mmci.c revision 8f7f6b7e46117edb83d12a508fffa0f013457677
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32#include <linux/pm_runtime.h>
33
34#include <asm/div64.h>
35#include <asm/io.h>
36#include <asm/sizes.h>
37
38#include "mmci.h"
39
40#define DRIVER_NAME "mmci-pl18x"
41
42static unsigned int fmax = 515633;
43
44/**
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 *	      is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 *		  is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 */
57struct variant_data {
58	unsigned int		clkreg;
59	unsigned int		clkreg_enable;
60	unsigned int		datalength_bits;
61	unsigned int		fifosize;
62	unsigned int		fifohalfsize;
63	bool			sdio;
64	bool			st_clkdiv;
65	bool			blksz_datactrl16;
66};
67
68static struct variant_data variant_arm = {
69	.fifosize		= 16 * 4,
70	.fifohalfsize		= 8 * 4,
71	.datalength_bits	= 16,
72};
73
74static struct variant_data variant_arm_extended_fifo = {
75	.fifosize		= 128 * 4,
76	.fifohalfsize		= 64 * 4,
77	.datalength_bits	= 16,
78};
79
80static struct variant_data variant_u300 = {
81	.fifosize		= 16 * 4,
82	.fifohalfsize		= 8 * 4,
83	.clkreg_enable		= MCI_ST_U300_HWFCEN,
84	.datalength_bits	= 16,
85	.sdio			= true,
86};
87
88static struct variant_data variant_ux500 = {
89	.fifosize		= 30 * 4,
90	.fifohalfsize		= 8 * 4,
91	.clkreg			= MCI_CLK_ENABLE,
92	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
93	.datalength_bits	= 24,
94	.sdio			= true,
95	.st_clkdiv		= true,
96};
97
98static struct variant_data variant_ux500v2 = {
99	.fifosize		= 30 * 4,
100	.fifohalfsize		= 8 * 4,
101	.clkreg			= MCI_CLK_ENABLE,
102	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
103	.datalength_bits	= 24,
104	.sdio			= true,
105	.st_clkdiv		= true,
106	.blksz_datactrl16	= true,
107};
108
109/*
110 * This must be called with host->lock held
111 */
112static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113{
114	struct variant_data *variant = host->variant;
115	u32 clk = variant->clkreg;
116
117	if (desired) {
118		if (desired >= host->mclk) {
119			clk = MCI_CLK_BYPASS;
120			if (variant->st_clkdiv)
121				clk |= MCI_ST_UX500_NEG_EDGE;
122			host->cclk = host->mclk;
123		} else if (variant->st_clkdiv) {
124			/*
125			 * DB8500 TRM says f = mclk / (clkdiv + 2)
126			 * => clkdiv = (mclk / f) - 2
127			 * Round the divider up so we don't exceed the max
128			 * frequency
129			 */
130			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
131			if (clk >= 256)
132				clk = 255;
133			host->cclk = host->mclk / (clk + 2);
134		} else {
135			/*
136			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137			 * => clkdiv = mclk / (2 * f) - 1
138			 */
139			clk = host->mclk / (2 * desired) - 1;
140			if (clk >= 256)
141				clk = 255;
142			host->cclk = host->mclk / (2 * (clk + 1));
143		}
144
145		clk |= variant->clkreg_enable;
146		clk |= MCI_CLK_ENABLE;
147		/* This hasn't proven to be worthwhile */
148		/* clk |= MCI_CLK_PWRSAVE; */
149	}
150
151	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
152		clk |= MCI_4BIT_BUS;
153	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
154		clk |= MCI_ST_8BIT_BUS;
155
156	writel(clk, host->base + MMCICLOCK);
157}
158
159static void
160mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161{
162	writel(0, host->base + MMCICOMMAND);
163
164	BUG_ON(host->data);
165
166	host->mrq = NULL;
167	host->cmd = NULL;
168
169	/*
170	 * Need to drop the host lock here; mmc_request_done may call
171	 * back into the driver...
172	 */
173	spin_unlock(&host->lock);
174	pm_runtime_put(mmc_dev(host->mmc));
175	mmc_request_done(host->mmc, mrq);
176	spin_lock(&host->lock);
177}
178
179static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
180{
181	void __iomem *base = host->base;
182
183	if (host->singleirq) {
184		unsigned int mask0 = readl(base + MMCIMASK0);
185
186		mask0 &= ~MCI_IRQ1MASK;
187		mask0 |= mask;
188
189		writel(mask0, base + MMCIMASK0);
190	}
191
192	writel(mask, base + MMCIMASK1);
193}
194
195static void mmci_stop_data(struct mmci_host *host)
196{
197	writel(0, host->base + MMCIDATACTRL);
198	mmci_set_mask1(host, 0);
199	host->data = NULL;
200}
201
202static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
203{
204	unsigned int flags = SG_MITER_ATOMIC;
205
206	if (data->flags & MMC_DATA_READ)
207		flags |= SG_MITER_TO_SG;
208	else
209		flags |= SG_MITER_FROM_SG;
210
211	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
212}
213
214/*
215 * All the DMA operation mode stuff goes inside this ifdef.
