mmci.c revision 599c1d5c750ddf528c7c6d3cdc466708f0502e66
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 *	      is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 *		  is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 */
64struct variant_data {
65	unsigned int		clkreg;
66	unsigned int		clkreg_enable;
67	unsigned int		datalength_bits;
68	unsigned int		fifosize;
69	unsigned int		fifohalfsize;
70	bool			sdio;
71	bool			st_clkdiv;
72	bool			blksz_datactrl16;
73	u32			pwrreg_powerup;
74	bool			signal_direction;
75};
76
77static struct variant_data variant_arm = {
78	.fifosize		= 16 * 4,
79	.fifohalfsize		= 8 * 4,
80	.datalength_bits	= 16,
81	.pwrreg_powerup		= MCI_PWR_UP,
82};
83
84static struct variant_data variant_arm_extended_fifo = {
85	.fifosize		= 128 * 4,
86	.fifohalfsize		= 64 * 4,
87	.datalength_bits	= 16,
88	.pwrreg_powerup		= MCI_PWR_UP,
89};
90
91static struct variant_data variant_u300 = {
92	.fifosize		= 16 * 4,
93	.fifohalfsize		= 8 * 4,
94	.clkreg_enable		= MCI_ST_U300_HWFCEN,
95	.datalength_bits	= 16,
96	.sdio			= true,
97	.pwrreg_powerup		= MCI_PWR_ON,
98	.signal_direction	= true,
99};
100
101static struct variant_data variant_nomadik = {
102	.fifosize		= 16 * 4,
103	.fifohalfsize		= 8 * 4,
104	.clkreg			= MCI_CLK_ENABLE,
105	.datalength_bits	= 24,
106	.sdio			= true,
107	.st_clkdiv		= true,
108	.pwrreg_powerup		= MCI_PWR_ON,
109	.signal_direction	= true,
110};
111
112static struct variant_data variant_ux500 = {
113	.fifosize		= 30 * 4,
114	.fifohalfsize		= 8 * 4,
115	.clkreg			= MCI_CLK_ENABLE,
116	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
117	.datalength_bits	= 24,
118	.sdio			= true,
119	.st_clkdiv		= true,
120	.pwrreg_powerup		= MCI_PWR_ON,
121	.signal_direction	= true,
122};
123
124static struct variant_data variant_ux500v2 = {
125	.fifosize		= 30 * 4,
126	.fifohalfsize		= 8 * 4,
127	.clkreg			= MCI_CLK_ENABLE,
128	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
129	.datalength_bits	= 24,
130	.sdio			= true,
131	.st_clkdiv		= true,
132	.blksz_datactrl16	= true,
133	.pwrreg_powerup		= MCI_PWR_ON,
134	.signal_direction	= true,
135};
136
137/*
138 * This must be called with host->lock held
139 */
140static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
141{
142	if (host->clk_reg != clk) {
143		host->clk_reg = clk;
144		writel(clk, host->base + MMCICLOCK);
145	}
146}
147
148/*
149 * This must be called with host->lock held
150 */
151static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
152{
153	if (host->pwr_reg != pwr) {
154		host->pwr_reg = pwr;
155		writel(pwr, host->base + MMCIPOWER);
156	}
157}
158
159/*
160 * This must be called with host->lock held
161 */
162static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
163{
164	struct variant_data *variant = host->variant;
165	u32 clk = variant->clkreg;
166
167	if (desired) {
168		if (desired >= host->mclk) {
169			clk = MCI_CLK_BYPASS;
170			if (variant->st_clkdiv)
171				clk |= MCI_ST_UX500_NEG_EDGE;
172			host->cclk = host->mclk;
173		} else if (variant->st_clkdiv) {
174			/*
175			 * DB8500 TRM says f = mclk / (clkdiv + 2)
176			 * => clkdiv = (mclk / f) - 2
177			 * Round the divider up so we don't exceed the max
178			 * frequency
179			 */
180			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
181			if (clk >= 256)
182				clk = 255;
183			host->cclk = host->mclk / (clk + 2);
184		} else {
185			/*
186			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
187			 * => clkdiv = mclk / (2 * f) - 1
188			 */
189			clk = host->mclk / (2 * desired) - 1;
190			if (clk >= 256)
191				clk = 255;
192			host->cclk = host->mclk / (2 * (clk + 1));
193		}
194
195		clk |= variant->clkreg_enable;
196		clk |= MCI_CLK_ENABLE;
197		/* This hasn't proven to be worthwhile */
198		/* clk |= MCI_CLK_PWRSAVE; */
199	}
200
201	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
202		clk |= MCI_4BIT_BUS;
203	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
204		clk |= MCI_ST_8BIT_BUS;
205
206	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
207		clk |= MCI_ST_UX500_NEG_EDGE;
208
209	mmci_write_clkreg(host, clk);
210}
211
212static void
213mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
214{
215	writel(0, host->base + MMCICOMMAND);
216
217	BUG_ON(host->data);
218
219	host->mrq = NULL;
220	host->cmd = NULL;
221
222	mmc_request_done(host->mmc, mrq);
223
224	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
225	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
226}
227
228static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
229{
230	void __iomem *base = host->base;
231
232	if (host->singleirq) {
233		unsigned int mask0 = readl(base + MMCIMASK0);
234
235		mask0 &= ~MCI_IRQ1MASK;
236		mask0 |= mask;
237
238		writel(mask0, base + MMCIMASK0);
239	}
240
241	writel(mask, base + MMCIMASK1);
242}
243
244static void mmci_stop_data(struct mmci_host *host)
245{
246	writel(0, host->base + MMCIDATACTRL);
247	mmci_set_mask1(host, 0);
248	host->data = NULL;
249}
250
251static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
252{
253	unsigned int flags = SG_MITER_ATOMIC;
254
255	if (data->flags & MMC_DATA_READ)
256		flags |= SG_MITER_TO_SG;
257	else
258		flags |= SG_MITER_FROM_SG;
259
260	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
261}
262
263/*
264 * All the DMA operation mode stuff goes inside this ifdef.
