mmci.c revision 571dce4f105cf2b8e57ec4330da71bd0cb6d38bb
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 *	      is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 *		  is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
66 */
67struct variant_data {
68	unsigned int		clkreg;
69	unsigned int		clkreg_enable;
70	unsigned int		datalength_bits;
71	unsigned int		fifosize;
72	unsigned int		fifohalfsize;
73	bool			sdio;
74	bool			st_clkdiv;
75	bool			blksz_datactrl16;
76	u32			pwrreg_powerup;
77	bool			signal_direction;
78	bool			pwrreg_clkgate;
79	bool			busy_detect;
80	bool			pwrreg_nopower;
81};
82
83static struct variant_data variant_arm = {
84	.fifosize		= 16 * 4,
85	.fifohalfsize		= 8 * 4,
86	.datalength_bits	= 16,
87	.pwrreg_powerup		= MCI_PWR_UP,
88};
89
90static struct variant_data variant_arm_extended_fifo = {
91	.fifosize		= 128 * 4,
92	.fifohalfsize		= 64 * 4,
93	.datalength_bits	= 16,
94	.pwrreg_powerup		= MCI_PWR_UP,
95};
96
97static struct variant_data variant_arm_extended_fifo_hwfc = {
98	.fifosize		= 128 * 4,
99	.fifohalfsize		= 64 * 4,
100	.clkreg_enable		= MCI_ARM_HWFCEN,
101	.datalength_bits	= 16,
102	.pwrreg_powerup		= MCI_PWR_UP,
103};
104
105static struct variant_data variant_u300 = {
106	.fifosize		= 16 * 4,
107	.fifohalfsize		= 8 * 4,
108	.clkreg_enable		= MCI_ST_U300_HWFCEN,
109	.datalength_bits	= 16,
110	.sdio			= true,
111	.pwrreg_powerup		= MCI_PWR_ON,
112	.signal_direction	= true,
113	.pwrreg_clkgate		= true,
114	.pwrreg_nopower		= true,
115};
116
117static struct variant_data variant_nomadik = {
118	.fifosize		= 16 * 4,
119	.fifohalfsize		= 8 * 4,
120	.clkreg			= MCI_CLK_ENABLE,
121	.datalength_bits	= 24,
122	.sdio			= true,
123	.st_clkdiv		= true,
124	.pwrreg_powerup		= MCI_PWR_ON,
125	.signal_direction	= true,
126	.pwrreg_clkgate		= true,
127	.pwrreg_nopower		= true,
128};
129
130static struct variant_data variant_ux500 = {
131	.fifosize		= 30 * 4,
132	.fifohalfsize		= 8 * 4,
133	.clkreg			= MCI_CLK_ENABLE,
134	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
135	.datalength_bits	= 24,
136	.sdio			= true,
137	.st_clkdiv		= true,
138	.pwrreg_powerup		= MCI_PWR_ON,
139	.signal_direction	= true,
140	.pwrreg_clkgate		= true,
141	.busy_detect		= true,
142	.pwrreg_nopower		= true,
143};
144
145static struct variant_data variant_ux500v2 = {
146	.fifosize		= 30 * 4,
147	.fifohalfsize		= 8 * 4,
148	.clkreg			= MCI_CLK_ENABLE,
149	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
150	.datalength_bits	= 24,
151	.sdio			= true,
152	.st_clkdiv		= true,
153	.blksz_datactrl16	= true,
154	.pwrreg_powerup		= MCI_PWR_ON,
155	.signal_direction	= true,
156	.pwrreg_clkgate		= true,
157	.busy_detect		= true,
158	.pwrreg_nopower		= true,
159};
160
161static int mmci_card_busy(struct mmc_host *mmc)
162{
163	struct mmci_host *host = mmc_priv(mmc);
164	unsigned long flags;
165	int busy = 0;
166
167	pm_runtime_get_sync(mmc_dev(mmc));
168
169	spin_lock_irqsave(&host->lock, flags);
170	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
171		busy = 1;
172	spin_unlock_irqrestore(&host->lock, flags);
173
174	pm_runtime_mark_last_busy(mmc_dev(mmc));
175	pm_runtime_put_autosuspend(mmc_dev(mmc));
176
177	return busy;
178}
179
180/*
181 * Validate mmc prerequisites
182 */
183static int mmci_validate_data(struct mmci_host *host,
184			      struct mmc_data *data)
185{
186	if (!data)
187		return 0;
188
189	if (!is_power_of_2(data->blksz)) {
190		dev_err(mmc_dev(host->mmc),
191			"unsupported block size (%d bytes)\n", data->blksz);
192		return -EINVAL;
193	}
194
195	return 0;
196}
197
198static void mmci_reg_delay(struct mmci_host *host)
199{
200	/*
201	 * According to the spec, at least three feedback clock cycles
202	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204	 * Worst delay time during card init is at 100 kHz => 30 us.
205	 * Worst delay time when up and running is at 25 MHz => 120 ns.
