mmci.c revision 7437cfa532842ce75189826742bddf1ba137f58e
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32#include <linux/pm_runtime.h>
33
34#include <asm/div64.h>
35#include <asm/io.h>
36#include <asm/sizes.h>
37
38#include "mmci.h"
39
40#define DRIVER_NAME "mmci-pl18x"
41
42static unsigned int fmax = 515633;
43
44/**
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 *	      is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 *		  is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 * @pwrreg_powerup: power up value for MMCIPOWER register
57 * @signal_direction: input/out direction of bus signals can be indicated
58 */
59struct variant_data {
60	unsigned int		clkreg;
61	unsigned int		clkreg_enable;
62	unsigned int		datalength_bits;
63	unsigned int		fifosize;
64	unsigned int		fifohalfsize;
65	bool			sdio;
66	bool			st_clkdiv;
67	bool			blksz_datactrl16;
68	u32			pwrreg_powerup;
69	bool			signal_direction;
70};
71
72static struct variant_data variant_arm = {
73	.fifosize		= 16 * 4,
74	.fifohalfsize		= 8 * 4,
75	.datalength_bits	= 16,
76	.pwrreg_powerup		= MCI_PWR_UP,
77};
78
79static struct variant_data variant_arm_extended_fifo = {
80	.fifosize		= 128 * 4,
81	.fifohalfsize		= 64 * 4,
82	.datalength_bits	= 16,
83	.pwrreg_powerup		= MCI_PWR_UP,
84};
85
86static struct variant_data variant_u300 = {
87	.fifosize		= 16 * 4,
88	.fifohalfsize		= 8 * 4,
89	.clkreg_enable		= MCI_ST_U300_HWFCEN,
90	.datalength_bits	= 16,
91	.sdio			= true,
92	.pwrreg_powerup		= MCI_PWR_ON,
93	.signal_direction	= true,
94};
95
96static struct variant_data variant_ux500 = {
97	.fifosize		= 30 * 4,
98	.fifohalfsize		= 8 * 4,
99	.clkreg			= MCI_CLK_ENABLE,
100	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
101	.datalength_bits	= 24,
102	.sdio			= true,
103	.st_clkdiv		= true,
104	.pwrreg_powerup		= MCI_PWR_ON,
105	.signal_direction	= true,
106};
107
108static struct variant_data variant_ux500v2 = {
109	.fifosize		= 30 * 4,
110	.fifohalfsize		= 8 * 4,
111	.clkreg			= MCI_CLK_ENABLE,
112	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
113	.datalength_bits	= 24,
114	.sdio			= true,
115	.st_clkdiv		= true,
116	.blksz_datactrl16	= true,
117	.pwrreg_powerup		= MCI_PWR_ON,
118	.signal_direction	= true,
119};
120
121/*
122 * This must be called with host->lock held
123 */
124static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
125{
126	if (host->clk_reg != clk) {
127		host->clk_reg = clk;
128		writel(clk, host->base + MMCICLOCK);
129	}
130}
131
132/*
133 * This must be called with host->lock held
134 */
135static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
136{
137	if (host->pwr_reg != pwr) {
138		host->pwr_reg = pwr;
139		writel(pwr, host->base + MMCIPOWER);
140	}
141}
142
143/*
144 * This must be called with host->lock held
145 */
146static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
147{
148	struct variant_data *variant = host->variant;
149	u32 clk = variant->clkreg;
150
151	if (desired) {
152		if (desired >= host->mclk) {
153			clk = MCI_CLK_BYPASS;
154			if (variant->st_clkdiv)
155				clk |= MCI_ST_UX500_NEG_EDGE;
156			host->cclk = host->mclk;
157		} else if (variant->st_clkdiv) {
158			/*
159			 * DB8500 TRM says f = mclk / (clkdiv + 2)
160			 * => clkdiv = (mclk / f) - 2
161			 * Round the divider up so we don't exceed the max
162			 * frequency
163			 */
164			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
165			if (clk >= 256)
166				clk = 255;
167			host->cclk = host->mclk / (clk + 2);
168		} else {
169			/*
170			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
171			 * => clkdiv = mclk / (2 * f) - 1
172			 */
173			clk = host->mclk / (2 * desired) - 1;
174			if (clk >= 256)
175				clk = 255;
176			host->cclk = host->mclk / (2 * (clk + 1));
177		}
178
179		clk |= variant->clkreg_enable;
180		clk |= MCI_CLK_ENABLE;
181		/* This hasn't proven to be worthwhile */
182		/* clk |= MCI_CLK_PWRSAVE; */
183	}
184
185	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
186		clk |= MCI_4BIT_BUS;
187	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
188		clk |= MCI_ST_8BIT_BUS;
189
190	mmci_write_clkreg(host, clk);
191}
192
193static void
194mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
195{
196	writel(0, host->base + MMCICOMMAND);
197
198	BUG_ON(host->data);
199
200	host->mrq = NULL;
201	host->cmd = NULL;
202
203	mmc_request_done(host->mmc, mrq);
204
205	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
206	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
207}
208
209static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
210{
211	void __iomem *base = host->base;
212
213	if (host->singleirq) {
214		unsigned int mask0 = readl(base + MMCIMASK0);
215
216		mask0 &= ~MCI_IRQ1MASK;
217		mask0 |= mask;
218
219		writel(mask0, base + MMCIMASK0);
220	}
221
222	writel(mask, base + MMCIMASK1);
223}
224
225static void mmci_stop_data(struct mmci_host *host)
226{
227	writel(0, host->base + MMCIDATACTRL);
228	mmci_set_mask1(host, 0);
229	host->data = NULL;
230}
231
232static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
233{
234	unsigned int flags = SG_MITER_ATOMIC;
235
236	if (data->flags & MMC_DATA_READ)
237		flags |= SG_MITER_TO_SG;
238	else
239		flags |= SG_MITER_FROM_SG;
240
241	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
242}
243
244/*
245 * All the DMA operation mode stuff goes inside this ifdef.