265 * This assumes that you have a generic DMA device interface,
266 * no custom DMA interfaces are supported.
267 */
268#ifdef CONFIG_DMA_ENGINE
269static void mmci_dma_setup(struct mmci_host *host)
270{
271	struct mmci_platform_data *plat = host->plat;
272	const char *rxname, *txname;
273	dma_cap_mask_t mask;
274
275	if (!plat || !plat->dma_filter) {
276		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
277		return;
278	}
279
280	/* initialize pre request cookie */
281	host->next_data.cookie = 1;
282
283	/* Try to acquire a generic DMA engine slave channel */
284	dma_cap_zero(mask);
285	dma_cap_set(DMA_SLAVE, mask);
286
287	/*
288	 * If only an RX channel is specified, the driver will
289	 * attempt to use it bidirectionally, however if it is
290	 * is specified but cannot be located, DMA will be disabled.
291	 */
292	if (plat->dma_rx_param) {
293		host->dma_rx_channel = dma_request_channel(mask,
294							   plat->dma_filter,
295							   plat->dma_rx_param);
296		/* E.g if no DMA hardware is present */
297		if (!host->dma_rx_channel)
298			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
299	}
300
301	if (plat->dma_tx_param) {
302		host->dma_tx_channel = dma_request_channel(mask,
303							   plat->dma_filter,
304							   plat->dma_tx_param);
305		if (!host->dma_tx_channel)
306			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
307	} else {
308		host->dma_tx_channel = host->dma_rx_channel;
309	}
310
311	if (host->dma_rx_channel)
312		rxname = dma_chan_name(host->dma_rx_channel);
313	else
314		rxname = "none";
315
316	if (host->dma_tx_channel)
317		txname = dma_chan_name(host->dma_tx_channel);
318	else
319		txname = "none";
320
321	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
322		 rxname, txname);
323
324	/*
325	 * Limit the maximum segment size in any SG entry according to
326	 * the parameters of the DMA engine device.
327	 */
328	if (host->dma_tx_channel) {
329		struct device *dev = host->dma_tx_channel->device->dev;
330		unsigned int max_seg_size = dma_get_max_seg_size(dev);
331
332		if (max_seg_size < host->mmc->max_seg_size)
333			host->mmc->max_seg_size = max_seg_size;
334	}
335	if (host->dma_rx_channel) {
336		struct device *dev = host->dma_rx_channel->device->dev;
337		unsigned int max_seg_size = dma_get_max_seg_size(dev);
338
339		if (max_seg_size < host->mmc->max_seg_size)
340			host->mmc->max_seg_size = max_seg_size;
341	}
342}
343
344/*
345 * This is used in or so inline it
346 * so it can be discarded.
347 */
348static inline void mmci_dma_release(struct mmci_host *host)
349{
350	struct mmci_platform_data *plat = host->plat;
351
352	if (host->dma_rx_channel)
353		dma_release_channel(host->dma_rx_channel);
354	if (host->dma_tx_channel && plat->dma_tx_param)
355		dma_release_channel(host->dma_tx_channel);
356	host->dma_rx_channel = host->dma_tx_channel = NULL;
357}
358
359static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
360{
361	struct dma_chan *chan = host->dma_current;
362	enum dma_data_direction dir;
363	u32 status;
364	int i;
365
366	/* Wait up to 1ms for the DMA to complete */
367	for (i = 0; ; i++) {
368		status = readl(host->base + MMCISTATUS);
369		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
370			break;
371		udelay(10);
372	}
373
374	/*
375	 * Check to see whether we still have some data left in the FIFO -
376	 * this catches DMA controllers which are unable to monitor the
377	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
378	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
379	 */
380	if (status & MCI_RXDATAAVLBLMASK) {
381		dmaengine_terminate_all(chan);
382		if (!data->error)
383			data->error = -EIO;
384	}
385
386	if (data->flags & MMC_DATA_WRITE) {
387		dir = DMA_TO_DEVICE;
388	} else {
389		dir = DMA_FROM_DEVICE;
390	}
391
392	if (!data->host_cookie)
393		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
394
395	/*
396	 * Use of DMA with scatter-gather is impossible.
397	 * Give up with DMA and switch back to PIO mode.