206	 */
207	if (host->cclk < 25000000)
208		udelay(30);
209	else
210		ndelay(120);
211}
212
213/*
214 * This must be called with host->lock held
215 */
216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
217{
218	if (host->clk_reg != clk) {
219		host->clk_reg = clk;
220		writel(clk, host->base + MMCICLOCK);
221	}
222}
223
224/*
225 * This must be called with host->lock held
226 */
227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
228{
229	if (host->pwr_reg != pwr) {
230		host->pwr_reg = pwr;
231		writel(pwr, host->base + MMCIPOWER);
232	}
233}
234
235/*
236 * This must be called with host->lock held
237 */
238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
239{
240	/* Keep ST Micro busy mode if enabled */
241	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
242
243	if (host->datactrl_reg != datactrl) {
244		host->datactrl_reg = datactrl;
245		writel(datactrl, host->base + MMCIDATACTRL);
246	}
247}
248
249/*
250 * This must be called with host->lock held
251 */
252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
253{
254	struct variant_data *variant = host->variant;
255	u32 clk = variant->clkreg;
256
257	/* Make sure cclk reflects the current calculated clock */
258	host->cclk = 0;
259
260	if (desired) {
261		if (desired >= host->mclk) {
262			clk = MCI_CLK_BYPASS;
263			if (variant->st_clkdiv)
264				clk |= MCI_ST_UX500_NEG_EDGE;
265			host->cclk = host->mclk;
266		} else if (variant->st_clkdiv) {
267			/*
268			 * DB8500 TRM says f = mclk / (clkdiv + 2)
269			 * => clkdiv = (mclk / f) - 2
270			 * Round the divider up so we don't exceed the max
271			 * frequency
272			 */
273			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
274			if (clk >= 256)
275				clk = 255;
276			host->cclk = host->mclk / (clk + 2);
277		} else {
278			/*
279			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280			 * => clkdiv = mclk / (2 * f) - 1
281			 */
282			clk = host->mclk / (2 * desired) - 1;
283			if (clk >= 256)
284				clk = 255;
285			host->cclk = host->mclk / (2 * (clk + 1));
286		}
287
288		clk |= variant->clkreg_enable;
289		clk |= MCI_CLK_ENABLE;
290		/* This hasn't proven to be worthwhile */
291		/* clk |= MCI_CLK_PWRSAVE; */
292	}
293
294	/* Set actual clock for debug */
295	host->mmc->actual_clock = host->cclk;
296
297	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
298		clk |= MCI_4BIT_BUS;
299	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
300		clk |= MCI_ST_8BIT_BUS;
301
302	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
303		clk |= MCI_ST_UX500_NEG_EDGE;
304
305	mmci_write_clkreg(host, clk);
306}
307
308static void
309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
310{
311	writel(0, host->base + MMCICOMMAND);
312
313	BUG_ON(host->data);
314
315	host->mrq = NULL;
316	host->cmd = NULL;
317
318	mmc_request_done(host->mmc, mrq);
319
320	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
321	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
322}
323
324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
325{
326	void __iomem *base = host->base;
327
328	if (host->singleirq) {
329		unsigned int mask0 = readl(base + MMCIMASK0);
330
331		mask0 &= ~MCI_IRQ1MASK;
332		mask0 |= mask;
333
334		writel(mask0, base + MMCIMASK0);
335	}
336
337	writel(mask, base + MMCIMASK1);
338}
339
340static void mmci_stop_data(struct mmci_host *host)
341{
342	mmci_write_datactrlreg(host, 0);
343	mmci_set_mask1(host, 0);
344	host->data = NULL;
345}
346
347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
348{
349	unsigned int flags = SG_MITER_ATOMIC;
350
351	if (data->flags & MMC_DATA_READ)
352		flags |= SG_MITER_TO_SG;
353	else
354		flags |= SG_MITER_FROM_SG;
355
356	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
357}
358
359/*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364#ifdef CONFIG_DMA_ENGINE
365static void mmci_dma_setup(struct mmci_host *host)
366{
367	struct mmci_platform_data *plat = host->plat;
368	const char *rxname, *txname;
369	dma_cap_mask_t mask;
370
371	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
372	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
373
374	/* initialize pre request cookie */
375	host->next_data.cookie = 1;
376
377	/* Try to acquire a generic DMA engine slave channel */
378	dma_cap_zero(mask);
379	dma_cap_set(DMA_SLAVE, mask);
380
381	if (plat && plat->dma_filter) {
382		if (!host->dma_rx_channel && plat->dma_rx_param) {
383			host->dma_rx_channel = dma_request_channel(mask,
384							   plat->dma_filter,
385							   plat->dma_rx_param);
386			/* E.g if no DMA hardware is present */
387			if (!host->dma_rx_channel)
388				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
389		}
390
391		if (!host->dma_tx_channel && plat->dma_tx_param) {
392			host->dma_tx_channel = dma_request_channel(mask,
393							   plat->dma_filter,
394							   plat->dma_tx_param);
395			if (!host->dma_tx_channel)
396				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
397		}
398	}
399
400	/*
401	 * If only an RX channel is specified, the driver will
402	 * attempt to use it bidirectionally, however if it is
403	 * is specified but cannot be located, DMA will be disabled.
404	 */
405	if (host->dma_rx_channel && !host->dma_tx_channel)
406		host->dma_tx_channel = host->dma_rx_channel;
407
408	if (host->dma_rx_channel)
409		rxname = dma_chan_name(host->dma_rx_channel);
410	else
411		rxname = "none";
412
413	if (host->dma_tx_channel)
414		txname = dma_chan_name(host->dma_tx_channel);
415	else
416		txname = "none";
417
418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419		 rxname, txname);
420
421	/*
422	 * Limit the maximum segment size in any SG entry according to
423	 * the parameters of the DMA engine device.
424	 */
425	if (host->dma_tx_channel) {
426		struct device *dev = host->dma_tx_channel->device->dev;
427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429		if (max_seg_size < host->mmc->max_seg_size)
430			host->mmc->max_seg_size = max_seg_size;
431	}
432	if (host->dma_rx_channel) {
433		struct device *dev = host->dma_rx_channel->device->dev;
434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436		if (max_seg_size < host->mmc->max_seg_size)
437			host->mmc->max_seg_size = max_seg_size;
438	}
439}
440
441/*
442 * This is used in or so inline it
443 * so it can be discarded.
444 */
445static inline void mmci_dma_release(struct mmci_host *host)
446{
447	struct mmci_platform_data *plat = host->plat;
448
449	if (host->dma_rx_channel)
450		dma_release_channel(host->dma_rx_channel);
451	if (host->dma_tx_channel && plat->dma_tx_param)
452		dma_release_channel(host->dma_tx_channel);
453	host->dma_rx_channel = host->dma_tx_channel = NULL;
454}
455
456static void mmci_dma_data_error(struct mmci_host *host)
457{
458	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
459	dmaengine_terminate_all(host->dma_current);
460	host->dma_current = NULL;
461	host->dma_desc_current = NULL;
462	host->data->host_cookie = 0;
463}
464
465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
466{
467	struct dma_chan *chan;
468	enum dma_data_direction dir;
469
470	if (data->flags & MMC_DATA_READ) {
471		dir = DMA_FROM_DEVICE;
472		chan = host->dma_rx_channel;
473	} else {
474		dir = DMA_TO_DEVICE;
475		chan = host->dma_tx_channel;
476	}
477
478	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
479}
480
481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
482{
483	u32 status;
484	int i;
485
486	/* Wait up to 1ms for the DMA to complete */
487	for (i = 0; ; i++) {
488		status = readl(host->base + MMCISTATUS);
489		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
490			break;
491		udelay(10);
492	}
493
494	/*
495	 * Check to see whether we still have some data left in the FIFO -
496	 * this catches DMA controllers which are unable to monitor the
497	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
499	 */
500	if (status & MCI_RXDATAAVLBLMASK) {
501		mmci_dma_data_error(host);
502		if (!data->error)
503			data->error = -EIO;
504	}
505
506	if (!data->host_cookie)
507		mmci_dma_unmap(host, data);
508
509	/*
510	 * Use of DMA with scatter-gather is impossible.
