = host->size;
776
777	do {
778		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
779
780		if (count > remain)
781			count = remain;
782
783		if (count <= 0)
784			break;
785
786		readsl(base + MMCIFIFO, ptr, count >> 2);
787
788		ptr += count;
789		remain -= count;
790		host_remain -= count;
791
792		if (remain == 0)
793			break;
794
795		status = readl(base + MMCISTATUS);
796	} while (status & MCI_RXDATAAVLBL);
797
798	return ptr - buffer;
799}
800
801static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
802{
803	struct variant_data *variant = host->variant;
804	void __iomem *base = host->base;
805	char *ptr = buffer;
806
807	do {
808		unsigned int count, maxcnt;
809
810		maxcnt = status & MCI_TXFIFOEMPTY ?
811			 variant->fifosize : variant->fifohalfsize;
812		count = min(remain, maxcnt);
813
814		/*
815		 * The ST Micro variant for SDIO transfer sizes
816		 * less then 8 bytes should have clock H/W flow
817		 * control disabled.
818		 */
819		if (variant->sdio &&
820		    mmc_card_sdio(host->mmc->card)) {
821			if (count < 8)
822				writel(readl(host->base + MMCICLOCK) &
823					~variant->clkreg_enable,
824					host->base + MMCICLOCK);
825			else
826				writel(readl(host->base + MMCICLOCK) |
827					variant->clkreg_enable,
828					host->base + MMCICLOCK);
829		}
830
831		/*
832		 * SDIO especially may want to send something that is
833		 * not divisible by 4 (as opposed to card sectors
834		 * etc), and the FIFO only accept full 32-bit writes.
835		 * So compensate by adding +3 on the count, a single
836		 * byte become a 32bit write, 7 bytes will be two
837		 * 32bit writes etc.
838		 */
839		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
840
841		ptr += count;
842		remain -= count;
843
844		if (remain == 0)
845			break;
846
847		status = readl(base + MMCISTATUS);
848	} while (status & MCI_TXFIFOHALFEMPTY);
849
850	return ptr - buffer;
851}
852
853/*
854 * PIO data transfer IRQ handler.
855 */
856static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
857{
858	struct mmci_host *host = dev_id;
859	struct sg_mapping_iter *sg_miter = &host->sg_miter;
860	struct variant_data *variant = host->variant;
861	void __iomem *base = host->base;
862	unsigned long flags;
863	u32 status;
864
865	status = readl(base + MMCISTATUS);
866
867	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
868
869	local_irq_save(flags);
870
871	do {
872		unsigned int remain, len;
873		char *buffer;
874
875		/*
876		 * For write, we only need to test the half-empty flag
877		 * here - if the FIFO is completely empty, then by
878		 * definition it is more than half empty.
879		 *
880		 * For read, check for data available.
881		 */
882		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
883			break;
884
885		if (!sg_miter_next(sg_miter))
886			break;
887
888		buffer = sg_miter->addr;
889		remain = sg_miter->length;
890
891		len = 0;
892		if (status & MCI_RXACTIVE)
893			len = mmci_pio_read(host, buffer, remain);
894		if (status & MCI_TXACTIVE)
895			len = mmci_pio_write(host, buffer, remain, status);
896
897		sg_miter->consumed = len;
898
899		host->size -= len;
900		remain -= len;
901
902		if (remain)
903			break;
904
905		status = readl(base + MMCISTATUS);
906	} while (1);
907
908	sg_miter_stop(sg_miter);
909
910	local_irq_restore(flags);
911
912	/*
913	 * If we have less than the fifo 'half-full' threshold to transfer,
914	 * trigger a PIO interrupt as soon as any data is available.
915	 */
916	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
917		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
918
919	/*
920	 * If we run out of data, disable the data IRQs; this
921	 * prevents a race where the FIFO becomes empty before
922	 * the chip itself has disabled the data path, and
923	 * stops us racing with our data end IRQ.
924	 */
925	if (host->size == 0) {
926		mmci_set_mask1(host, 0);
927		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
928	}
929
930	return IRQ_HANDLED;
931}
932
933/*
934 * Handle completion of command and data transfers.