398	 */
399	if (status & MCI_RXDATAAVLBLMASK) {
400		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
401		mmci_dma_release(host);
402	}
403}
404
405static void mmci_dma_data_error(struct mmci_host *host)
406{
407	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
408	dmaengine_terminate_all(host->dma_current);
409}
410
411static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
412			      struct mmci_host_next *next)
413{
414	struct variant_data *variant = host->variant;
415	struct dma_slave_config conf = {
416		.src_addr = host->phybase + MMCIFIFO,
417		.dst_addr = host->phybase + MMCIFIFO,
418		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
419		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
420		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
421		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
422		.device_fc = false,
423	};
424	struct dma_chan *chan;
425	struct dma_device *device;
426	struct dma_async_tx_descriptor *desc;
427	enum dma_data_direction buffer_dirn;
428	int nr_sg;
429
430	/* Check if next job is already prepared */
431	if (data->host_cookie && !next &&
432	    host->dma_current && host->dma_desc_current)
433		return 0;
434
435	if (!next) {
436		host->dma_current = NULL;
437		host->dma_desc_current = NULL;
438	}
439
440	if (data->flags & MMC_DATA_READ) {
441		conf.direction = DMA_DEV_TO_MEM;
442		buffer_dirn = DMA_FROM_DEVICE;
443		chan = host->dma_rx_channel;
444	} else {
445		conf.direction = DMA_MEM_TO_DEV;
446		buffer_dirn = DMA_TO_DEVICE;
447		chan = host->dma_tx_channel;
448	}
449
450	/* If there's no DMA channel, fall back to PIO */
451	if (!chan)
452		return -EINVAL;
453
454	/* If less than or equal to the fifo size, don't bother with DMA */
455	if (data->blksz * data->blocks <= variant->fifosize)
456		return -EINVAL;
457
458	device = chan->device;
459	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
460	if (nr_sg == 0)
461		return -EINVAL;
462
463	dmaengine_slave_config(chan, &conf);
464	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
465					    conf.direction, DMA_CTRL_ACK);
466	if (!desc)
467		goto unmap_exit;
468
469	if (next) {
470		next->dma_chan = chan;
471		next->dma_desc = desc;
472	} else {
473		host->dma_current = chan;
474		host->dma_desc_current = desc;
475	}
476
477	return 0;
478
479 unmap_exit:
480	if (!next)
481		dmaengine_terminate_all(chan);
482	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
483	return -ENOMEM;
484}
485
486static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
487{
488	int ret;
489	struct mmc_data *data = host->data;
490
491	ret = mmci_dma_prep_data(host, host->data, NULL);
492	if (ret)
493		return ret;
494
495	/* Okay, go for it. */
496	dev_vdbg(mmc_dev(host->mmc),
497		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
498		 data->sg_len, data->blksz, data->blocks, data->flags);
499	dmaengine_submit(host->dma_desc_current);
500	dma_async_issue_pending(host->dma_current);
501
502	datactrl |= MCI_DPSM_DMAENABLE;
503
504	/* Trigger the DMA transfer */
505	writel(datactrl, host->base + MMCIDATACTRL);
506
507	/*
508	 * Let the MMCI say when the data is ended and it's time
509	 * to fire next DMA request. When that happens, MMCI will
510	 * call mmci_data_end()
511	 */
512	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
513	       host->base + MMCIMASK0);
514	return 0;
515}
516
517static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
518{
519	struct mmci_host_next *next = &host->next_data;
520
521	if (data->host_cookie && data->host_cookie != next->cookie) {
522		pr_warning("[%s] invalid cookie: data->host_cookie %d"
523		       " host->next_data.cookie %d\n",
524		       __func__, data->host_cookie, host->next_data.cookie);
525		data->host_cookie = 0;
526	}
527
528	if (!data->host_cookie)
529		return;
530
531	host->dma_desc_current = next->dma_desc;
532	host->dma_current = next->dma_chan;
533
534	next->dma_desc = NULL;
535	next->dma_chan = NULL;
536}
537
538static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
539			     bool is_first_req)
540{
541	struct mmci_host *host = mmc_priv(mmc);
542	struct mmc_data *data = mrq->data;
543	struct mmci_host_next *nd = &host->next_data;
544
545	if (!data)
546		return;
547
548	if (data->host_cookie) {
549		data->host_cookie = 0;
550		return;
551	}
552
553	/* if config for dma */
554	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
555	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
556		if (mmci_dma_prep_data(host, data, nd))
557			data->host_cookie = 0;
558		else
559			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
560	}
561}
562
563static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
564			      int err)
565{
566	struct mmci_host *host = mmc_priv(mmc);
567	struct mmc_data *data = mrq->data;
568	struct dma_chan *chan;
569	enum dma_data_direction dir;
570
571	if (!data)
572		return;
573
574	if (data->flags & MMC_DATA_READ) {
575		dir = DMA_FROM_DEVICE;
576		chan = host->dma_rx_channel;
577	} else {
578		dir = DMA_TO_DEVICE;
579		chan = host->dma_tx_channel;
580	}
581
582
583	/* if config for dma */
584	if (chan) {
585		if (err)
586			dmaengine_terminate_all(chan);
587		if (data->host_cookie)
588			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
589				     data->sg_len, dir);
590		mrq->data->host_cookie = 0;
591	}
592}
593
594#else
595/* Blank functions if the DMA engine is not available */
596static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
597{
598}
599static inline void mmci_dma_setup(struct mmci_host *host)
600{
601}
602
603static inline void mmci_dma_release(struct mmci_host *host)
604{
605}
606
607static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
608{
609}
610
611static inline void mmci_dma_data_error(struct mmci_host *host)
612{
613}
614
615static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
616{
617	return -ENOSYS;
618}
619
620#define mmci_pre_request NULL
621#define mmci_post_request NULL
622
623#endif
624
625static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
626{
627	struct variant_data *variant = host->variant;
628	unsigned int datactrl, timeout, irqmask;
629	unsigned long long clks;
630	void __iomem *base;
631	int blksz_bits;
632
633	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
634		data->blksz, data->blocks, data->flags);
635
636	host->data = data;
637	host->size = data->blksz * data->blocks;
638	data->bytes_xfered = 0;
639
640	clks = (unsigned long long)data->timeout_ns * host->cclk;
641	do_div(clks, 1000000000UL);
642
643	timeout = data->timeout_clks + (unsigned int)clks;
644
645	base = host->base;
646	writel(timeout, base + MMCIDATATIMER);
647	writel(host->size, base + MMCIDATALENGTH);
648
649	blksz_bits = ffs(data->blksz) - 1;
650	BUG_ON(1 << blksz_bits != data->blksz);
651
652	if (variant->blksz_datactrl16)
653		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
654	else
655		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
656
657	if (data->flags & MMC_DATA_READ)
658		datactrl |= MCI_DPSM_DIRECTION;
659
660	/* The ST Micro variants has a special bit to enable SDIO */
661	if (variant->sdio && host->mmc->card)
662		if (mmc_card_sdio(host->mmc->card)) {
663			/*
664			 * The ST Micro variants has a special bit
665			 * to enable SDIO.
666			 */
667			u32 clk;
668
669			datactrl |= MCI_ST_DPSM_SDIOEN;
670
671			/*
672			 * The ST Micro variant for SDIO small write transfers
673			 * needs to have clock H/W flow control disabled,
674			 * otherwise the transfer will not start. The threshold
675			 * depends on the rate of MCLK.