511	 * Give up with DMA and switch back to PIO mode.
512	 */
513	if (status & MCI_RXDATAAVLBLMASK) {
514		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
515		mmci_dma_release(host);
516	}
517
518	host->dma_current = NULL;
519	host->dma_desc_current = NULL;
520}
521
522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
524				struct dma_chan **dma_chan,
525				struct dma_async_tx_descriptor **dma_desc)
526{
527	struct variant_data *variant = host->variant;
528	struct dma_slave_config conf = {
529		.src_addr = host->phybase + MMCIFIFO,
530		.dst_addr = host->phybase + MMCIFIFO,
531		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
532		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
533		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
534		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
535		.device_fc = false,
536	};
537	struct dma_chan *chan;
538	struct dma_device *device;
539	struct dma_async_tx_descriptor *desc;
540	enum dma_data_direction buffer_dirn;
541	int nr_sg;
542
543	if (data->flags & MMC_DATA_READ) {
544		conf.direction = DMA_DEV_TO_MEM;
545		buffer_dirn = DMA_FROM_DEVICE;
546		chan = host->dma_rx_channel;
547	} else {
548		conf.direction = DMA_MEM_TO_DEV;
549		buffer_dirn = DMA_TO_DEVICE;
550		chan = host->dma_tx_channel;
551	}
552
553	/* If there's no DMA channel, fall back to PIO */
554	if (!chan)
555		return -EINVAL;
556
557	/* If less than or equal to the fifo size, don't bother with DMA */
558	if (data->blksz * data->blocks <= variant->fifosize)
559		return -EINVAL;
560
561	device = chan->device;
562	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
563	if (nr_sg == 0)
564		return -EINVAL;
565
566	dmaengine_slave_config(chan, &conf);
567	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
568					    conf.direction, DMA_CTRL_ACK);
569	if (!desc)
570		goto unmap_exit;
571
572	*dma_chan = chan;
573	*dma_desc = desc;
574
575	return 0;
576
577 unmap_exit:
578	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
579	return -ENOMEM;
580}
581
582static inline int mmci_dma_prep_data(struct mmci_host *host,
583				     struct mmc_data *data)
584{
585	/* Check if next job is already prepared. */
586	if (host->dma_current && host->dma_desc_current)
587		return 0;
588
589	/* No job were prepared thus do it now. */
590	return __mmci_dma_prep_data(host, data, &host->dma_current,
591				    &host->dma_desc_current);
592}
593
594static inline int mmci_dma_prep_next(struct mmci_host *host,
595				     struct mmc_data *data)
596{
597	struct mmci_host_next *nd = &host->next_data;
598	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
599}
600
601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
602{
603	int ret;
604	struct mmc_data *data = host->data;
605
606	ret = mmci_dma_prep_data(host, host->data);
607	if (ret)
608		return ret;
609
610	/* Okay, go for it. */
611	dev_vdbg(mmc_dev(host->mmc),
612		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613		 data->sg_len, data->blksz, data->blocks, data->flags);
614	dmaengine_submit(host->dma_desc_current);
615	dma_async_issue_pending(host->dma_current);
616
617	datactrl |= MCI_DPSM_DMAENABLE;
618
619	/* Trigger the DMA transfer */
620	mmci_write_datactrlreg(host, datactrl);
621
622	/*
623	 * Let the MMCI say when the data is ended and it's time
624	 * to fire next DMA request. When that happens, MMCI will
625	 * call mmci_data_end()
626	 */
627	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
628	       host->base + MMCIMASK0);
629	return 0;
630}
631
632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
633{
634	struct mmci_host_next *next = &host->next_data;
635
636	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
637	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
638
639	host->dma_desc_current = next->dma_desc;
640	host->dma_current = next->dma_chan;
641	next->dma_desc = NULL;
642	next->dma_chan = NULL;
643}
644
645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
646			     bool is_first_req)
647{
648	struct mmci_host *host = mmc_priv(mmc);
649	struct mmc_data *data = mrq->data;
650	struct mmci_host_next *nd = &host->next_data;
651
652	if (!data)
653		return;
654
655	BUG_ON(data->host_cookie);
656
657	if (mmci_validate_data(host, data))
658		return;
659
660	if (!mmci_dma_prep_next(host, data))
661		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
662}
663
664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
665			      int err)
666{
667	struct mmci_host *host = mmc_priv(mmc);
668	struct mmc_data *data = mrq->data;
669
670	if (!data || !data->host_cookie)
671		return;
672
673	mmci_dma_unmap(host, data);
674
675	if (err) {
676		struct mmci_host_next *next = &host->next_data;
677		struct dma_chan *chan;
678		if (data->flags & MMC_DATA_READ)
679			chan = host->dma_rx_channel;
680		else
681			chan = host->dma_tx_channel;
682		dmaengine_terminate_all(chan);
683
684		next->dma_desc = NULL;
685		next->dma_chan = NULL;
686	}
687}
688
689#else
690/* Blank functions if the DMA engine is not available */
691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
692{
693}
694static inline void mmci_dma_setup(struct mmci_host *host)
695{
696}
697
698static inline void mmci_dma_release(struct mmci_host *host)
699{
700}
701
702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
703{
704}
705
706static inline void mmci_dma_finalize(struct mmci_host *host,
707				     struct mmc_data *data)
708{
709}
710
711static inline void mmci_dma_data_error(struct mmci_host *host)
712{
713}
714
715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
716{
717	return -ENOSYS;
718}
719
720#define mmci_pre_request NULL
721#define mmci_post_request NULL
722
723#endif
724
725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
726{
727	struct variant_data *variant = host->variant;
728	unsigned int datactrl, timeout, irqmask;
729	unsigned long long clks;
730	void __iomem *base;
731	int blksz_bits;
732
733	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
734		data->blksz, data->blocks, data->flags);
735
736	host->data = data;
737	host->size = data->blksz * data->blocks;
738	data->bytes_xfered = 0;
739
740	clks = (unsigned long long)data->timeout_ns * host->cclk;
741	do_div(clks, 1000000000UL);
742
743	timeout = data->timeout_clks + (unsigned int)clks;
744
745	base = host->base;
746	writel(timeout, base + MMCIDATATIMER);
747	writel(host->size, base + MMCIDATALENGTH);
748
749	blksz_bits = ffs(data->blksz) - 1;
750	BUG_ON(1 << blksz_bits != data->blksz);
751
752	if (variant->blksz_datactrl16)
753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
754	else
755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756
757	if (data->flags & MMC_DATA_READ)
758		datactrl |= MCI_DPSM_DIRECTION;
759
760	/* The ST Micro variants has a special bit to enable SDIO */
761	if (variant->sdio && host->mmc->card)
762		if (mmc_card_sdio(host->mmc->card)) {
763			/*
764			 * The ST Micro variants has a special bit
765			 * to enable SDIO.