935 */
936static irqreturn_t mmci_irq(int irq, void *dev_id)
937{
938	struct mmci_host *host = dev_id;
939	u32 status;
940	int ret = 0;
941
942	spin_lock(&host->lock);
943
944	do {
945		struct mmc_command *cmd;
946		struct mmc_data *data;
947
948		status = readl(host->base + MMCISTATUS);
949
950		if (host->singleirq) {
951			if (status & readl(host->base + MMCIMASK1))
952				mmci_pio_irq(irq, dev_id);
953
954			status &= ~MCI_IRQ1MASK;
955		}
956
957		status &= readl(host->base + MMCIMASK0);
958		writel(status, host->base + MMCICLEAR);
959
960		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
961
962		data = host->data;
963		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
964			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
965			      MCI_DATABLOCKEND) && data)
966			mmci_data_irq(host, data, status);
967
968		cmd = host->cmd;
969		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
970			mmci_cmd_irq(host, cmd, status);
971
972		ret = 1;
973	} while (status);
974
975	spin_unlock(&host->lock);
976
977	return IRQ_RETVAL(ret);
978}
979
980static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
981{
982	struct mmci_host *host = mmc_priv(mmc);
983	unsigned long flags;
984
985	WARN_ON(host->mrq != NULL);
986
987	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
988		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
989			mrq->data->blksz);
990		mrq->cmd->error = -EINVAL;
991		mmc_request_done(mmc, mrq);
992		return;
993	}
994
995	pm_runtime_get_sync(mmc_dev(mmc));
996
997	spin_lock_irqsave(&host->lock, flags);
998
999	host->mrq = mrq;
1000
1001	if (mrq->data)
1002		mmci_get_next_data(host, mrq->data);
1003
1004	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1005		mmci_start_data(host, mrq->data);
1006
1007	mmci_start_command(host, mrq->cmd, 0);
1008
1009	spin_unlock_irqrestore(&host->lock, flags);
1010}
1011
1012static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1013{
1014	struct mmci_host *host = mmc_priv(mmc);
1015	u32 pwr = 0;
1016	unsigned long flags;
1017	int ret;
1018
1019	switch (ios->power_mode) {
1020	case MMC_POWER_OFF:
1021		if (host->vcc)
1022			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1023		break;
1024	case MMC_POWER_UP:
1025		if (host->vcc) {
1026			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1027			if (ret) {
1028				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1029				/*
1030				 * The .set_ios() function in the mmc_host_ops
1031				 * struct return void, and failing to set the
1032				 * power should be rare so we print an error
1033				 * and return here.
1034				 */
1035				return;
1036			}
1037		}
1038		if (host->plat->vdd_handler)
1039			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1040						       ios->power_mode);
1041		/* The ST version does not have this, fall through to POWER_ON */
1042		if (host->hw_designer != AMBA_VENDOR_ST) {
1043			pwr |= MCI_PWR_UP;
1044			break;
1045		}
1046	case MMC_POWER_ON:
1047		pwr |= MCI_PWR_ON;
1048		break;
1049	}
1050
1051	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1052		if (host->hw_designer != AMBA_VENDOR_ST)
1053			pwr |= MCI_ROD;
1054		else {
1055			/*
1056			 * The ST Micro variant use the ROD bit for something
1057			 * else and only has OD (Open Drain).
1058			 */
1059			pwr |= MCI_OD;
1060		}
1061	}
1062
1063	spin_lock_irqsave(&host->lock, flags);
1064
1065	mmci_set_clkreg(host, ios->clock);
1066
1067	if (host->pwr != pwr) {
1068		host->pwr = pwr;
1069		writel(pwr, host->base + MMCIPOWER);
1070	}
1071
1072	spin_unlock_irqrestore(&host->lock, flags);
1073}
1074
1075static int mmci_get_ro(struct mmc_host *mmc)
1076{
1077	struct mmci_host *host = mmc_priv(mmc);
1078
1079	if (host->gpio_wp == -ENOSYS)
1080		return -ENOSYS;
1081
1082	return gpio_get_value_cansleep(host->gpio_wp);
1083}
1084
1085static int mmci_get_cd(struct mmc_host *mmc)
1086{
1087	struct mmci_host *host = mmc_priv(mmc);
1088	struct mmci_platform_data *plat = host->plat;
1089	unsigned int status;
1090
1091	if (host->gpio_cd == -ENOSYS) {
1092		if (!plat->status)
1093			return 1; /* Assume always present */
1094
1095		status = plat->status(mmc_dev(host->mmc));
1096	} else
1097		status = !!gpio_get_value_cansleep(host->gpio_cd)
1098			^ plat->cd_invert;
1099
1100	/*
1101	 * Use positive logic throughout - status is zero for no card,
1102	 * non-zero for card inserted.