676			 */
677			if (data->flags & MMC_DATA_WRITE &&
678			    (host->size < 8 ||
679			     (host->size <= 8 && host->mclk > 50000000)))
680				clk = host->clk_reg & ~variant->clkreg_enable;
681			else
682				clk = host->clk_reg | variant->clkreg_enable;
683
684			mmci_write_clkreg(host, clk);
685		}
686
687	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
688		datactrl |= MCI_ST_DPSM_DDRMODE;
689
690	/*
691	 * Attempt to use DMA operation mode, if this
692	 * should fail, fall back to PIO mode
693	 */
694	if (!mmci_dma_start_data(host, datactrl))
695		return;
696
697	/* IRQ mode, map the SG list for CPU reading/writing */
698	mmci_init_sg(host, data);
699
700	if (data->flags & MMC_DATA_READ) {
701		irqmask = MCI_RXFIFOHALFFULLMASK;
702
703		/*
704		 * If we have less than the fifo 'half-full' threshold to
705		 * transfer, trigger a PIO interrupt as soon as any data
706		 * is available.
707		 */
708		if (host->size < variant->fifohalfsize)
709			irqmask |= MCI_RXDATAAVLBLMASK;
710	} else {
711		/*
712		 * We don't actually need to include "FIFO empty" here
713		 * since its implicit in "FIFO half empty".
714		 */
715		irqmask = MCI_TXFIFOHALFEMPTYMASK;
716	}
717
718	writel(datactrl, base + MMCIDATACTRL);
719	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
720	mmci_set_mask1(host, irqmask);
721}
722
723static void
724mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
725{
726	void __iomem *base = host->base;
727
728	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
729	    cmd->opcode, cmd->arg, cmd->flags);
730
731	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
732		writel(0, base + MMCICOMMAND);
733		udelay(1);
734	}
735
736	c |= cmd->opcode | MCI_CPSM_ENABLE;
737	if (cmd->flags & MMC_RSP_PRESENT) {
738		if (cmd->flags & MMC_RSP_136)
739			c |= MCI_CPSM_LONGRSP;
740		c |= MCI_CPSM_RESPONSE;
741	}
742	if (/*interrupt*/0)
743		c |= MCI_CPSM_INTERRUPT;
744
745	host->cmd = cmd;
746
747	writel(cmd->arg, base + MMCIARGUMENT);
748	writel(c, base + MMCICOMMAND);
749}
750
751static void
752mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
753	      unsigned int status)
754{
755	/* First check for errors */
756	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
757		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
758		u32 remain, success;
759
760		/* Terminate the DMA transfer */
761		if (dma_inprogress(host))
762			mmci_dma_data_error(host);
763
764		/*
765		 * Calculate how far we are into the transfer.  Note that
766		 * the data counter gives the number of bytes transferred
767		 * on the MMC bus, not on the host side.  On reads, this
768		 * can be as much as a FIFO-worth of data ahead.  This
769		 * matters for FIFO overruns only.
770		 */
771		remain = readl(host->base + MMCIDATACNT);
772		success = data->blksz * data->blocks - remain;
773
774		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
775			status, success);
776		if (status & MCI_DATACRCFAIL) {
777			/* Last block was not successful */
778			success -= 1;
779			data->error = -EILSEQ;
780		} else if (status & MCI_DATATIMEOUT) {
781			data->error = -ETIMEDOUT;
782		} else if (status & MCI_STARTBITERR) {
783			data->error = -ECOMM;
784		} else if (status & MCI_TXUNDERRUN) {
785			data->error = -EIO;
786		} else if (status & MCI_RXOVERRUN) {
787			if (success > host->variant->fifosize)
788				success -= host->variant->fifosize;
789			else
790				success = 0;
791			data->error = -EIO;
792		}
793		data->bytes_xfered = round_down(success, data->blksz);
794	}
795
796	if (status & MCI_DATABLOCKEND)
797		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
798
799	if (status & MCI_DATAEND || data->error) {
800		if (dma_inprogress(host))
801			mmci_dma_unmap(host, data);
802		mmci_stop_data(host);
803
804		if (!data->error)
805			/* The error clause is handled above, success! */
806			data->bytes_xfered = data->blksz * data->blocks;
807
808		if (!data->stop) {
809			mmci_request_end(host, data->mrq);
810		} else {
811			mmci_start_command(host, data->stop, 0);
812		}
813	}
814}
815
816static void
817mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
818	     unsigned int status)
819{
820	void __iomem *base = host->base;
821
822	host->cmd = NULL;
823
824	if (status & MCI_CMDTIMEOUT) {
825		cmd->error = -ETIMEDOUT;
826	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
827		cmd->error = -EILSEQ;
828	} else {
829		cmd->resp[0] = readl(base + MMCIRESPONSE0);
830		cmd->resp[1] = readl(base + MMCIRESPONSE1);
831		cmd->resp[2] = readl(base + MMCIRESPONSE2);
832		cmd->resp[3] = readl(base + MMCIRESPONSE3);
833	}
834
835	if (!cmd->data || cmd->error) {
836		if (host->data) {
837			/* Terminate the DMA transfer */
838			if (dma_inprogress(host))
839				mmci_dma_data_error(host);
840			mmci_stop_data(host);
841		}
842		mmci_request_end(host, cmd->mrq);
843	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
844		mmci_start_data(host, cmd->data);
845	}
846}
847
848static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
849{
850	void __iomem *base = host->base;
851	char *ptr = buffer;
852	u32 status;
853	int host_remain = host->size;
854
855	do {
856		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
857
858		if (count > remain)
859			count = remain;
860
861		if (count <= 0)
862			break;
863
864		/*
865		 * SDIO especially may want to send something that is
866		 * not divisible by 4 (as opposed to card sectors
867		 * etc). Therefore make sure to always read the last bytes
868		 * while only doing full 32-bit reads towards the FIFO.