246 * This assumes that you have a generic DMA device interface,
247 * no custom DMA interfaces are supported.
248 */
249#ifdef CONFIG_DMA_ENGINE
250static void __devinit mmci_dma_setup(struct mmci_host *host)
251{
252	struct mmci_platform_data *plat = host->plat;
253	const char *rxname, *txname;
254	dma_cap_mask_t mask;
255
256	if (!plat || !plat->dma_filter) {
257		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
258		return;
259	}
260
261	/* initialize pre request cookie */
262	host->next_data.cookie = 1;
263
264	/* Try to acquire a generic DMA engine slave channel */
265	dma_cap_zero(mask);
266	dma_cap_set(DMA_SLAVE, mask);
267
268	/*
269	 * If only an RX channel is specified, the driver will
270	 * attempt to use it bidirectionally, however if it is
271	 * is specified but cannot be located, DMA will be disabled.
272	 */
273	if (plat->dma_rx_param) {
274		host->dma_rx_channel = dma_request_channel(mask,
275							   plat->dma_filter,
276							   plat->dma_rx_param);
277		/* E.g if no DMA hardware is present */
278		if (!host->dma_rx_channel)
279			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
280	}
281
282	if (plat->dma_tx_param) {
283		host->dma_tx_channel = dma_request_channel(mask,
284							   plat->dma_filter,
285							   plat->dma_tx_param);
286		if (!host->dma_tx_channel)
287			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
288	} else {
289		host->dma_tx_channel = host->dma_rx_channel;
290	}
291
292	if (host->dma_rx_channel)
293		rxname = dma_chan_name(host->dma_rx_channel);
294	else
295		rxname = "none";
296
297	if (host->dma_tx_channel)
298		txname = dma_chan_name(host->dma_tx_channel);
299	else
300		txname = "none";
301
302	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
303		 rxname, txname);
304
305	/*
306	 * Limit the maximum segment size in any SG entry according to
307	 * the parameters of the DMA engine device.
308	 */
309	if (host->dma_tx_channel) {
310		struct device *dev = host->dma_tx_channel->device->dev;
311		unsigned int max_seg_size = dma_get_max_seg_size(dev);
312
313		if (max_seg_size < host->mmc->max_seg_size)
314			host->mmc->max_seg_size = max_seg_size;
315	}
316	if (host->dma_rx_channel) {
317		struct device *dev = host->dma_rx_channel->device->dev;
318		unsigned int max_seg_size = dma_get_max_seg_size(dev);
319
320		if (max_seg_size < host->mmc->max_seg_size)
321			host->mmc->max_seg_size = max_seg_size;
322	}
323}
324
325/*
326 * This is used in __devinit or __devexit so inline it
327 * so it can be discarded.
328 */
329static inline void mmci_dma_release(struct mmci_host *host)
330{
331	struct mmci_platform_data *plat = host->plat;
332
333	if (host->dma_rx_channel)
334		dma_release_channel(host->dma_rx_channel);
335	if (host->dma_tx_channel && plat->dma_tx_param)
336		dma_release_channel(host->dma_tx_channel);
337	host->dma_rx_channel = host->dma_tx_channel = NULL;
338}
339
340static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
341{
342	struct dma_chan *chan = host->dma_current;
343	enum dma_data_direction dir;
344	u32 status;
345	int i;
346
347	/* Wait up to 1ms for the DMA to complete */
348	for (i = 0; ; i++) {
349		status = readl(host->base + MMCISTATUS);
350		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
351			break;
352		udelay(10);
353	}
354
355	/*
356	 * Check to see whether we still have some data left in the FIFO -
357	 * this catches DMA controllers which are unable to monitor the
358	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
359	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
360	 */
361	if (status & MCI_RXDATAAVLBLMASK) {
362		dmaengine_terminate_all(chan);
363		if (!data->error)
364			data->error = -EIO;
365	}
366
367	if (data->flags & MMC_DATA_WRITE) {
368		dir = DMA_TO_DEVICE;
369	} else {
370		dir = DMA_FROM_DEVICE;
371	}
372
373	if (!data->host_cookie)
374		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
375
376	/*
377	 * Use of DMA with scatter-gather is impossible.
378	 * Give up with DMA and switch back to PIO mode.