216 * This assumes that you have a generic DMA device interface,
217 * no custom DMA interfaces are supported.
218 */
219#ifdef CONFIG_DMA_ENGINE
220static void __devinit mmci_dma_setup(struct mmci_host *host)
221{
222	struct mmci_platform_data *plat = host->plat;
223	const char *rxname, *txname;
224	dma_cap_mask_t mask;
225
226	if (!plat || !plat->dma_filter) {
227		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
228		return;
229	}
230
231	/* initialize pre request cookie */
232	host->next_data.cookie = 1;
233
234	/* Try to acquire a generic DMA engine slave channel */
235	dma_cap_zero(mask);
236	dma_cap_set(DMA_SLAVE, mask);
237
238	/*
239	 * If only an RX channel is specified, the driver will
240	 * attempt to use it bidirectionally, however if it is
241	 * is specified but cannot be located, DMA will be disabled.
242	 */
243	if (plat->dma_rx_param) {
244		host->dma_rx_channel = dma_request_channel(mask,
245							   plat->dma_filter,
246							   plat->dma_rx_param);
247		/* E.g if no DMA hardware is present */
248		if (!host->dma_rx_channel)
249			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
250	}
251
252	if (plat->dma_tx_param) {
253		host->dma_tx_channel = dma_request_channel(mask,
254							   plat->dma_filter,
255							   plat->dma_tx_param);
256		if (!host->dma_tx_channel)
257			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
258	} else {
259		host->dma_tx_channel = host->dma_rx_channel;
260	}
261
262	if (host->dma_rx_channel)
263		rxname = dma_chan_name(host->dma_rx_channel);
264	else
265		rxname = "none";
266
267	if (host->dma_tx_channel)
268		txname = dma_chan_name(host->dma_tx_channel);
269	else
270		txname = "none";
271
272	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
273		 rxname, txname);
274
275	/*
276	 * Limit the maximum segment size in any SG entry according to
277	 * the parameters of the DMA engine device.
278	 */
279	if (host->dma_tx_channel) {
280		struct device *dev = host->dma_tx_channel->device->dev;
281		unsigned int max_seg_size = dma_get_max_seg_size(dev);
282
283		if (max_seg_size < host->mmc->max_seg_size)
284			host->mmc->max_seg_size = max_seg_size;
285	}
286	if (host->dma_rx_channel) {
287		struct device *dev = host->dma_rx_channel->device->dev;
288		unsigned int max_seg_size = dma_get_max_seg_size(dev);
289
290		if (max_seg_size < host->mmc->max_seg_size)
291			host->mmc->max_seg_size = max_seg_size;
292	}
293}
294
295/*
296 * This is used in __devinit or __devexit so inline it
297 * so it can be discarded.
298 */
299static inline void mmci_dma_release(struct mmci_host *host)
300{
301	struct mmci_platform_data *plat = host->plat;
302
303	if (host->dma_rx_channel)
304		dma_release_channel(host->dma_rx_channel);
305	if (host->dma_tx_channel && plat->dma_tx_param)
306		dma_release_channel(host->dma_tx_channel);
307	host->dma_rx_channel = host->dma_tx_channel = NULL;
308}
309
310static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
311{
312	struct dma_chan *chan = host->dma_current;
313	enum dma_data_direction dir;
314	u32 status;
315	int i;
316
317	/* Wait up to 1ms for the DMA to complete */
318	for (i = 0; ; i++) {
319		status = readl(host->base + MMCISTATUS);
320		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
321			break;
322		udelay(10);
323	}
324
325	/*
326	 * Check to see whether we still have some data left in the FIFO -
327	 * this catches DMA controllers which are unable to monitor the
328	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
330	 */
331	if (status & MCI_RXDATAAVLBLMASK) {
332		dmaengine_terminate_all(chan);
333		if (!data->error)
334			data->error = -EIO;
335	}
336
337	if (data->flags & MMC_DATA_WRITE) {
338		dir = DMA_TO_DEVICE;
339	} else {
340		dir = DMA_FROM_DEVICE;
341	}
342
343	if (!data->host_cookie)
344		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
345
346	/*
347	 * Use of DMA with scatter-gather is impossible.
348	 * Give up with DMA and switch back to PIO mode.