766			 */
767			u32 clk;
768
769			datactrl |= MCI_ST_DPSM_SDIOEN;
770
771			/*
772			 * The ST Micro variant for SDIO small write transfers
773			 * needs to have clock H/W flow control disabled,
774			 * otherwise the transfer will not start. The threshold
775			 * depends on the rate of MCLK.
776			 */
777			if (data->flags & MMC_DATA_WRITE &&
778			    (host->size < 8 ||
779			     (host->size <= 8 && host->mclk > 50000000)))
780				clk = host->clk_reg & ~variant->clkreg_enable;
781			else
782				clk = host->clk_reg | variant->clkreg_enable;
783
784			mmci_write_clkreg(host, clk);
785		}
786
787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
788		datactrl |= MCI_ST_DPSM_DDRMODE;
789
790	/*
791	 * Attempt to use DMA operation mode, if this
792	 * should fail, fall back to PIO mode
793	 */
794	if (!mmci_dma_start_data(host, datactrl))
795		return;
796
797	/* IRQ mode, map the SG list for CPU reading/writing */
798	mmci_init_sg(host, data);
799
800	if (data->flags & MMC_DATA_READ) {
801		irqmask = MCI_RXFIFOHALFFULLMASK;
802
803		/*
804		 * If we have less than the fifo 'half-full' threshold to
805		 * transfer, trigger a PIO interrupt as soon as any data
806		 * is available.
807		 */
808		if (host->size < variant->fifohalfsize)
809			irqmask |= MCI_RXDATAAVLBLMASK;
810	} else {
811		/*
812		 * We don't actually need to include "FIFO empty" here
813		 * since its implicit in "FIFO half empty".
814		 */
815		irqmask = MCI_TXFIFOHALFEMPTYMASK;
816	}
817
818	mmci_write_datactrlreg(host, datactrl);
819	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
820	mmci_set_mask1(host, irqmask);
821}
822
823static void
824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
825{
826	void __iomem *base = host->base;
827
828	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
829	    cmd->opcode, cmd->arg, cmd->flags);
830
831	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
832		writel(0, base + MMCICOMMAND);
833		udelay(1);
834	}
835
836	c |= cmd->opcode | MCI_CPSM_ENABLE;
837	if (cmd->flags & MMC_RSP_PRESENT) {
838		if (cmd->flags & MMC_RSP_136)
839			c |= MCI_CPSM_LONGRSP;
840		c |= MCI_CPSM_RESPONSE;
841	}
842	if (/*interrupt*/0)
843		c |= MCI_CPSM_INTERRUPT;
844
845	host->cmd = cmd;
846
847	writel(cmd->arg, base + MMCIARGUMENT);
848	writel(c, base + MMCICOMMAND);
849}
850
851static void
852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
853	      unsigned int status)
854{
855	/* First check for errors */
856	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
857		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
858		u32 remain, success;
859
860		/* Terminate the DMA transfer */
861		if (dma_inprogress(host)) {
862			mmci_dma_data_error(host);
863			mmci_dma_unmap(host, data);
864		}
865
866		/*
867		 * Calculate how far we are into the transfer.  Note that
868		 * the data counter gives the number of bytes transferred
869		 * on the MMC bus, not on the host side.  On reads, this
870		 * can be as much as a FIFO-worth of data ahead.  This
871		 * matters for FIFO overruns only.
872		 */
873		remain = readl(host->base + MMCIDATACNT);
874		success = data->blksz * data->blocks - remain;
875
876		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
877			status, success);
878		if (status & MCI_DATACRCFAIL) {
879			/* Last block was not successful */
880			success -= 1;
881			data->error = -EILSEQ;
882		} else if (status & MCI_DATATIMEOUT) {
883			data->error = -ETIMEDOUT;
884		} else if (status & MCI_STARTBITERR) {
885			data->error = -ECOMM;
886		} else if (status & MCI_TXUNDERRUN) {
887			data->error = -EIO;
888		} else if (status & MCI_RXOVERRUN) {
889			if (success > host->variant->fifosize)
890				success -= host->variant->fifosize;
891			else
892				success = 0;
893			data->error = -EIO;
894		}
895		data->bytes_xfered = round_down(success, data->blksz);
896	}
897
898	if (status & MCI_DATABLOCKEND)
899		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
900
901	if (status & MCI_DATAEND || data->error) {
902		if (dma_inprogress(host))
903			mmci_dma_finalize(host, data);
904		mmci_stop_data(host);
905
906		if (!data->error)
907			/* The error clause is handled above, success! */
908			data->bytes_xfered = data->blksz * data->blocks;
909
910		if (!data->stop || host->mrq->sbc) {
911			mmci_request_end(host, data->mrq);
912		} else {
913			mmci_start_command(host, data->stop, 0);
914		}
915	}
916}
917
918static void
919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
920	     unsigned int status)
921{
922	void __iomem *base = host->base;
923	bool sbc = (cmd == host->mrq->sbc);
924	bool busy_resp = host->variant->busy_detect &&
925			(cmd->flags & MMC_RSP_BUSY);
926
927	/* Check if we need to wait for busy completion. */
928	if (host->busy_status && (status & MCI_ST_CARDBUSY))
929		return;
930
931	/* Enable busy completion if needed and supported. */
932	if (!host->busy_status && busy_resp &&
933		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
934		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
935		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
936			base + MMCIMASK0);
937		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
938		return;
939	}
940
941	/* At busy completion, mask the IRQ and complete the request. */
942	if (host->busy_status) {
943		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
944			base + MMCIMASK0);
945		host->busy_status = 0;
946	}
947
948	host->cmd = NULL;
949
950	if (status & MCI_CMDTIMEOUT) {
951		cmd->error = -ETIMEDOUT;
952	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
953		cmd->error = -EILSEQ;
954	} else {
955		cmd->resp[0] = readl(base + MMCIRESPONSE0);
956		cmd->resp[1] = readl(base + MMCIRESPONSE1);
957		cmd->resp[2] = readl(base + MMCIRESPONSE2);
958		cmd->resp[3] = readl(base + MMCIRESPONSE3);
959	}
960
961	if ((!sbc && !cmd->data) || cmd->error) {
962		if (host->data) {
963			/* Terminate the DMA transfer */
964			if (dma_inprogress(host)) {
965				mmci_dma_data_error(host);
966				mmci_dma_unmap(host, host->data);
967			}
968			mmci_stop_data(host);
969		}
970		mmci_request_end(host, host->mrq);
971	} else if (sbc) {
972		mmci_start_command(host, host->mrq->cmd, 0);
973	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
974		mmci_start_data(host, cmd->data);
975	}
976}
977
978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
979{
980	void __iomem *base = host->base;
981	char *ptr = buffer;
982	u32 status;
983	int host_remain = host->size;
984
985	do {
986		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
987
988		if (count > remain)
989			count = remain;
990
991		if (count <= 0)
992			break;
993
994		/*
995		 * SDIO especially may want to send something that is
996		 * not divisible by 4 (as opposed to card sectors
997		 * etc). Therefore make sure to always read the last bytes
998		 * while only doing full 32-bit reads towards the FIFO.