1103	 */
1104	return status;
1105}
1106
1107static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1108{
1109	struct mmci_host *host = dev_id;
1110
1111	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1112
1113	return IRQ_HANDLED;
1114}
1115
1116static const struct mmc_host_ops mmci_ops = {
1117	.request	= mmci_request,
1118	.pre_req	= mmci_pre_request,
1119	.post_req	= mmci_post_request,
1120	.set_ios	= mmci_set_ios,
1121	.get_ro		= mmci_get_ro,
1122	.get_cd		= mmci_get_cd,
1123};
1124
1125static int __devinit mmci_probe(struct amba_device *dev,
1126	const struct amba_id *id)
1127{
1128	struct mmci_platform_data *plat = dev->dev.platform_data;
1129	struct variant_data *variant = id->data;
1130	struct mmci_host *host;
1131	struct mmc_host *mmc;
1132	int ret;
1133
1134	/* must have platform data */
1135	if (!plat) {
1136		ret = -EINVAL;
1137		goto out;
1138	}
1139
1140	ret = amba_request_regions(dev, DRIVER_NAME);
1141	if (ret)
1142		goto out;
1143
1144	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1145	if (!mmc) {
1146		ret = -ENOMEM;
1147		goto rel_regions;
1148	}
1149
1150	host = mmc_priv(mmc);
1151	host->mmc = mmc;
1152
1153	host->gpio_wp = -ENOSYS;
1154	host->gpio_cd = -ENOSYS;
1155	host->gpio_cd_irq = -1;
1156
1157	host->hw_designer = amba_manf(dev);
1158	host->hw_revision = amba_rev(dev);
1159	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1160	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1161
1162	host->clk = clk_get(&dev->dev, NULL);
1163	if (IS_ERR(host->clk)) {
1164		ret = PTR_ERR(host->clk);
1165		host->clk = NULL;
1166		goto host_free;
1167	}
1168
1169	ret = clk_prepare(host->clk);
1170	if (ret)
1171		goto clk_free;
1172
1173	ret = clk_enable(host->clk);
1174	if (ret)
1175		goto clk_unprep;
1176
1177	host->plat = plat;
1178	host->variant = variant;
1179	host->mclk = clk_get_rate(host->clk);
1180	/*
1181	 * According to the spec, mclk is max 100 MHz,
1182	 * so we try to adjust the clock down to this,
1183	 * (if possible).
1184	 */
1185	if (host->mclk > 100000000) {
1186		ret = clk_set_rate(host->clk, 100000000);
1187		if (ret < 0)
1188			goto clk_disable;
1189		host->mclk = clk_get_rate(host->clk);
1190		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1191			host->mclk);
1192	}
1193	host->phybase = dev->res.start;
1194	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1195	if (!host->base) {
1196		ret = -ENOMEM;
1197		goto clk_disable;
1198	}
1199
1200	mmc->ops = &mmci_ops;
1201	/*
1202	 * The ARM and ST versions of the block have slightly different
1203	 * clock divider equations which means that the minimum divider
1204	 * differs too.
1205	 */
1206	if (variant->st_clkdiv)
1207		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1208	else
1209		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1210	/*
1211	 * If the platform data supplies a maximum operating
1212	 * frequency, this takes precedence. Else, we fall back
1213	 * to using the module parameter, which has a (low)
1214	 * default value in case it is not specified. Either
1215	 * value must not exceed the clock rate into the block,
1216	 * of course.
1217	 */
1218	if (plat->f_max)
1219		mmc->f_max = min(host->mclk, plat->f_max);
1220	else
1221		mmc->f_max = min(host->mclk, fmax);
1222	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1223
1224#ifdef CONFIG_REGULATOR
1225	/* If we're using the regulator framework, try to fetch a regulator */
1226	host->vcc = regulator_get(&dev->dev, "vmmc");
1227	if (IS_ERR(host->vcc))
1228		host->vcc = NULL;
1229	else {
1230		int mask = mmc_regulator_get_ocrmask(host->vcc);
1231
1232		if (mask < 0)
1233			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1234				mask);
1235		else {
1236			host->mmc->ocr_avail = (u32) mask;
1237			if (plat->ocr_mask)
1238				dev_warn(&dev->dev,
1239				 "Provided ocr_mask/setpower will not be used "
1240				 "(using regulator instead)\n");
1241		}
1242	}
1243#endif
1244	/* Fall back to platform data if no regulator is found */
1245	if (host->vcc == NULL)
1246		mmc->ocr_avail = plat->ocr_mask;
1247	mmc->caps = plat->capabilities;
1248
1249	/*
1250	 * We can do SGIO
1251	 */
1252	mmc->max_segs = NR_SG;
1253
1254	/*
1255	 * Since only a certain number of bits are valid in the data length
1256	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1257	 * single request.