869		 */
870		if (unlikely(count & 0x3)) {
871			if (count < 4) {
872				unsigned char buf[4];
873				ioread32_rep(base + MMCIFIFO, buf, 1);
874				memcpy(ptr, buf, count);
875			} else {
876				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
877				count &= ~0x3;
878			}
879		} else {
880			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
881		}
882
883		ptr += count;
884		remain -= count;
885		host_remain -= count;
886
887		if (remain == 0)
888			break;
889
890		status = readl(base + MMCISTATUS);
891	} while (status & MCI_RXDATAAVLBL);
892
893	return ptr - buffer;
894}
895
896static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
897{
898	struct variant_data *variant = host->variant;
899	void __iomem *base = host->base;
900	char *ptr = buffer;
901
902	do {
903		unsigned int count, maxcnt;
904
905		maxcnt = status & MCI_TXFIFOEMPTY ?
906			 variant->fifosize : variant->fifohalfsize;
907		count = min(remain, maxcnt);
908
909		/*
910		 * SDIO especially may want to send something that is
911		 * not divisible by 4 (as opposed to card sectors
912		 * etc), and the FIFO only accept full 32-bit writes.
913		 * So compensate by adding +3 on the count, a single
914		 * byte become a 32bit write, 7 bytes will be two
915		 * 32bit writes etc.
916		 */
917		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
918
919		ptr += count;
920		remain -= count;
921
922		if (remain == 0)
923			break;
924
925		status = readl(base + MMCISTATUS);
926	} while (status & MCI_TXFIFOHALFEMPTY);
927
928	return ptr - buffer;
929}
930
931/*
932 * PIO data transfer IRQ handler.
933 */
934static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
935{
936	struct mmci_host *host = dev_id;
937	struct sg_mapping_iter *sg_miter = &host->sg_miter;
938	struct variant_data *variant = host->variant;
939	void __iomem *base = host->base;
940	unsigned long flags;
941	u32 status;
942
943	status = readl(base + MMCISTATUS);
944
945	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
946
947	local_irq_save(flags);
948
949	do {
950		unsigned int remain, len;
951		char *buffer;
952
953		/*
954		 * For write, we only need to test the half-empty flag
955		 * here - if the FIFO is completely empty, then by
956		 * definition it is more than half empty.
957		 *
958		 * For read, check for data available.
959		 */
960		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
961			break;
962
963		if (!sg_miter_next(sg_miter))
964			break;
965
966		buffer = sg_miter->addr;
967		remain = sg_miter->length;
968
969		len = 0;
970		if (status & MCI_RXACTIVE)
971			len = mmci_pio_read(host, buffer, remain);
972		if (status & MCI_TXACTIVE)
973			len = mmci_pio_write(host, buffer, remain, status);
974
975		sg_miter->consumed = len;
976
977		host->size -= len;
978		remain -= len;
979
980		if (remain)
981			break;
982
983		status = readl(base + MMCISTATUS);
984	} while (1);
985
986	sg_miter_stop(sg_miter);
987
988	local_irq_restore(flags);
989
990	/*
991	 * If we have less than the fifo 'half-full' threshold to transfer,
992	 * trigger a PIO interrupt as soon as any data is available.
993	 */
994	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
995		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
996
997	/*
998	 * If we run out of data, disable the data IRQs; this
999	 * prevents a race where the FIFO becomes empty before
1000	 * the chip itself has disabled the data path, and
1001	 * stops us racing with our data end IRQ.
1002	 */
1003	if (host->size == 0) {
1004		mmci_set_mask1(host, 0);
1005		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1006	}
1007
1008	return IRQ_HANDLED;
1009}
1010
1011/*
1012 * Handle completion of command and data transfers.
1013 */
1014static irqreturn_t mmci_irq(int irq, void *dev_id)
1015{
1016	struct mmci_host *host = dev_id;
1017	u32 status;
1018	int ret = 0;
1019
1020	spin_lock(&host->lock);
1021
1022	do {
1023		struct mmc_command *cmd;
1024		struct mmc_data *data;
1025
1026		status = readl(host->base + MMCISTATUS);
1027
1028		if (host->singleirq) {
1029			if (status & readl(host->base + MMCIMASK1))
1030				mmci_pio_irq(irq, dev_id);
1031
1032			status &= ~MCI_IRQ1MASK;
1033		}
1034
1035		status &= readl(host->base + MMCIMASK0);
1036		writel(status, host->base + MMCICLEAR);
1037
1038		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1039
1040		data = host->data;
1041		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1042			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1043			      MCI_DATABLOCKEND) && data)
1044			mmci_data_irq(host, data, status);
1045
1046		cmd = host->cmd;
1047		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1048			mmci_cmd_irq(host, cmd, status);
1049
1050		ret = 1;
1051	} while (status);
1052
1053	spin_unlock(&host->lock);
1054
1055	return IRQ_RETVAL(ret);
1056}
1057
1058static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1059{
1060	struct mmci_host *host = mmc_priv(mmc);
1061	unsigned long flags;
1062
1063	WARN_ON(host->mrq != NULL);
1064
1065	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1066		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1067			mrq->data->blksz);
1068		mrq->cmd->error = -EINVAL;
1069		mmc_request_done(mmc, mrq);
1070		return;
1071	}
1072
1073	pm_runtime_get_sync(mmc_dev(mmc));
1074
1075	spin_lock_irqsave(&host->lock, flags);
1076
1077	host->mrq = mrq;
1078
1079	if (mrq->data)
1080		mmci_get_next_data(host, mrq->data);
1081
1082	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1083		mmci_start_data(host, mrq->data);
1084
1085	mmci_start_command(host, mrq->cmd, 0);
1086
1087	spin_unlock_irqrestore(&host->lock, flags);
1088}
1089
1090static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1091{
1092	struct mmci_host *host = mmc_priv(mmc);
1093	struct variant_data *variant = host->variant;
1094	u32 pwr = 0;
1095	unsigned long flags;
1096
1097	pm_runtime_get_sync(mmc_dev(mmc));
1098
1099	if (host->plat->ios_handler &&
1100		host->plat->ios_handler(mmc_dev(mmc), ios))
1101			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1102
1103	switch (ios->power_mode) {
1104	case MMC_POWER_OFF:
1105		if (!IS_ERR(mmc->supply.vmmc))
1106			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1107		break;
1108	case MMC_POWER_UP:
1109		if (!IS_ERR(mmc->supply.vmmc))
1110			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1111
1112		/*
1113		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1114		 * and instead uses MCI_PWR_ON so apply whatever value is
1115		 * configured in the variant data.