379	 */
380	if (status & MCI_RXDATAAVLBLMASK) {
381		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
382		mmci_dma_release(host);
383	}
384}
385
386static void mmci_dma_data_error(struct mmci_host *host)
387{
388	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
389	dmaengine_terminate_all(host->dma_current);
390}
391
392static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
393			      struct mmci_host_next *next)
394{
395	struct variant_data *variant = host->variant;
396	struct dma_slave_config conf = {
397		.src_addr = host->phybase + MMCIFIFO,
398		.dst_addr = host->phybase + MMCIFIFO,
399		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
400		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
401		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
402		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
403	};
404	struct dma_chan *chan;
405	struct dma_device *device;
406	struct dma_async_tx_descriptor *desc;
407	enum dma_data_direction buffer_dirn;
408	int nr_sg;
409
410	/* Check if next job is already prepared */
411	if (data->host_cookie && !next &&
412	    host->dma_current && host->dma_desc_current)
413		return 0;
414
415	if (!next) {
416		host->dma_current = NULL;
417		host->dma_desc_current = NULL;
418	}
419
420	if (data->flags & MMC_DATA_READ) {
421		conf.direction = DMA_DEV_TO_MEM;
422		buffer_dirn = DMA_FROM_DEVICE;
423		chan = host->dma_rx_channel;
424	} else {
425		conf.direction = DMA_MEM_TO_DEV;
426		buffer_dirn = DMA_TO_DEVICE;
427		chan = host->dma_tx_channel;
428	}
429
430	/* If there's no DMA channel, fall back to PIO */
431	if (!chan)
432		return -EINVAL;
433
434	/* If less than or equal to the fifo size, don't bother with DMA */
435	if (data->blksz * data->blocks <= variant->fifosize)
436		return -EINVAL;
437
438	device = chan->device;
439	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
440	if (nr_sg == 0)
441		return -EINVAL;
442
443	dmaengine_slave_config(chan, &conf);
444	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
445					    conf.direction, DMA_CTRL_ACK);
446	if (!desc)
447		goto unmap_exit;
448
449	if (next) {
450		next->dma_chan = chan;
451		next->dma_desc = desc;
452	} else {
453		host->dma_current = chan;
454		host->dma_desc_current = desc;
455	}
456
457	return 0;
458
459 unmap_exit:
460	if (!next)
461		dmaengine_terminate_all(chan);
462	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
463	return -ENOMEM;
464}
465
466static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
467{
468	int ret;
469	struct mmc_data *data = host->data;
470
471	ret = mmci_dma_prep_data(host, host->data, NULL);
472	if (ret)
473		return ret;
474
475	/* Okay, go for it. */
476	dev_vdbg(mmc_dev(host->mmc),
477		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
478		 data->sg_len, data->blksz, data->blocks, data->flags);
479	dmaengine_submit(host->dma_desc_current);
480	dma_async_issue_pending(host->dma_current);
481
482	datactrl |= MCI_DPSM_DMAENABLE;
483
484	/* Trigger the DMA transfer */
485	writel(datactrl, host->base + MMCIDATACTRL);
486
487	/*
488	 * Let the MMCI say when the data is ended and it's time
489	 * to fire next DMA request. When that happens, MMCI will
490	 * call mmci_data_end()
491	 */
492	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
493	       host->base + MMCIMASK0);
494	return 0;
495}
496
497static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
498{
499	struct mmci_host_next *next = &host->next_data;
500
501	if (data->host_cookie && data->host_cookie != next->cookie) {
502		pr_warning("[%s] invalid cookie: data->host_cookie %d"
503		       " host->next_data.cookie %d\n",
504		       __func__, data->host_cookie, host->next_data.cookie);
505		data->host_cookie = 0;
506	}
507
508	if (!data->host_cookie)
509		return;
510
511	host->dma_desc_current = next->dma_desc;
512	host->dma_current = next->dma_chan;
513
514	next->dma_desc = NULL;
515	next->dma_chan = NULL;
516}
517
518static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
519			     bool is_first_req)
520{
521	struct mmci_host *host = mmc_priv(mmc);
522	struct mmc_data *data = mrq->data;
523	struct mmci_host_next *nd = &host->next_data;
524
525	if (!data)
526		return;
527
528	if (data->host_cookie) {
529		data->host_cookie = 0;
530		return;
531	}
532
533	/* if config for dma */
534	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
535	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
536		if (mmci_dma_prep_data(host, data, nd))
537			data->host_cookie = 0;
538		else
539			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
540	}
541}
542
543static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
544			      int err)
545{
546	struct mmci_host *host = mmc_priv(mmc);
547	struct mmc_data *data = mrq->data;
548	struct dma_chan *chan;
549	enum dma_data_direction dir;
550
551	if (!data)
552		return;
553
554	if (data->flags & MMC_DATA_READ) {
555		dir = DMA_FROM_DEVICE;
556		chan = host->dma_rx_channel;
557	} else {
558		dir = DMA_TO_DEVICE;
559		chan = host->dma_tx_channel;
560	}
561
562
563	/* if config for dma */
564	if (chan) {
565		if (err)
566			dmaengine_terminate_all(chan);
567		if (data->host_cookie)
568			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
569				     data->sg_len, dir);
570		mrq->data->host_cookie = 0;
571	}
572}
573
574#else
575/* Blank functions if the DMA engine is not available */
576static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
577{
578}
579static inline void mmci_dma_setup(struct mmci_host *host)
580{
581}
582
583static inline void mmci_dma_release(struct mmci_host *host)
584{
585}
586
587static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
588{
589}
590
591static inline void mmci_dma_data_error(struct mmci_host *host)
592{
593}
594
595static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
596{
597	return -ENOSYS;
598}
599
600#define mmci_pre_request NULL
601#define mmci_post_request NULL
602
603#endif
604
605static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
606{
607	struct variant_data *variant = host->variant;
608	unsigned int datactrl, timeout, irqmask;
609	unsigned long long clks;
610	void __iomem *base;
611	int blksz_bits;
612
613	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
614		data->blksz, data->blocks, data->flags);
615
616	host->data = data;
617	host->size = data->blksz * data->blocks;
618	data->bytes_xfered = 0;
619
620	clks = (unsigned long long)data->timeout_ns * host->cclk;
621	do_div(clks, 1000000000UL);
622
623	timeout = data->timeout_clks + (unsigned int)clks;
624
625	base = host->base;
626	writel(timeout, base + MMCIDATATIMER);
627	writel(host->size, base + MMCIDATALENGTH);
628
629	blksz_bits = ffs(data->blksz) - 1;
630	BUG_ON(1 << blksz_bits != data->blksz);
631
632	if (variant->blksz_datactrl16)
633		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
634	else
635		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
636
637	if (data->flags & MMC_DATA_READ)
638		datactrl |= MCI_DPSM_DIRECTION;
639
640	/* The ST Micro variants has a special bit to enable SDIO */
641	if (variant->sdio && host->mmc->card)
642		if (mmc_card_sdio(host->mmc->card))
643			datactrl |= MCI_ST_DPSM_SDIOEN;
644
645	/*
646	 * Attempt to use DMA operation mode, if this
647	 * should fail, fall back to PIO mode
648	 */
649	if (!mmci_dma_start_data(host, datactrl))
650		return;
651
652	/* IRQ mode, map the SG list for CPU reading/writing */
653	mmci_init_sg(host, data);
654
655	if (data->flags & MMC_DATA_READ) {
656		irqmask = MCI_RXFIFOHALFFULLMASK;
657
658		/*
659		 * If we have less than the fifo 'half-full' threshold to
660		 * transfer, trigger a PIO interrupt as soon as any data
661		 * is available.