1258	 */
1259	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1260
1261	/*
1262	 * Set the maximum segment size.  Since we aren't doing DMA
1263	 * (yet) we are only limited by the data length register.
1264	 */
1265	mmc->max_seg_size = mmc->max_req_size;
1266
1267	/*
1268	 * Block size can be up to 2048 bytes, but must be a power of two.
1269	 */
1270	mmc->max_blk_size = 2048;
1271
1272	/*
1273	 * No limit on the number of blocks transferred.
1274	 */
1275	mmc->max_blk_count = mmc->max_req_size;
1276
1277	spin_lock_init(&host->lock);
1278
1279	writel(0, host->base + MMCIMASK0);
1280	writel(0, host->base + MMCIMASK1);
1281	writel(0xfff, host->base + MMCICLEAR);
1282
1283	if (gpio_is_valid(plat->gpio_cd)) {
1284		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1285		if (ret == 0)
1286			ret = gpio_direction_input(plat->gpio_cd);
1287		if (ret == 0)
1288			host->gpio_cd = plat->gpio_cd;
1289		else if (ret != -ENOSYS)
1290			goto err_gpio_cd;
1291
1292		/*
1293		 * A gpio pin that will detect cards when inserted and removed
1294		 * will most likely want to trigger on the edges if it is
1295		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1296		 * for the inverted case) so we request triggers on both
1297		 * edges.
1298		 */
1299		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1300				mmci_cd_irq,
1301				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1302				DRIVER_NAME " (cd)", host);
1303		if (ret >= 0)
1304			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1305	}
1306	if (gpio_is_valid(plat->gpio_wp)) {
1307		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1308		if (ret == 0)
1309			ret = gpio_direction_input(plat->gpio_wp);
1310		if (ret == 0)
1311			host->gpio_wp = plat->gpio_wp;
1312		else if (ret != -ENOSYS)
1313			goto err_gpio_wp;
1314	}
1315
1316	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1317	    && host->gpio_cd_irq < 0)
1318		mmc->caps |= MMC_CAP_NEEDS_POLL;
1319
1320	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1321	if (ret)
1322		goto unmap;
1323
1324	if (dev->irq[1] == NO_IRQ)
1325		host->singleirq = true;
1326	else {
1327		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1328				  DRIVER_NAME " (pio)", host);
1329		if (ret)
1330			goto irq0_free;
1331	}
1332
1333	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1334
1335	amba_set_drvdata(dev, mmc);
1336
1337	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1338		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1339		 amba_rev(dev), (unsigned long long)dev->res.start,
1340		 dev->irq[0], dev->irq[1]);
1341
1342	mmci_dma_setup(host);
1343
1344	pm_runtime_put(&dev->dev);
1345
1346	mmc_add_host(mmc);
1347
1348	return 0;
1349
1350 irq0_free:
1351	free_irq(dev->irq[0], host);
1352 unmap:
1353	if (host->gpio_wp != -ENOSYS)
1354		gpio_free(host->gpio_wp);
1355 err_gpio_wp:
1356	if (host->gpio_cd_irq >= 0)
1357		free_irq(host->gpio_cd_irq, host);
1358	if (host->gpio_cd != -ENOSYS)
1359		gpio_free(host->gpio_cd);
1360 err_gpio_cd:
1361	iounmap(host->base);
1362 clk_disable:
1363	clk_disable(host->clk);
1364 clk_unprep:
1365	clk_unprepare(host->clk);
1366 clk_free:
1367	clk_put(host->clk);
1368 host_free:
1369	mmc_free_host(mmc);
1370 rel_regions:
1371	amba_release_regions(dev);
1372 out:
1373	return ret;
1374}
1375
1376static int __devexit mmci_remove(struct amba_device *dev)
1377{
1378	struct mmc_host *mmc = amba_get_drvdata(dev);
1379
1380	amba_set_drvdata(dev, NULL);
1381
1382	if (mmc) {
1383		struct mmci_host *host = mmc_priv(mmc);
1384
1385		/*
1386		 * Undo pm_runtime_put() in probe.  We use the _sync
1387		 * version here so that we can access the primecell.