1116		 */
1117		pwr |= variant->pwrreg_powerup;
1118
1119		break;
1120	case MMC_POWER_ON:
1121		pwr |= MCI_PWR_ON;
1122		break;
1123	}
1124
1125	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1126		/*
1127		 * The ST Micro variant has some additional bits
1128		 * indicating signal direction for the signals in
1129		 * the SD/MMC bus and feedback-clock usage.
1130		 */
1131		pwr |= host->plat->sigdir;
1132
1133		if (ios->bus_width == MMC_BUS_WIDTH_4)
1134			pwr &= ~MCI_ST_DATA74DIREN;
1135		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1136			pwr &= (~MCI_ST_DATA74DIREN &
1137				~MCI_ST_DATA31DIREN &
1138				~MCI_ST_DATA2DIREN);
1139	}
1140
1141	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1142		if (host->hw_designer != AMBA_VENDOR_ST)
1143			pwr |= MCI_ROD;
1144		else {
1145			/*
1146			 * The ST Micro variant use the ROD bit for something
1147			 * else and only has OD (Open Drain).
1148			 */
1149			pwr |= MCI_OD;
1150		}
1151	}
1152
1153	spin_lock_irqsave(&host->lock, flags);
1154
1155	mmci_set_clkreg(host, ios->clock);
1156	mmci_write_pwrreg(host, pwr);
1157
1158	spin_unlock_irqrestore(&host->lock, flags);
1159
1160	pm_runtime_mark_last_busy(mmc_dev(mmc));
1161	pm_runtime_put_autosuspend(mmc_dev(mmc));
1162}
1163
1164static int mmci_get_ro(struct mmc_host *mmc)
1165{
1166	struct mmci_host *host = mmc_priv(mmc);
1167
1168	if (host->gpio_wp == -ENOSYS)
1169		return -ENOSYS;
1170
1171	return gpio_get_value_cansleep(host->gpio_wp);
1172}
1173
1174static int mmci_get_cd(struct mmc_host *mmc)
1175{
1176	struct mmci_host *host = mmc_priv(mmc);
1177	struct mmci_platform_data *plat = host->plat;
1178	unsigned int status;
1179
1180	if (host->gpio_cd == -ENOSYS) {
1181		if (!plat->status)
1182			return 1; /* Assume always present */
1183
1184		status = plat->status(mmc_dev(host->mmc));
1185	} else
1186		status = !!gpio_get_value_cansleep(host->gpio_cd)
1187			^ plat->cd_invert;
1188
1189	/*
1190	 * Use positive logic throughout - status is zero for no card,
1191	 * non-zero for card inserted.
1192	 */
1193	return status;
1194}
1195
1196static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1197{
1198	struct mmci_host *host = dev_id;
1199
1200	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1201
1202	return IRQ_HANDLED;
1203}
1204
1205static const struct mmc_host_ops mmci_ops = {
1206	.request	= mmci_request,
1207	.pre_req	= mmci_pre_request,
1208	.post_req	= mmci_post_request,
1209	.set_ios	= mmci_set_ios,
1210	.get_ro		= mmci_get_ro,
1211	.get_cd		= mmci_get_cd,
1212};
1213
1214#ifdef CONFIG_OF
1215static void mmci_dt_populate_generic_pdata(struct device_node *np,
1216					struct mmci_platform_data *pdata)
1217{
1218	int bus_width = 0;
1219
1220	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1221	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1222
1223	if (of_get_property(np, "cd-inverted", NULL))
1224		pdata->cd_invert = true;
1225	else
1226		pdata->cd_invert = false;
1227
1228	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1229	if (!pdata->f_max)
1230		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1231
1232	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1233		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1234	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1235		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1236
1237	of_property_read_u32(np, "bus-width", &bus_width);
1238	switch (bus_width) {
1239	case 0 :
1240		/* No bus-width supplied. */
1241		break;
1242	case 4 :
1243		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1244		break;
1245	case 8 :
1246		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1247		break;
1248	default :
1249		pr_warn("%s: Unsupported bus width\n", np->full_name);
1250	}
1251}
1252#else
1253static void mmci_dt_populate_generic_pdata(struct device_node *np,
1254					struct mmci_platform_data *pdata)
1255{
1256	return;
1257}
1258#endif
1259
1260static int mmci_probe(struct amba_device *dev,
1261	const struct amba_id *id)
1262{
1263	struct mmci_platform_data *plat = dev->dev.platform_data;
1264	struct device_node *np = dev->dev.of_node;
1265	struct variant_data *variant = id->data;
1266	struct mmci_host *host;
1267	struct mmc_host *mmc;
1268	int ret;
1269
1270	/* Must have platform data or Device Tree. */
1271	if (!plat && !np) {
1272		dev_err(&dev->dev, "No plat data or DT found\n");
1273		return -EINVAL;
1274	}
1275
1276	if (!plat) {
1277		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1278		if (!plat)
1279			return -ENOMEM;
1280	}
1281
1282	if (np)
1283		mmci_dt_populate_generic_pdata(np, plat);
1284
1285	ret = amba_request_regions(dev, DRIVER_NAME);
1286	if (ret)
1287		goto out;
1288
1289	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1290	if (!mmc) {
1291		ret = -ENOMEM;
1292		goto rel_regions;
1293	}
1294
1295	host = mmc_priv(mmc);
1296	host->mmc = mmc;
1297
1298	host->gpio_wp = -ENOSYS;
1299	host->gpio_cd = -ENOSYS;
1300	host->gpio_cd_irq = -1;
1301
1302	host->hw_designer = amba_manf(dev);
1303	host->hw_revision = amba_rev(dev);
1304	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1305	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1306
1307	host->clk = clk_get(&dev->dev, NULL);
1308	if (IS_ERR(host->clk)) {
1309		ret = PTR_ERR(host->clk);
1310		host->clk = NULL;
1311		goto host_free;
1312	}
1313
1314	ret = clk_prepare_enable(host->clk);
1315	if (ret)
1316		goto clk_free;
1317
1318	host->plat = plat;
1319	host->variant = variant;
1320	host->mclk = clk_get_rate(host->clk);
1321	/*
1322	 * According to the spec, mclk is max 100 MHz,
1323	 * so we try to adjust the clock down to this,
1324	 * (if possible).