662		 */
663		if (host->size < variant->fifohalfsize)
664			irqmask |= MCI_RXDATAAVLBLMASK;
665	} else {
666		/*
667		 * We don't actually need to include "FIFO empty" here
668		 * since its implicit in "FIFO half empty".
669		 */
670		irqmask = MCI_TXFIFOHALFEMPTYMASK;
671	}
672
673	writel(datactrl, base + MMCIDATACTRL);
674	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
675	mmci_set_mask1(host, irqmask);
676}
677
678static void
679mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
680{
681	void __iomem *base = host->base;
682
683	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
684	    cmd->opcode, cmd->arg, cmd->flags);
685
686	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
687		writel(0, base + MMCICOMMAND);
688		udelay(1);
689	}
690
691	c |= cmd->opcode | MCI_CPSM_ENABLE;
692	if (cmd->flags & MMC_RSP_PRESENT) {
693		if (cmd->flags & MMC_RSP_136)
694			c |= MCI_CPSM_LONGRSP;
695		c |= MCI_CPSM_RESPONSE;
696	}
697	if (/*interrupt*/0)
698		c |= MCI_CPSM_INTERRUPT;
699
700	host->cmd = cmd;
701
702	writel(cmd->arg, base + MMCIARGUMENT);
703	writel(c, base + MMCICOMMAND);
704}
705
706static void
707mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
708	      unsigned int status)
709{
710	/* First check for errors */
711	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
712		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
713		u32 remain, success;
714
715		/* Terminate the DMA transfer */
716		if (dma_inprogress(host))
717			mmci_dma_data_error(host);
718
719		/*
720		 * Calculate how far we are into the transfer.  Note that
721		 * the data counter gives the number of bytes transferred
722		 * on the MMC bus, not on the host side.  On reads, this
723		 * can be as much as a FIFO-worth of data ahead.  This
724		 * matters for FIFO overruns only.
725		 */
726		remain = readl(host->base + MMCIDATACNT);
727		success = data->blksz * data->blocks - remain;
728
729		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
730			status, success);
731		if (status & MCI_DATACRCFAIL) {
732			/* Last block was not successful */
733			success -= 1;
734			data->error = -EILSEQ;
735		} else if (status & MCI_DATATIMEOUT) {
736			data->error = -ETIMEDOUT;
737		} else if (status & MCI_STARTBITERR) {
738			data->error = -ECOMM;
739		} else if (status & MCI_TXUNDERRUN) {
740			data->error = -EIO;
741		} else if (status & MCI_RXOVERRUN) {
742			if (success > host->variant->fifosize)
743				success -= host->variant->fifosize;
744			else
745				success = 0;
746			data->error = -EIO;
747		}
748		data->bytes_xfered = round_down(success, data->blksz);
749	}
750
751	if (status & MCI_DATABLOCKEND)
752		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
753
754	if (status & MCI_DATAEND || data->error) {
755		if (dma_inprogress(host))
756			mmci_dma_unmap(host, data);
757		mmci_stop_data(host);
758
759		if (!data->error)
760			/* The error clause is handled above, success! */
761			data->bytes_xfered = data->blksz * data->blocks;
762
763		if (!data->stop) {
764			mmci_request_end(host, data->mrq);
765		} else {
766			mmci_start_command(host, data->stop, 0);
767		}
768	}
769}
770
771static void
772mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
773	     unsigned int status)
774{
775	void __iomem *base = host->base;
776
777	host->cmd = NULL;
778
779	if (status & MCI_CMDTIMEOUT) {
780		cmd->error = -ETIMEDOUT;
781	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
782		cmd->error = -EILSEQ;
783	} else {
784		cmd->resp[0] = readl(base + MMCIRESPONSE0);
785		cmd->resp[1] = readl(base + MMCIRESPONSE1);
786		cmd->resp[2] = readl(base + MMCIRESPONSE2);
787		cmd->resp[3] = readl(base + MMCIRESPONSE3);
788	}
789
790	if (!cmd->data || cmd->error) {
791		if (host->data) {
792			/* Terminate the DMA transfer */
793			if (dma_inprogress(host))
794				mmci_dma_data_error(host);
795			mmci_stop_data(host);
796		}
797		mmci_request_end(host, cmd->mrq);
798	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
799		mmci_start_data(host, cmd->data);
800	}
801}
802
803static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
804{
805	void __iomem *base = host->base;
806	char *ptr = buffer;
807	u32 status;
808	int host_remain = host->size;
809
810	do {
811		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
812
813		if (count > remain)
814			count = remain;
815
816		if (count <= 0)
817			break;
818
819		/*
820		 * SDIO especially may want to send something that is
821		 * not divisible by 4 (as opposed to card sectors
822		 * etc). Therefore make sure to always read the last bytes
823		 * while only doing full 32-bit reads towards the FIFO.