1388		 */
1389		pm_runtime_get_sync(&dev->dev);
1390
1391		mmc_remove_host(mmc);
1392
1393		writel(0, host->base + MMCIMASK0);
1394		writel(0, host->base + MMCIMASK1);
1395
1396		writel(0, host->base + MMCICOMMAND);
1397		writel(0, host->base + MMCIDATACTRL);
1398
1399		mmci_dma_release(host);
1400		free_irq(dev->irq[0], host);
1401		if (!host->singleirq)
1402			free_irq(dev->irq[1], host);
1403
1404		if (host->gpio_wp != -ENOSYS)
1405			gpio_free(host->gpio_wp);
1406		if (host->gpio_cd_irq >= 0)
1407			free_irq(host->gpio_cd_irq, host);
1408		if (host->gpio_cd != -ENOSYS)
1409			gpio_free(host->gpio_cd);
1410
1411		iounmap(host->base);
1412		clk_disable(host->clk);
1413		clk_unprepare(host->clk);
1414		clk_put(host->clk);
1415
1416		if (host->vcc)
1417			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1418		regulator_put(host->vcc);
1419
1420		mmc_free_host(mmc);
1421
1422		amba_release_regions(dev);
1423	}
1424
1425	return 0;
1426}
1427
1428#ifdef CONFIG_PM
1429static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1430{
1431	struct mmc_host *mmc = amba_get_drvdata(dev);
1432	int ret = 0;
1433
1434	if (mmc) {
1435		struct mmci_host *host = mmc_priv(mmc);
1436
1437		ret = mmc_suspend_host(mmc);
1438		if (ret == 0)
1439			writel(0, host->base + MMCIMASK0);
1440	}
1441
1442	return ret;
1443}
1444
1445static int mmci_resume(struct amba_device *dev)
1446{
1447	struct mmc_host *mmc = amba_get_drvdata(dev);
1448	int ret = 0;
1449
1450	if (mmc) {
1451		struct mmci_host *host = mmc_priv(mmc);
1452
1453		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1454
1455		ret = mmc_resume_host(mmc);
1456	}
1457
1458	return ret;
1459}
1460#else
1461#define mmci_suspend	NULL
1462#define mmci_resume	NULL
1463#endif
1464
1465static struct amba_id mmci_ids[] = {
1466	{
1467		.id	= 0x00041180,
1468		.mask	= 0xff0fffff,
1469		.data	= &variant_arm,
1470	},
1471	{
1472		.id	= 0x01041180,
1473		.mask	= 0xff0fffff,
1474		.data	= &variant_arm_extended_fifo,
1475	},
1476	{
1477		.id	= 0x00041181,
1478		.mask	= 0x000fffff,
1479		.data	= &variant_arm,
1480	},
1481	/* ST Micro variants */
1482	{
1483		.id     = 0x00180180,
1484		.mask   = 0x00ffffff,
1485		.data	= &variant_u300,
1486	},
1487	{
1488		.id     = 0x00280180,
1489		.mask   = 0x00ffffff,
1490		.data	= &variant_u300,
1491	},
1492	{
1493		.id     = 0x00480180,
1494		.mask   = 0xf0ffffff,
1495		.data	= &variant_ux500,
1496	},
1497	{
1498		.id     = 0x10480180,
1499		.mask   = 0xf0ffffff,
1500		.data	= &variant_ux500v2,
1501	},
1502	{ 0, 0 },
1503};
1504
1505static struct amba_driver mmci_driver = {
1506	.drv		= {
1507		.name	= DRIVER_NAME,
1508	},
1509	.probe		= mmci_probe,
1510	.remove		= __devexit_p(mmci_remove),
1511	.suspend	= mmci_suspend,
1512	.resume		= mmci_resume,
1513	.id_table	= mmci_ids,
1514};
1515
1516static int __init mmci_init(void)
1517{
1518	return amba_driver_register(&mmci_driver);
1519}
1520
1521static void __exit mmci_exit(void)
1522{
1523	amba_driver_unregister(&mmci_driver);
1524}
1525
1526module_init(mmci_init);
1527module_exit(mmci_exit);
1528module_param(fmax, uint, 0444);
1529
1530MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1531MODULE_LICENSE("GPL");
1532