1325	 */
1326	if (host->mclk > 100000000) {
1327		ret = clk_set_rate(host->clk, 100000000);
1328		if (ret < 0)
1329			goto clk_disable;
1330		host->mclk = clk_get_rate(host->clk);
1331		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1332			host->mclk);
1333	}
1334	host->phybase = dev->res.start;
1335	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1336	if (!host->base) {
1337		ret = -ENOMEM;
1338		goto clk_disable;
1339	}
1340
1341	mmc->ops = &mmci_ops;
1342	/*
1343	 * The ARM and ST versions of the block have slightly different
1344	 * clock divider equations which means that the minimum divider
1345	 * differs too.
1346	 */
1347	if (variant->st_clkdiv)
1348		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1349	else
1350		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1351	/*
1352	 * If the platform data supplies a maximum operating
1353	 * frequency, this takes precedence. Else, we fall back
1354	 * to using the module parameter, which has a (low)
1355	 * default value in case it is not specified. Either
1356	 * value must not exceed the clock rate into the block,
1357	 * of course.
1358	 */
1359	if (plat->f_max)
1360		mmc->f_max = min(host->mclk, plat->f_max);
1361	else
1362		mmc->f_max = min(host->mclk, fmax);
1363	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1364
1365	host->pinctrl = devm_pinctrl_get(&dev->dev);
1366	if (IS_ERR(host->pinctrl)) {
1367		ret = PTR_ERR(host->pinctrl);
1368		goto clk_disable;
1369	}
1370
1371	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1372			PINCTRL_STATE_DEFAULT);
1373
1374	/* enable pins to be muxed in and configured */
1375	if (!IS_ERR(host->pins_default)) {
1376		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1377		if (ret)
1378			dev_warn(&dev->dev, "could not set default pins\n");
1379	} else
1380		dev_warn(&dev->dev, "could not get default pinstate\n");
1381
1382	/* Get regulators and the supported OCR mask */
1383	mmc_regulator_get_supply(mmc);
1384	if (!mmc->ocr_avail)
1385		mmc->ocr_avail = plat->ocr_mask;
1386	else if (plat->ocr_mask)
1387		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388
1389	mmc->caps = plat->capabilities;
1390	mmc->caps2 = plat->capabilities2;
1391
1392	/* We support these PM capabilities. */
1393	mmc->pm_caps = MMC_PM_KEEP_POWER;
1394
1395	/*
1396	 * We can do SGIO
1397	 */
1398	mmc->max_segs = NR_SG;
1399
1400	/*
1401	 * Since only a certain number of bits are valid in the data length
1402	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1403	 * single request.
1404	 */
1405	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1406
1407	/*
1408	 * Set the maximum segment size.  Since we aren't doing DMA
1409	 * (yet) we are only limited by the data length register.
1410	 */
1411	mmc->max_seg_size = mmc->max_req_size;
1412
1413	/*
1414	 * Block size can be up to 2048 bytes, but must be a power of two.
1415	 */
1416	mmc->max_blk_size = 1 << 11;
1417
1418	/*
1419	 * Limit the number of blocks transferred so that we don't overflow
1420	 * the maximum request size.
1421	 */
1422	mmc->max_blk_count = mmc->max_req_size >> 11;
1423
1424	spin_lock_init(&host->lock);
1425
1426	writel(0, host->base + MMCIMASK0);
1427	writel(0, host->base + MMCIMASK1);
1428	writel(0xfff, host->base + MMCICLEAR);
1429
1430	if (plat->gpio_cd == -EPROBE_DEFER) {
1431		ret = -EPROBE_DEFER;
1432		goto err_gpio_cd;
1433	}
1434	if (gpio_is_valid(plat->gpio_cd)) {
1435		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1436		if (ret == 0)
1437			ret = gpio_direction_input(plat->gpio_cd);
1438		if (ret == 0)
1439			host->gpio_cd = plat->gpio_cd;
1440		else if (ret != -ENOSYS)
1441			goto err_gpio_cd;
1442
1443		/*
1444		 * A gpio pin that will detect cards when inserted and removed
1445		 * will most likely want to trigger on the edges if it is
1446		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1447		 * for the inverted case) so we request triggers on both
1448		 * edges.