824		 */
825		if (unlikely(count & 0x3)) {
826			if (count < 4) {
827				unsigned char buf[4];
828				readsl(base + MMCIFIFO, buf, 1);
829				memcpy(ptr, buf, count);
830			} else {
831				readsl(base + MMCIFIFO, ptr, count >> 2);
832				count &= ~0x3;
833			}
834		} else {
835			readsl(base + MMCIFIFO, ptr, count >> 2);
836		}
837
838		ptr += count;
839		remain -= count;
840		host_remain -= count;
841
842		if (remain == 0)
843			break;
844
845		status = readl(base + MMCISTATUS);
846	} while (status & MCI_RXDATAAVLBL);
847
848	return ptr - buffer;
849}
850
851static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
852{
853	struct variant_data *variant = host->variant;
854	void __iomem *base = host->base;
855	char *ptr = buffer;
856
857	do {
858		unsigned int count, maxcnt;
859
860		maxcnt = status & MCI_TXFIFOEMPTY ?
861			 variant->fifosize : variant->fifohalfsize;
862		count = min(remain, maxcnt);
863
864		/*
865		 * The ST Micro variant for SDIO transfer sizes
866		 * less then 8 bytes should have clock H/W flow
867		 * control disabled.
868		 */
869		if (variant->sdio &&
870		    mmc_card_sdio(host->mmc->card)) {
871			u32 clk;
872			if (count < 8)
873				clk = host->clk_reg & ~variant->clkreg_enable;
874			else
875				clk = host->clk_reg | variant->clkreg_enable;
876
877			mmci_write_clkreg(host, clk);
878		}
879
880		/*
881		 * SDIO especially may want to send something that is
882		 * not divisible by 4 (as opposed to card sectors
883		 * etc), and the FIFO only accept full 32-bit writes.
884		 * So compensate by adding +3 on the count, a single
885		 * byte become a 32bit write, 7 bytes will be two
886		 * 32bit writes etc.
887		 */
888		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
889
890		ptr += count;
891		remain -= count;
892
893		if (remain == 0)
894			break;
895
896		status = readl(base + MMCISTATUS);
897	} while (status & MCI_TXFIFOHALFEMPTY);
898
899	return ptr - buffer;
900}
901
902/*
903 * PIO data transfer IRQ handler.
904 */
905static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
906{
907	struct mmci_host *host = dev_id;
908	struct sg_mapping_iter *sg_miter = &host->sg_miter;
909	struct variant_data *variant = host->variant;
910	void __iomem *base = host->base;
911	unsigned long flags;
912	u32 status;
913
914	status = readl(base + MMCISTATUS);
915
916	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
917
918	local_irq_save(flags);
919
920	do {
921		unsigned int remain, len;
922		char *buffer;
923
924		/*
925		 * For write, we only need to test the half-empty flag
926		 * here - if the FIFO is completely empty, then by
927		 * definition it is more than half empty.
928		 *
929		 * For read, check for data available.
930		 */
931		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
932			break;
933
934		if (!sg_miter_next(sg_miter))
935			break;
936
937		buffer = sg_miter->addr;
938		remain = sg_miter->length;
939
940		len = 0;
941		if (status & MCI_RXACTIVE)
942			len = mmci_pio_read(host, buffer, remain);
943		if (status & MCI_TXACTIVE)
944			len = mmci_pio_write(host, buffer, remain, status);
945
946		sg_miter->consumed = len;
947
948		host->size -= len;
949		remain -= len;
950
951		if (remain)
952			break;
953
954		status = readl(base + MMCISTATUS);
955	} while (1);
956
957	sg_miter_stop(sg_miter);
958
959	local_irq_restore(flags);
960
961	/*
962	 * If we have less than the fifo 'half-full' threshold to transfer,
963	 * trigger a PIO interrupt as soon as any data is available.
964	 */
965	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
966		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
967
968	/*
969	 * If we run out of data, disable the data IRQs; this
970	 * prevents a race where the FIFO becomes empty before
971	 * the chip itself has disabled the data path, and
972	 * stops us racing with our data end IRQ.
973	 */
974	if (host->size == 0) {
975		mmci_set_mask1(host, 0);
976		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
977	}
978
979	return IRQ_HANDLED;
980}
981
982/*
983 * Handle completion of command and data transfers.
984 */
985static irqreturn_t mmci_irq(int irq, void *dev_id)
986{
987	struct mmci_host *host = dev_id;
988	u32 status;
989	int ret = 0;
990
991	spin_lock(&host->lock);
992
993	do {
994		struct mmc_command *cmd;
995		struct mmc_data *data;
996
997		status = readl(host->base + MMCISTATUS);
998
999		if (host->singleirq) {
1000			if (status & readl(host->base + MMCIMASK1))
1001				mmci_pio_irq(irq, dev_id);
1002
1003			status &= ~MCI_IRQ1MASK;
1004		}
1005
1006		status &= readl(host->base + MMCIMASK0);
1007		writel(status, host->base + MMCICLEAR);
1008
1009		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1010
1011		data = host->data;
1012		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1013			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1014			      MCI_DATABLOCKEND) && data)
1015			mmci_data_irq(host, data, status);
1016
1017		cmd = host->cmd;
1018		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1019			mmci_cmd_irq(host, cmd, status);
1020
1021		ret = 1;
1022	} while (status);
1023
1024	spin_unlock(&host->lock);
1025
1026	return IRQ_RETVAL(ret);
1027}
1028
1029static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1030{
1031	struct mmci_host *host = mmc_priv(mmc);
1032	unsigned long flags;
1033
1034	WARN_ON(host->mrq != NULL);
1035
1036	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1037		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1038			mrq->data->blksz);
1039		mrq->cmd->error = -EINVAL;
1040		mmc_request_done(mmc, mrq);
1041		return;
1042	}
1043
1044	pm_runtime_get_sync(mmc_dev(mmc));
1045
1046	spin_lock_irqsave(&host->lock, flags);
1047
1048	host->mrq = mrq;
1049
1050	if (mrq->data)
1051		mmci_get_next_data(host, mrq->data);
1052
1053	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1054		mmci_start_data(host, mrq->data);
1055
1056	mmci_start_command(host, mrq->cmd, 0);
1057
1058	spin_unlock_irqrestore(&host->lock, flags);
1059}
1060
1061static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1062{
1063	struct mmci_host *host = mmc_priv(mmc);
1064	struct variant_data *variant = host->variant;
1065	u32 pwr = 0;
1066	unsigned long flags;
1067	int ret;
1068
1069	pm_runtime_get_sync(mmc_dev(mmc));
1070
1071	if (host->plat->ios_handler &&
1072		host->plat->ios_handler(mmc_dev(mmc), ios))
1073			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1074
1075	switch (ios->power_mode) {
1076	case MMC_POWER_OFF:
1077		if (host->vcc)
1078			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1079		break;
1080	case MMC_POWER_UP:
1081		if (host->vcc) {
1082			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1083			if (ret) {
1084				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1085				/*
1086				 * The .set_ios() function in the mmc_host_ops
1087				 * struct return void, and failing to set the
1088				 * power should be rare so we print an error
1089				 * and return here.