999		 */
1000		if (unlikely(count & 0x3)) {
1001			if (count < 4) {
1002				unsigned char buf[4];
1003				ioread32_rep(base + MMCIFIFO, buf, 1);
1004				memcpy(ptr, buf, count);
1005			} else {
1006				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007				count &= ~0x3;
1008			}
1009		} else {
1010			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011		}
1012
1013		ptr += count;
1014		remain -= count;
1015		host_remain -= count;
1016
1017		if (remain == 0)
1018			break;
1019
1020		status = readl(base + MMCISTATUS);
1021	} while (status & MCI_RXDATAAVLBL);
1022
1023	return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028	struct variant_data *variant = host->variant;
1029	void __iomem *base = host->base;
1030	char *ptr = buffer;
1031
1032	do {
1033		unsigned int count, maxcnt;
1034
1035		maxcnt = status & MCI_TXFIFOEMPTY ?
1036			 variant->fifosize : variant->fifohalfsize;
1037		count = min(remain, maxcnt);
1038
1039		/*
1040		 * SDIO especially may want to send something that is
1041		 * not divisible by 4 (as opposed to card sectors
1042		 * etc), and the FIFO only accept full 32-bit writes.
1043		 * So compensate by adding +3 on the count, a single
1044		 * byte become a 32bit write, 7 bytes will be two
1045		 * 32bit writes etc.
1046		 */
1047		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049		ptr += count;
1050		remain -= count;
1051
1052		if (remain == 0)
1053			break;
1054
1055		status = readl(base + MMCISTATUS);
1056	} while (status & MCI_TXFIFOHALFEMPTY);
1057
1058	return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066	struct mmci_host *host = dev_id;
1067	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068	struct variant_data *variant = host->variant;
1069	void __iomem *base = host->base;
1070	unsigned long flags;
1071	u32 status;
1072
1073	status = readl(base + MMCISTATUS);
1074
1075	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077	local_irq_save(flags);
1078
1079	do {
1080		unsigned int remain, len;
1081		char *buffer;
1082
1083		/*
1084		 * For write, we only need to test the half-empty flag
1085		 * here - if the FIFO is completely empty, then by
1086		 * definition it is more than half empty.
1087		 *
1088		 * For read, check for data available.
1089		 */
1090		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091			break;
1092
1093		if (!sg_miter_next(sg_miter))
1094			break;
1095
1096		buffer = sg_miter->addr;
1097		remain = sg_miter->length;
1098
1099		len = 0;
1100		if (status & MCI_RXACTIVE)
1101			len = mmci_pio_read(host, buffer, remain);
1102		if (status & MCI_TXACTIVE)
1103			len = mmci_pio_write(host, buffer, remain, status);
1104
1105		sg_miter->consumed = len;
1106
1107		host->size -= len;
1108		remain -= len;
1109
1110		if (remain)
1111			break;
1112
1113		status = readl(base + MMCISTATUS);
1114	} while (1);
1115
1116	sg_miter_stop(sg_miter);
1117
1118	local_irq_restore(flags);
1119
1120	/*
1121	 * If we have less than the fifo 'half-full' threshold to transfer,
1122	 * trigger a PIO interrupt as soon as any data is available.
1123	 */
1124	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127	/*
1128	 * If we run out of data, disable the data IRQs; this
1129	 * prevents a race where the FIFO becomes empty before
1130	 * the chip itself has disabled the data path, and
1131	 * stops us racing with our data end IRQ.
1132	 */
1133	if (host->size == 0) {
1134		mmci_set_mask1(host, 0);
1135		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136	}
1137
1138	return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146	struct mmci_host *host = dev_id;
1147	u32 status;
1148	int ret = 0;
1149
1150	spin_lock(&host->lock);
1151
1152	do {
1153		struct mmc_command *cmd;
1154		struct mmc_data *data;
1155
1156		status = readl(host->base + MMCISTATUS);
1157
1158		if (host->singleirq) {
1159			if (status & readl(host->base + MMCIMASK1))
1160				mmci_pio_irq(irq, dev_id);
1161
1162			status &= ~MCI_IRQ1MASK;
1163		}
1164
1165		/*
1166		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167		 * enabled) since the HW seems to be triggering the IRQ on both
1168		 * edges while monitoring DAT0 for busy completion.