1449		 */
1450		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1451				mmci_cd_irq,
1452				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1453				DRIVER_NAME " (cd)", host);
1454		if (ret >= 0)
1455			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1456	}
1457	if (plat->gpio_wp == -EPROBE_DEFER) {
1458		ret = -EPROBE_DEFER;
1459		goto err_gpio_wp;
1460	}
1461	if (gpio_is_valid(plat->gpio_wp)) {
1462		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1463		if (ret == 0)
1464			ret = gpio_direction_input(plat->gpio_wp);
1465		if (ret == 0)
1466			host->gpio_wp = plat->gpio_wp;
1467		else if (ret != -ENOSYS)
1468			goto err_gpio_wp;
1469	}
1470
1471	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1472	    && host->gpio_cd_irq < 0)
1473		mmc->caps |= MMC_CAP_NEEDS_POLL;
1474
1475	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1476	if (ret)
1477		goto unmap;
1478
1479	if (!dev->irq[1])
1480		host->singleirq = true;
1481	else {
1482		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1483				  DRIVER_NAME " (pio)", host);
1484		if (ret)
1485			goto irq0_free;
1486	}
1487
1488	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1489
1490	amba_set_drvdata(dev, mmc);
1491
1492	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1493		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1494		 amba_rev(dev), (unsigned long long)dev->res.start,
1495		 dev->irq[0], dev->irq[1]);
1496
1497	mmci_dma_setup(host);
1498
1499	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1500	pm_runtime_use_autosuspend(&dev->dev);
1501	pm_runtime_put(&dev->dev);
1502
1503	mmc_add_host(mmc);
1504
1505	return 0;
1506
1507 irq0_free:
1508	free_irq(dev->irq[0], host);
1509 unmap:
1510	if (host->gpio_wp != -ENOSYS)
1511		gpio_free(host->gpio_wp);
1512 err_gpio_wp:
1513	if (host->gpio_cd_irq >= 0)
1514		free_irq(host->gpio_cd_irq, host);
1515	if (host->gpio_cd != -ENOSYS)
1516		gpio_free(host->gpio_cd);
1517 err_gpio_cd:
1518	iounmap(host->base);
1519 clk_disable:
1520	clk_disable_unprepare(host->clk);
1521 clk_free:
1522	clk_put(host->clk);
1523 host_free:
1524	mmc_free_host(mmc);
1525 rel_regions:
1526	amba_release_regions(dev);
1527 out:
1528	return ret;
1529}
1530
1531static int mmci_remove(struct amba_device *dev)
1532{
1533	struct mmc_host *mmc = amba_get_drvdata(dev);
1534
1535	amba_set_drvdata(dev, NULL);
1536
1537	if (mmc) {
1538		struct mmci_host *host = mmc_priv(mmc);
1539
1540		/*
1541		 * Undo pm_runtime_put() in probe.  We use the _sync
1542		 * version here so that we can access the primecell.
1543		 */
1544		pm_runtime_get_sync(&dev->dev);
1545
1546		mmc_remove_host(mmc);
1547
1548		writel(0, host->base + MMCIMASK0);
1549		writel(0, host->base + MMCIMASK1);
1550
1551		writel(0, host->base + MMCICOMMAND);
1552		writel(0, host->base + MMCIDATACTRL);
1553
1554		mmci_dma_release(host);
1555		free_irq(dev->irq[0], host);
1556		if (!host->singleirq)
1557			free_irq(dev->irq[1], host);
1558
1559		if (host->gpio_wp != -ENOSYS)
1560			gpio_free(host->gpio_wp);
1561		if (host->gpio_cd_irq >= 0)
1562			free_irq(host->gpio_cd_irq, host);
1563		if (host->gpio_cd != -ENOSYS)
1564			gpio_free(host->gpio_cd);
1565
1566		iounmap(host->base);
1567		clk_disable_unprepare(host->clk);
1568		clk_put(host->clk);
1569
1570		mmc_free_host(mmc);
1571
1572		amba_release_regions(dev);
1573	}
1574
1575	return 0;
1576}
1577
1578#ifdef CONFIG_SUSPEND
1579static int mmci_suspend(struct device *dev)
1580{
1581	struct amba_device *adev = to_amba_device(dev);
1582	struct mmc_host *mmc = amba_get_drvdata(adev);
1583	int ret = 0;
1584
1585	if (mmc) {
1586		struct mmci_host *host = mmc_priv(mmc);
1587
1588		ret = mmc_suspend_host(mmc);
1589		if (ret == 0) {
1590			pm_runtime_get_sync(dev);
1591			writel(0, host->base + MMCIMASK0);
1592		}
1593	}
1594
1595	return ret;
1596}
1597
1598static int mmci_resume(struct device *dev)
1599{
1600	struct amba_device *adev = to_amba_device(dev);
1601	struct mmc_host *mmc = amba_get_drvdata(adev);
1602	int ret = 0;
1603
1604	if (mmc) {
1605		struct mmci_host *host = mmc_priv(mmc);
1606
1607		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1608		pm_runtime_put(dev);
1609
1610		ret = mmc_resume_host(mmc);
1611	}
1612
1613	return ret;
1614}
1615#endif
1616
1617static const struct dev_pm_ops mmci_dev_pm_ops = {
1618	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1619};
1620
1621static struct amba_id mmci_ids[] = {
1622	{
1623		.id	= 0x00041180,
1624		.mask	= 0xff0fffff,
1625		.data	= &variant_arm,
1626	},
1627	{
1628		.id	= 0x01041180,
1629		.mask	= 0xff0fffff,
1630		.data	= &variant_arm_extended_fifo,
1631	},
1632	{
1633		.id	= 0x00041181,
1634		.mask	= 0x000fffff,
1635		.data	= &variant_arm,
1636	},
1637	/* ST Micro variants */
1638	{
1639		.id     = 0x00180180,
1640		.mask   = 0x00ffffff,
1641		.data	= &variant_u300,
1642	},
1643	{
1644		.id     = 0x10180180,
1645		.mask   = 0xf0ffffff,
1646		.data	= &variant_nomadik,
1647	},
1648	{
1649		.id     = 0x00280180,
1650		.mask   = 0x00ffffff,
1651		.data	= &variant_u300,
1652	},
1653	{
1654		.id     = 0x00480180,
1655		.mask   = 0xf0ffffff,
1656		.data	= &variant_ux500,
1657	},
1658	{
1659		.id     = 0x10480180,
1660		.mask   = 0xf0ffffff,
1661		.data	= &variant_ux500v2,
1662	},
1663	{ 0, 0 },
1664};
1665
1666MODULE_DEVICE_TABLE(amba, mmci_ids);
1667
1668static struct amba_driver mmci_driver = {
1669	.drv		= {
1670		.name	= DRIVER_NAME,
1671		.pm	= &mmci_dev_pm_ops,
1672	},
1673	.probe		= mmci_probe,
1674	.remove		= mmci_remove,
1675	.id_table	= mmci_ids,
1676};
1677
1678module_amba_driver(mmci_driver);
1679
1680module_param(fmax, uint, 0444);
1681
1682MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1683MODULE_LICENSE("GPL");
1684