1090				 */
1091				goto out;
1092			}
1093		}
1094		/*
1095		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1096		 * and instead uses MCI_PWR_ON so apply whatever value is
1097		 * configured in the variant data.
1098		 */
1099		pwr |= variant->pwrreg_powerup;
1100
1101		break;
1102	case MMC_POWER_ON:
1103		pwr |= MCI_PWR_ON;
1104		break;
1105	}
1106
1107	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1108		/*
1109		 * The ST Micro variant has some additional bits
1110		 * indicating signal direction for the signals in
1111		 * the SD/MMC bus and feedback-clock usage.
1112		 */
1113		pwr |= host->plat->sigdir;
1114
1115		if (ios->bus_width == MMC_BUS_WIDTH_4)
1116			pwr &= ~MCI_ST_DATA74DIREN;
1117		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1118			pwr &= (~MCI_ST_DATA74DIREN &
1119				~MCI_ST_DATA31DIREN &
1120				~MCI_ST_DATA2DIREN);
1121	}
1122
1123	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1124		if (host->hw_designer != AMBA_VENDOR_ST)
1125			pwr |= MCI_ROD;
1126		else {
1127			/*
1128			 * The ST Micro variant use the ROD bit for something
1129			 * else and only has OD (Open Drain).
1130			 */
1131			pwr |= MCI_OD;
1132		}
1133	}
1134
1135	spin_lock_irqsave(&host->lock, flags);
1136
1137	mmci_set_clkreg(host, ios->clock);
1138	mmci_write_pwrreg(host, pwr);
1139
1140	spin_unlock_irqrestore(&host->lock, flags);
1141
1142 out:
1143	pm_runtime_mark_last_busy(mmc_dev(mmc));
1144	pm_runtime_put_autosuspend(mmc_dev(mmc));
1145}
1146
1147static int mmci_get_ro(struct mmc_host *mmc)
1148{
1149	struct mmci_host *host = mmc_priv(mmc);
1150
1151	if (host->gpio_wp == -ENOSYS)
1152		return -ENOSYS;
1153
1154	return gpio_get_value_cansleep(host->gpio_wp);
1155}
1156
1157static int mmci_get_cd(struct mmc_host *mmc)
1158{
1159	struct mmci_host *host = mmc_priv(mmc);
1160	struct mmci_platform_data *plat = host->plat;
1161	unsigned int status;
1162
1163	if (host->gpio_cd == -ENOSYS) {
1164		if (!plat->status)
1165			return 1; /* Assume always present */
1166
1167		status = plat->status(mmc_dev(host->mmc));
1168	} else
1169		status = !!gpio_get_value_cansleep(host->gpio_cd)
1170			^ plat->cd_invert;
1171
1172	/*
1173	 * Use positive logic throughout - status is zero for no card,
1174	 * non-zero for card inserted.
1175	 */
1176	return status;
1177}
1178
1179static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1180{
1181	struct mmci_host *host = dev_id;
1182
1183	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1184
1185	return IRQ_HANDLED;
1186}
1187
1188static const struct mmc_host_ops mmci_ops = {
1189	.request	= mmci_request,
1190	.pre_req	= mmci_pre_request,
1191	.post_req	= mmci_post_request,
1192	.set_ios	= mmci_set_ios,
1193	.get_ro		= mmci_get_ro,
1194	.get_cd		= mmci_get_cd,
1195};
1196
1197static int __devinit mmci_probe(struct amba_device *dev,
1198	const struct amba_id *id)
1199{
1200	struct mmci_platform_data *plat = dev->dev.platform_data;
1201	struct variant_data *variant = id->data;
1202	struct mmci_host *host;
1203	struct mmc_host *mmc;
1204	int ret;
1205
1206	/* must have platform data */
1207	if (!plat) {
1208		ret = -EINVAL;
1209		goto out;
1210	}
1211
1212	ret = amba_request_regions(dev, DRIVER_NAME);
1213	if (ret)
1214		goto out;
1215
1216	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1217	if (!mmc) {
1218		ret = -ENOMEM;
1219		goto rel_regions;
1220	}
1221
1222	host = mmc_priv(mmc);
1223	host->mmc = mmc;
1224
1225	host->gpio_wp = -ENOSYS;
1226	host->gpio_cd = -ENOSYS;
1227	host->gpio_cd_irq = -1;
1228
1229	host->hw_designer = amba_manf(dev);
1230	host->hw_revision = amba_rev(dev);
1231	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1232	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1233
1234	host->clk = clk_get(&dev->dev, NULL);
1235	if (IS_ERR(host->clk)) {
1236		ret = PTR_ERR(host->clk);
1237		host->clk = NULL;
1238		goto host_free;
1239	}
1240
1241	ret = clk_prepare(host->clk);
1242	if (ret)
1243		goto clk_free;
1244
1245	ret = clk_enable(host->clk);
1246	if (ret)
1247		goto clk_unprep;
1248
1249	host->plat = plat;
1250	host->variant = variant;
1251	host->mclk = clk_get_rate(host->clk);
1252	/*
1253	 * According to the spec, mclk is max 100 MHz,
1254	 * so we try to adjust the clock down to this,
1255	 * (if possible).