1169		 */
1170		status &= readl(host->base + MMCIMASK0);
1171		writel(status, host->base + MMCICLEAR);
1172
1173		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175		cmd = host->cmd;
1176		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178			mmci_cmd_irq(host, cmd, status);
1179
1180		data = host->data;
1181		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183			      MCI_DATABLOCKEND) && data)
1184			mmci_data_irq(host, data, status);
1185
1186		/* Don't poll for busy completion in irq context. */
1187		if (host->busy_status)
1188			status &= ~MCI_ST_CARDBUSY;
1189
1190		ret = 1;
1191	} while (status);
1192
1193	spin_unlock(&host->lock);
1194
1195	return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200	struct mmci_host *host = mmc_priv(mmc);
1201	unsigned long flags;
1202
1203	WARN_ON(host->mrq != NULL);
1204
1205	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206	if (mrq->cmd->error) {
1207		mmc_request_done(mmc, mrq);
1208		return;
1209	}
1210
1211	pm_runtime_get_sync(mmc_dev(mmc));
1212
1213	spin_lock_irqsave(&host->lock, flags);
1214
1215	host->mrq = mrq;
1216
1217	if (mrq->data)
1218		mmci_get_next_data(host, mrq->data);
1219
1220	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221		mmci_start_data(host, mrq->data);
1222
1223	if (mrq->sbc)
1224		mmci_start_command(host, mrq->sbc, 0);
1225	else
1226		mmci_start_command(host, mrq->cmd, 0);
1227
1228	spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233	struct mmci_host *host = mmc_priv(mmc);
1234	struct variant_data *variant = host->variant;
1235	u32 pwr = 0;
1236	unsigned long flags;
1237	int ret;
1238
1239	pm_runtime_get_sync(mmc_dev(mmc));
1240
1241	if (host->plat->ios_handler &&
1242		host->plat->ios_handler(mmc_dev(mmc), ios))
1243			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245	switch (ios->power_mode) {
1246	case MMC_POWER_OFF:
1247		if (!IS_ERR(mmc->supply.vmmc))
1248			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251			regulator_disable(mmc->supply.vqmmc);
1252			host->vqmmc_enabled = false;
1253		}
1254
1255		break;
1256	case MMC_POWER_UP:
1257		if (!IS_ERR(mmc->supply.vmmc))
1258			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260		/*
1261		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262		 * and instead uses MCI_PWR_ON so apply whatever value is
1263		 * configured in the variant data.
1264		 */
1265		pwr |= variant->pwrreg_powerup;
1266
1267		break;
1268	case MMC_POWER_ON:
1269		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270			ret = regulator_enable(mmc->supply.vqmmc);
1271			if (ret < 0)
1272				dev_err(mmc_dev(mmc),
1273					"failed to enable vqmmc regulator\n");
1274			else
1275				host->vqmmc_enabled = true;
1276		}
1277
1278		pwr |= MCI_PWR_ON;
1279		break;
1280	}
1281
1282	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283		/*
1284		 * The ST Micro variant has some additional bits
1285		 * indicating signal direction for the signals in
1286		 * the SD/MMC bus and feedback-clock usage.
1287		 */
1288		pwr |= host->plat->sigdir;
1289
1290		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291			pwr &= ~MCI_ST_DATA74DIREN;
1292		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293			pwr &= (~MCI_ST_DATA74DIREN &
1294				~MCI_ST_DATA31DIREN &
1295				~MCI_ST_DATA2DIREN);
1296	}
1297
1298	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299		if (host->hw_designer != AMBA_VENDOR_ST)
1300			pwr |= MCI_ROD;
1301		else {
1302			/*
1303			 * The ST Micro variant use the ROD bit for something
1304			 * else and only has OD (Open Drain).
1305			 */
1306			pwr |= MCI_OD;
1307		}
1308	}
1309
1310	/*
1311	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313	 */
1314	if (!ios->clock && variant->pwrreg_clkgate)
1315		pwr &= ~MCI_PWR_ON;
1316
1317	spin_lock_irqsave(&host->lock, flags);
1318
1319	mmci_set_clkreg(host, ios->clock);
1320	mmci_write_pwrreg(host, pwr);
1321	mmci_reg_delay(host);
1322
1323	spin_unlock_irqrestore(&host->lock, flags);
1324
1325	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331	struct mmci_host *host = mmc_priv(mmc);
1332
1333	if (host->gpio_wp == -ENOSYS)
1334		return -ENOSYS;
1335
1336	return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341	struct mmci_host *host = mmc_priv(mmc);
1342	struct mmci_platform_data *plat = host->plat;
1343	unsigned int status;
1344
1345	if (host->gpio_cd == -ENOSYS) {
1346		if (!plat->status)
1347			return 1; /* Assume always present */
1348
1349		status = plat->status(mmc_dev(host->mmc));
1350	} else
1351		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352			^ plat->cd_invert;
1353
1354	/*
1355	 * Use positive logic throughout - status is zero for no card,
1356	 * non-zero for card inserted.
1357	 */
1358	return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363	int ret = 0;
1364
1365	if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367		pm_runtime_get_sync(mmc_dev(mmc));
1368
1369		switch (ios->signal_voltage) {
1370		case MMC_SIGNAL_VOLTAGE_330:
1371			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372						2700000, 3600000);
1373			break;
1374		case MMC_SIGNAL_VOLTAGE_180:
1375			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376						1700000, 1950000);
1377			break;
1378		case MMC_SIGNAL_VOLTAGE_120:
1379			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380						1100000, 1300000);
1381			break;
1382		}
1383
1384		if (ret)
1385			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389	}
1390
1391	return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396	struct mmci_host *host = dev_id;
1397
1398	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404	.request	= mmci_request,
1405	.pre_req	= mmci_pre_request,
1406	.post_req	= mmci_post_request,
1407	.set_ios	= mmci_set_ios,
1408	.get_ro		= mmci_get_ro,
1409	.get_cd		= mmci_get_cd,
1410	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415					struct mmci_platform_data *pdata)
1416{
1417	int bus_width = 0;
1418
1419	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422	if (of_get_property(np, "cd-inverted", NULL))
1423		pdata->cd_invert = true;
1424	else
1425		pdata->cd_invert = false;
1426
1427	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428	if (!pdata->f_max)
1429		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430
1431	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436	of_property_read_u32(np, "bus-width", &bus_width);
1437	switch (bus_width) {
1438	case 0 :
1439		/* No bus-width supplied. */
1440		break;
1441	case 4 :
1442		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443		break;
1444	case 8 :
1445		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446		break;
1447	default :
1448		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449	}
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453					struct mmci_platform_data *pdata)
1454{
1455	return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460	const struct amba_id *id)
1461{
1462	struct mmci_platform_data *plat = dev->dev.platform_data;
1463	struct device_node *np = dev->dev.of_node;
1464	struct variant_data *variant = id->data;
1465	struct mmci_host *host;
1466	struct mmc_host *mmc;
1467	int ret;
1468
1469	/* Must have platform data or Device Tree. */
1470	if (!plat && !np) {
1471		dev_err(&dev->dev, "No plat data or DT found\n");
1472		return -EINVAL;
1473	}
1474
1475	if (!plat) {
1476		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477		if (!plat)
1478			return -ENOMEM;
1479	}
1480
1481	if (np)
1482		mmci_dt_populate_generic_pdata(np, plat);
1483
1484	ret = amba_request_regions(dev, DRIVER_NAME);
1485	if (ret)
1486		goto out;
1487
1488	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489	if (!mmc) {
1490		ret = -ENOMEM;
1491		goto rel_regions;
1492	}
1493
1494	host = mmc_priv(mmc);
1495	host->mmc = mmc;
1496
1497	host->gpio_wp = -ENOSYS;
1498	host->gpio_cd = -ENOSYS;
1499	host->gpio_cd_irq = -1;
1500
1501	host->hw_designer = amba_manf(dev);
1502	host->hw_revision = amba_rev(dev);
1503	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506	host->clk = devm_clk_get(&dev->dev, NULL);
1507	if (IS_ERR(host->clk)) {
1508		ret = PTR_ERR(host->clk);
1509		goto host_free;
1510	}
1511
1512	ret = clk_prepare_enable(host->clk);
1513	if (ret)
1514		goto host_free;
1515
1516	host->plat = plat;
1517	host->variant = variant;
1518	host->mclk = clk_get_rate(host->clk);
1519	/*
1520	 * According to the spec, mclk is max 100 MHz,
1521	 * so we try to adjust the clock down to this,
1522	 * (if possible).