1256	 */
1257	if (host->mclk > 100000000) {
1258		ret = clk_set_rate(host->clk, 100000000);
1259		if (ret < 0)
1260			goto clk_disable;
1261		host->mclk = clk_get_rate(host->clk);
1262		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1263			host->mclk);
1264	}
1265	host->phybase = dev->res.start;
1266	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1267	if (!host->base) {
1268		ret = -ENOMEM;
1269		goto clk_disable;
1270	}
1271
1272	mmc->ops = &mmci_ops;
1273	/*
1274	 * The ARM and ST versions of the block have slightly different
1275	 * clock divider equations which means that the minimum divider
1276	 * differs too.
1277	 */
1278	if (variant->st_clkdiv)
1279		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1280	else
1281		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1282	/*
1283	 * If the platform data supplies a maximum operating
1284	 * frequency, this takes precedence. Else, we fall back
1285	 * to using the module parameter, which has a (low)
1286	 * default value in case it is not specified. Either
1287	 * value must not exceed the clock rate into the block,
1288	 * of course.
1289	 */
1290	if (plat->f_max)
1291		mmc->f_max = min(host->mclk, plat->f_max);
1292	else
1293		mmc->f_max = min(host->mclk, fmax);
1294	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1295
1296#ifdef CONFIG_REGULATOR
1297	/* If we're using the regulator framework, try to fetch a regulator */
1298	host->vcc = regulator_get(&dev->dev, "vmmc");
1299	if (IS_ERR(host->vcc))
1300		host->vcc = NULL;
1301	else {
1302		int mask = mmc_regulator_get_ocrmask(host->vcc);
1303
1304		if (mask < 0)
1305			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1306				mask);
1307		else {
1308			host->mmc->ocr_avail = (u32) mask;
1309			if (plat->ocr_mask)
1310				dev_warn(&dev->dev,
1311				 "Provided ocr_mask/setpower will not be used "
1312				 "(using regulator instead)\n");
1313		}
1314	}
1315#endif
1316	/* Fall back to platform data if no regulator is found */
1317	if (host->vcc == NULL)
1318		mmc->ocr_avail = plat->ocr_mask;
1319	mmc->caps = plat->capabilities;
1320	mmc->caps2 = plat->capabilities2;
1321
1322	/*
1323	 * We can do SGIO
1324	 */
1325	mmc->max_segs = NR_SG;
1326
1327	/*
1328	 * Since only a certain number of bits are valid in the data length
1329	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1330	 * single request.
1331	 */
1332	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1333
1334	/*
1335	 * Set the maximum segment size.  Since we aren't doing DMA
1336	 * (yet) we are only limited by the data length register.
1337	 */
1338	mmc->max_seg_size = mmc->max_req_size;
1339
1340	/*
1341	 * Block size can be up to 2048 bytes, but must be a power of two.
1342	 */
1343	mmc->max_blk_size = 2048;
1344
1345	/*
1346	 * No limit on the number of blocks transferred.
1347	 */
1348	mmc->max_blk_count = mmc->max_req_size;
1349
1350	spin_lock_init(&host->lock);
1351
1352	writel(0, host->base + MMCIMASK0);
1353	writel(0, host->base + MMCIMASK1);
1354	writel(0xfff, host->base + MMCICLEAR);
1355
1356	if (gpio_is_valid(plat->gpio_cd)) {
1357		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1358		if (ret == 0)
1359			ret = gpio_direction_input(plat->gpio_cd);
1360		if (ret == 0)
1361			host->gpio_cd = plat->gpio_cd;
1362		else if (ret != -ENOSYS)
1363			goto err_gpio_cd;
1364
1365		/*
1366		 * A gpio pin that will detect cards when inserted and removed
1367		 * will most likely want to trigger on the edges if it is
1368		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1369		 * for the inverted case) so we request triggers on both
1370		 * edges.
1371		 */
1372		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1373				mmci_cd_irq,
1374				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1375				DRIVER_NAME " (cd)", host);
1376		if (ret >= 0)
1377			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1378	}
1379	if (gpio_is_valid(plat->gpio_wp)) {
1380		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1381		if (ret == 0)
1382			ret = gpio_direction_input(plat->gpio_wp);
1383		if (ret == 0)
1384			host->gpio_wp = plat->gpio_wp;
1385		else if (ret != -ENOSYS)
1386			goto err_gpio_wp;
1387	}
1388
1389	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1390	    && host->gpio_cd_irq < 0)
1391		mmc->caps |= MMC_CAP_NEEDS_POLL;
1392
1393	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1394	if (ret)
1395		goto unmap;
1396
1397	if (dev->irq[1] == NO_IRQ)
1398		host->singleirq = true;
1399	else {
1400		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1401				  DRIVER_NAME " (pio)", host);
1402		if (ret)
1403			goto irq0_free;
1404	}
1405
1406	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1407
1408	amba_set_drvdata(dev, mmc);
1409
1410	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1411		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1412		 amba_rev(dev), (unsigned long long)dev->res.start,
1413		 dev->irq[0], dev->irq[1]);
1414
1415	mmci_dma_setup(host);
1416
1417	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1418	pm_runtime_use_autosuspend(&dev->dev);
1419	pm_runtime_put(&dev->dev);
1420
1421	mmc_add_host(mmc);
1422
1423	return 0;
1424
1425 irq0_free:
1426	free_irq(dev->irq[0], host);
1427 unmap:
1428	if (host->gpio_wp != -ENOSYS)
1429		gpio_free(host->gpio_wp);
1430 err_gpio_wp:
1431	if (host->gpio_cd_irq >= 0)
1432		free_irq(host->gpio_cd_irq, host);
1433	if (host->gpio_cd != -ENOSYS)
1434		gpio_free(host->gpio_cd);
1435 err_gpio_cd:
1436	iounmap(host->base);
1437 clk_disable:
1438	clk_disable(host->clk);
1439 clk_unprep:
1440	clk_unprepare(host->clk);
1441 clk_free:
1442	clk_put(host->clk);
1443 host_free:
1444	mmc_free_host(mmc);
1445 rel_regions:
1446	amba_release_regions(dev);
1447 out:
1448	return ret;
1449}
1450
1451static int __devexit mmci_remove(struct amba_device *dev)
1452{
1453	struct mmc_host *mmc = amba_get_drvdata(dev);
1454
1455	amba_set_drvdata(dev, NULL);
1456
1457	if (mmc) {
1458		struct mmci_host *host = mmc_priv(mmc);
1459
1460		/*
1461		 * Undo pm_runtime_put() in probe.  We use the _sync
1462		 * version here so that we can access the primecell.