1523	 */
1524	if (host->mclk > 100000000) {
1525		ret = clk_set_rate(host->clk, 100000000);
1526		if (ret < 0)
1527			goto clk_disable;
1528		host->mclk = clk_get_rate(host->clk);
1529		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530			host->mclk);
1531	}
1532	host->phybase = dev->res.start;
1533	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534	if (!host->base) {
1535		ret = -ENOMEM;
1536		goto clk_disable;
1537	}
1538
1539	/*
1540	 * The ARM and ST versions of the block have slightly different
1541	 * clock divider equations which means that the minimum divider
1542	 * differs too.
1543	 */
1544	if (variant->st_clkdiv)
1545		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546	else
1547		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548	/*
1549	 * If the platform data supplies a maximum operating
1550	 * frequency, this takes precedence. Else, we fall back
1551	 * to using the module parameter, which has a (low)
1552	 * default value in case it is not specified. Either
1553	 * value must not exceed the clock rate into the block,
1554	 * of course.
1555	 */
1556	if (plat->f_max)
1557		mmc->f_max = min(host->mclk, plat->f_max);
1558	else
1559		mmc->f_max = min(host->mclk, fmax);
1560	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562	/* Get regulators and the supported OCR mask */
1563	mmc_regulator_get_supply(mmc);
1564	if (!mmc->ocr_avail)
1565		mmc->ocr_avail = plat->ocr_mask;
1566	else if (plat->ocr_mask)
1567		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569	mmc->caps = plat->capabilities;
1570	mmc->caps2 = plat->capabilities2;
1571
1572	if (variant->busy_detect) {
1573		mmci_ops.card_busy = mmci_card_busy;
1574		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576		mmc->max_busy_timeout = 0;
1577	}
1578
1579	mmc->ops = &mmci_ops;
1580
1581	/* We support these PM capabilities. */
1582	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584	/*
1585	 * We can do SGIO
1586	 */
1587	mmc->max_segs = NR_SG;
1588
1589	/*
1590	 * Since only a certain number of bits are valid in the data length
1591	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592	 * single request.
1593	 */
1594	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596	/*
1597	 * Set the maximum segment size.  Since we aren't doing DMA
1598	 * (yet) we are only limited by the data length register.
1599	 */
1600	mmc->max_seg_size = mmc->max_req_size;
1601
1602	/*
1603	 * Block size can be up to 2048 bytes, but must be a power of two.
1604	 */
1605	mmc->max_blk_size = 1 << 11;
1606
1607	/*
1608	 * Limit the number of blocks transferred so that we don't overflow
1609	 * the maximum request size.
1610	 */
1611	mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613	spin_lock_init(&host->lock);
1614
1615	writel(0, host->base + MMCIMASK0);
1616	writel(0, host->base + MMCIMASK1);
1617	writel(0xfff, host->base + MMCICLEAR);
1618
1619	if (plat->gpio_cd == -EPROBE_DEFER) {
1620		ret = -EPROBE_DEFER;
1621		goto err_gpio_cd;
1622	}
1623	if (gpio_is_valid(plat->gpio_cd)) {
1624		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625		if (ret == 0)
1626			ret = gpio_direction_input(plat->gpio_cd);
1627		if (ret == 0)
1628			host->gpio_cd = plat->gpio_cd;
1629		else if (ret != -ENOSYS)
1630			goto err_gpio_cd;
1631
1632		/*
1633		 * A gpio pin that will detect cards when inserted and removed
1634		 * will most likely want to trigger on the edges if it is
1635		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636		 * for the inverted case) so we request triggers on both
1637		 * edges.
1638		 */
1639		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640				mmci_cd_irq,
1641				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642				DRIVER_NAME " (cd)", host);
1643		if (ret >= 0)
1644			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645	}
1646	if (plat->gpio_wp == -EPROBE_DEFER) {
1647		ret = -EPROBE_DEFER;
1648		goto err_gpio_wp;
1649	}
1650	if (gpio_is_valid(plat->gpio_wp)) {
1651		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652		if (ret == 0)
1653			ret = gpio_direction_input(plat->gpio_wp);
1654		if (ret == 0)
1655			host->gpio_wp = plat->gpio_wp;
1656		else if (ret != -ENOSYS)
1657			goto err_gpio_wp;
1658	}
1659
1660	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661	    && host->gpio_cd_irq < 0)
1662		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1665	if (ret)
1666		goto unmap;
1667
1668	if (!dev->irq[1])
1669		host->singleirq = true;
1670	else {
1671		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672				  DRIVER_NAME " (pio)", host);
1673		if (ret)
1674			goto irq0_free;
1675	}
1676
1677	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679	amba_set_drvdata(dev, mmc);
1680
1681	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683		 amba_rev(dev), (unsigned long long)dev->res.start,
1684		 dev->irq[0], dev->irq[1]);
1685
1686	mmci_dma_setup(host);
1687
1688	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689	pm_runtime_use_autosuspend(&dev->dev);
1690	pm_runtime_put(&dev->dev);
1691
1692	mmc_add_host(mmc);
1693
1694	return 0;
1695
1696 irq0_free:
1697	free_irq(dev->irq[0], host);
1698 unmap:
1699	if (host->gpio_wp != -ENOSYS)
1700		gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702	if (host->gpio_cd_irq >= 0)
1703		free_irq(host->gpio_cd_irq, host);
1704	if (host->gpio_cd != -ENOSYS)
1705		gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707	iounmap(host->base);
1708 clk_disable:
1709	clk_disable_unprepare(host->clk);
1710 host_free:
1711	mmc_free_host(mmc);
1712 rel_regions:
1713	amba_release_regions(dev);
1714 out:
1715	return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720	struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722	if (mmc) {
1723		struct mmci_host *host = mmc_priv(mmc);
1724
1725		/*
1726		 * Undo pm_runtime_put() in probe.  We use the _sync
1727		 * version here so that we can access the primecell.