1463		 */
1464		pm_runtime_get_sync(&dev->dev);
1465
1466		mmc_remove_host(mmc);
1467
1468		writel(0, host->base + MMCIMASK0);
1469		writel(0, host->base + MMCIMASK1);
1470
1471		writel(0, host->base + MMCICOMMAND);
1472		writel(0, host->base + MMCIDATACTRL);
1473
1474		mmci_dma_release(host);
1475		free_irq(dev->irq[0], host);
1476		if (!host->singleirq)
1477			free_irq(dev->irq[1], host);
1478
1479		if (host->gpio_wp != -ENOSYS)
1480			gpio_free(host->gpio_wp);
1481		if (host->gpio_cd_irq >= 0)
1482			free_irq(host->gpio_cd_irq, host);
1483		if (host->gpio_cd != -ENOSYS)
1484			gpio_free(host->gpio_cd);
1485
1486		iounmap(host->base);
1487		clk_disable(host->clk);
1488		clk_unprepare(host->clk);
1489		clk_put(host->clk);
1490
1491		if (host->vcc)
1492			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1493		regulator_put(host->vcc);
1494
1495		mmc_free_host(mmc);
1496
1497		amba_release_regions(dev);
1498	}
1499
1500	return 0;
1501}
1502
1503#ifdef CONFIG_SUSPEND
1504static int mmci_suspend(struct device *dev)
1505{
1506	struct amba_device *adev = to_amba_device(dev);
1507	struct mmc_host *mmc = amba_get_drvdata(adev);
1508	int ret = 0;
1509
1510	if (mmc) {
1511		struct mmci_host *host = mmc_priv(mmc);
1512
1513		ret = mmc_suspend_host(mmc);
1514		if (ret == 0) {
1515			pm_runtime_get_sync(dev);
1516			writel(0, host->base + MMCIMASK0);
1517		}
1518	}
1519
1520	return ret;
1521}
1522
1523static int mmci_resume(struct device *dev)
1524{
1525	struct amba_device *adev = to_amba_device(dev);
1526	struct mmc_host *mmc = amba_get_drvdata(adev);
1527	int ret = 0;
1528
1529	if (mmc) {
1530		struct mmci_host *host = mmc_priv(mmc);
1531
1532		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1533		pm_runtime_put(dev);
1534
1535		ret = mmc_resume_host(mmc);
1536	}
1537
1538	return ret;
1539}
1540#endif
1541
1542static const struct dev_pm_ops mmci_dev_pm_ops = {
1543	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1544};
1545
1546static struct amba_id mmci_ids[] = {
1547	{
1548		.id	= 0x00041180,
1549		.mask	= 0xff0fffff,
1550		.data	= &variant_arm,
1551	},
1552	{
1553		.id	= 0x01041180,
1554		.mask	= 0xff0fffff,
1555		.data	= &variant_arm_extended_fifo,
1556	},
1557	{
1558		.id	= 0x00041181,
1559		.mask	= 0x000fffff,
1560		.data	= &variant_arm,
1561	},
1562	/* ST Micro variants */
1563	{
1564		.id     = 0x00180180,
1565		.mask   = 0x00ffffff,
1566		.data	= &variant_u300,
1567	},
1568	{
1569		.id     = 0x00280180,
1570		.mask   = 0x00ffffff,
1571		.data	= &variant_u300,
1572	},
1573	{
1574		.id     = 0x00480180,
1575		.mask   = 0xf0ffffff,
1576		.data	= &variant_ux500,
1577	},
1578	{
1579		.id     = 0x10480180,
1580		.mask   = 0xf0ffffff,
1581		.data	= &variant_ux500v2,
1582	},
1583	{ 0, 0 },
1584};
1585
1586MODULE_DEVICE_TABLE(amba, mmci_ids);
1587
1588static struct amba_driver mmci_driver = {
1589	.drv		= {
1590		.name	= DRIVER_NAME,
1591		.pm	= &mmci_dev_pm_ops,
1592	},
1593	.probe		= mmci_probe,
1594	.remove		= __devexit_p(mmci_remove),
1595	.id_table	= mmci_ids,
1596};
1597
1598static int __init mmci_init(void)
1599{
1600	return amba_driver_register(&mmci_driver);
1601}
1602
1603static void __exit mmci_exit(void)
1604{
1605	amba_driver_unregister(&mmci_driver);
1606}
1607
1608module_init(mmci_init);
1609module_exit(mmci_exit);
1610module_param(fmax, uint, 0444);
1611
1612MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1613MODULE_LICENSE("GPL");
1614