1728		 */
1729		pm_runtime_get_sync(&dev->dev);
1730
1731		mmc_remove_host(mmc);
1732
1733		writel(0, host->base + MMCIMASK0);
1734		writel(0, host->base + MMCIMASK1);
1735
1736		writel(0, host->base + MMCICOMMAND);
1737		writel(0, host->base + MMCIDATACTRL);
1738
1739		mmci_dma_release(host);
1740		free_irq(dev->irq[0], host);
1741		if (!host->singleirq)
1742			free_irq(dev->irq[1], host);
1743
1744		if (host->gpio_wp != -ENOSYS)
1745			gpio_free(host->gpio_wp);
1746		if (host->gpio_cd_irq >= 0)
1747			free_irq(host->gpio_cd_irq, host);
1748		if (host->gpio_cd != -ENOSYS)
1749			gpio_free(host->gpio_cd);
1750
1751		iounmap(host->base);
1752		clk_disable_unprepare(host->clk);
1753
1754		mmc_free_host(mmc);
1755
1756		amba_release_regions(dev);
1757	}
1758
1759	return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765	struct amba_device *adev = to_amba_device(dev);
1766	struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768	if (mmc) {
1769		struct mmci_host *host = mmc_priv(mmc);
1770		pm_runtime_get_sync(dev);
1771		writel(0, host->base + MMCIMASK0);
1772	}
1773
1774	return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779	struct amba_device *adev = to_amba_device(dev);
1780	struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782	if (mmc) {
1783		struct mmci_host *host = mmc_priv(mmc);
1784		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785		pm_runtime_put(dev);
1786	}
1787
1788	return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM
1793static void mmci_save(struct mmci_host *host)
1794{
1795	unsigned long flags;
1796
1797	spin_lock_irqsave(&host->lock, flags);
1798
1799	writel(0, host->base + MMCIMASK0);
1800	if (host->variant->pwrreg_nopower) {
1801		writel(0, host->base + MMCIDATACTRL);
1802		writel(0, host->base + MMCIPOWER);
1803		writel(0, host->base + MMCICLOCK);
1804	}
1805	mmci_reg_delay(host);
1806
1807	spin_unlock_irqrestore(&host->lock, flags);
1808}
1809
1810static void mmci_restore(struct mmci_host *host)
1811{
1812	unsigned long flags;
1813
1814	spin_lock_irqsave(&host->lock, flags);
1815
1816	if (host->variant->pwrreg_nopower) {
1817		writel(host->clk_reg, host->base + MMCICLOCK);
1818		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1819		writel(host->pwr_reg, host->base + MMCIPOWER);
1820	}
1821	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822	mmci_reg_delay(host);
1823
1824	spin_unlock_irqrestore(&host->lock, flags);
1825}
1826
1827static int mmci_runtime_suspend(struct device *dev)
1828{
1829	struct amba_device *adev = to_amba_device(dev);
1830	struct mmc_host *mmc = amba_get_drvdata(adev);
1831
1832	if (mmc) {
1833		struct mmci_host *host = mmc_priv(mmc);
1834		pinctrl_pm_select_sleep_state(dev);
1835		mmci_save(host);
1836		clk_disable_unprepare(host->clk);
1837	}
1838
1839	return 0;
1840}
1841
1842static int mmci_runtime_resume(struct device *dev)
1843{
1844	struct amba_device *adev = to_amba_device(dev);
1845	struct mmc_host *mmc = amba_get_drvdata(adev);
1846
1847	if (mmc) {
1848		struct mmci_host *host = mmc_priv(mmc);
1849		clk_prepare_enable(host->clk);
1850		mmci_restore(host);
1851		pinctrl_pm_select_default_state(dev);
1852	}
1853
1854	return 0;
1855}
1856#endif
1857
1858static const struct dev_pm_ops mmci_dev_pm_ops = {
1859	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1860	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1861};
1862
1863static struct amba_id mmci_ids[] = {
1864	{
1865		.id	= 0x00041180,
1866		.mask	= 0xff0fffff,
1867		.data	= &variant_arm,
1868	},
1869	{
1870		.id	= 0x01041180,
1871		.mask	= 0xff0fffff,
1872		.data	= &variant_arm_extended_fifo,
1873	},
1874	{
1875		.id	= 0x02041180,
1876		.mask	= 0xff0fffff,
1877		.data	= &variant_arm_extended_fifo_hwfc,
1878	},
1879	{
1880		.id	= 0x00041181,
1881		.mask	= 0x000fffff,
1882		.data	= &variant_arm,
1883	},
1884	/* ST Micro variants */
1885	{
1886		.id     = 0x00180180,
1887		.mask   = 0x00ffffff,
1888		.data	= &variant_u300,
1889	},
1890	{
1891		.id     = 0x10180180,
1892		.mask   = 0xf0ffffff,
1893		.data	= &variant_nomadik,
1894	},
1895	{
1896		.id     = 0x00280180,
1897		.mask   = 0x00ffffff,
1898		.data	= &variant_u300,
1899	},
1900	{
1901		.id     = 0x00480180,
1902		.mask   = 0xf0ffffff,
1903		.data	= &variant_ux500,
1904	},
1905	{
1906		.id     = 0x10480180,
1907		.mask   = 0xf0ffffff,
1908		.data	= &variant_ux500v2,
1909	},
1910	{ 0, 0 },
1911};
1912
1913MODULE_DEVICE_TABLE(amba, mmci_ids);
1914
1915static struct amba_driver mmci_driver = {
1916	.drv		= {
1917		.name	= DRIVER_NAME,
1918		.pm	= &mmci_dev_pm_ops,
1919	},
1920	.probe		= mmci_probe,
1921	.remove		= mmci_remove,
1922	.id_table	= mmci_ids,
1923};
1924
1925module_amba_driver(mmci_driver);
1926
1927module_param(fmax, uint, 0444);
1928
1929MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1930MODULE_LICENSE("GPL");
1931