349	 */
350	if (status & MCI_RXDATAAVLBLMASK) {
351		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
352		mmci_dma_release(host);
353	}
354}
355
356static void mmci_dma_data_error(struct mmci_host *host)
357{
358	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
359	dmaengine_terminate_all(host->dma_current);
360}
361
362static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
363			      struct mmci_host_next *next)
364{
365	struct variant_data *variant = host->variant;
366	struct dma_slave_config conf = {
367		.src_addr = host->phybase + MMCIFIFO,
368		.dst_addr = host->phybase + MMCIFIFO,
369		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
370		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
372		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
373	};
374	struct dma_chan *chan;
375	struct dma_device *device;
376	struct dma_async_tx_descriptor *desc;
377	enum dma_data_direction buffer_dirn;
378	int nr_sg;
379
380	/* Check if next job is already prepared */
381	if (data->host_cookie && !next &&
382	    host->dma_current && host->dma_desc_current)
383		return 0;
384
385	if (!next) {
386		host->dma_current = NULL;
387		host->dma_desc_current = NULL;
388	}
389
390	if (data->flags & MMC_DATA_READ) {
391		conf.direction = DMA_DEV_TO_MEM;
392		buffer_dirn = DMA_FROM_DEVICE;
393		chan = host->dma_rx_channel;
394	} else {
395		conf.direction = DMA_MEM_TO_DEV;
396		buffer_dirn = DMA_TO_DEVICE;
397		chan = host->dma_tx_channel;
398	}
399
400	/* If there's no DMA channel, fall back to PIO */
401	if (!chan)
402		return -EINVAL;
403
404	/* If less than or equal to the fifo size, don't bother with DMA */
405	if (data->blksz * data->blocks <= variant->fifosize)
406		return -EINVAL;
407
408	device = chan->device;
409	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
410	if (nr_sg == 0)
411		return -EINVAL;
412
413	dmaengine_slave_config(chan, &conf);
414	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
415					    conf.direction, DMA_CTRL_ACK);
416	if (!desc)
417		goto unmap_exit;
418
419	if (next) {
420		next->dma_chan = chan;
421		next->dma_desc = desc;
422	} else {
423		host->dma_current = chan;
424		host->dma_desc_current = desc;
425	}
426
427	return 0;
428
429 unmap_exit:
430	if (!next)
431		dmaengine_terminate_all(chan);
432	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
433	return -ENOMEM;
434}
435
436static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
437{
438	int ret;
439	struct mmc_data *data = host->data;
440
441	ret = mmci_dma_prep_data(host, host->data, NULL);
442	if (ret)
443		return ret;
444
445	/* Okay, go for it. */
446	dev_vdbg(mmc_dev(host->mmc),
447		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
448		 data->sg_len, data->blksz, data->blocks, data->flags);
449	dmaengine_submit(host->dma_desc_current);
450	dma_async_issue_pending(host->dma_current);
451
452	datactrl |= MCI_DPSM_DMAENABLE;
453
454	/* Trigger the DMA transfer */
455	writel(datactrl, host->base + MMCIDATACTRL);
456
457	/*
458	 * Let the MMCI say when the data is ended and it's time
459	 * to fire next DMA request. When that happens, MMCI will
460	 * call mmci_data_end()
461	 */
462	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
463	       host->base + MMCIMASK0);
464	return 0;
465}
466
467static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
468{
469	struct mmci_host_next *next = &host->next_data;
470
471	if (data->host_cookie && data->host_cookie != next->cookie) {
472		pr_warning("[%s] invalid cookie: data->host_cookie %d"
473		       " host->next_data.cookie %d\n",
474		       __func__, data->host_cookie, host->next_data.cookie);
475		data->host_cookie = 0;
476	}
477
478	if (!data->host_cookie)
479		return;
480
481	host->dma_desc_current = next->dma_desc;
482	host->dma_current = next->dma_chan;
483
484	next->dma_desc = NULL;
485	next->dma_chan = NULL;
486}
487
488static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
489			     bool is_first_req)
490{
491	struct mmci_host *host = mmc_priv(mmc);
492	struct mmc_data *data = mrq->data;
493	struct mmci_host_next *nd = &host->next_data;
494
495	if (!data)
496		return;
497
498	if (data->host_cookie) {
499		data->host_cookie = 0;
500		return;
501	}
502
503	/* if config for dma */
504	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
505	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
506		if (mmci_dma_prep_data(host, data, nd))
507			data->host_cookie = 0;
508		else
509			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
510	}
511}
512
513static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
514			      int err)
515{
516	struct mmci_host *host = mmc_priv(mmc);
517	struct mmc_data *data = mrq->data;
518	struct dma_chan *chan;
519	enum dma_data_direction dir;
520
521	if (!data)
522		return;
523
524	if (data->flags & MMC_DATA_READ) {
525		dir = DMA_FROM_DEVICE;
526		chan = host->dma_rx_channel;
527	} else {
528		dir = DMA_TO_DEVICE;
529		chan = host->dma_tx_channel;
530	}
531
532
533	/* if config for dma */
534	if (chan) {
535		if (err)
536			dmaengine_terminate_all(chan);
537		if (data->host_cookie)
538			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
539				     data->sg_len, dir);
540		mrq->data->host_cookie = 0;
541	}
542}
543
544#else
545/* Blank functions if the DMA engine is not available */
546static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
547{
548}
549static inline void mmci_dma_setup(struct mmci_host *host)
550{
551}
552
553static inline void mmci_dma_release(struct mmci_host *host)
554{
555}
556
557static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
558{
559}
560
561static inline void mmci_dma_data_error(struct mmci_host *host)
562{
563}
564
565static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
566{
567	return -ENOSYS;
568}
569
570#define mmci_pre_request NULL
571#define mmci_post_request NULL
572
573#endif
574
575static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
576{
577	struct variant_data *variant = host->variant;
578	unsigned int datactrl, timeout, irqmask;
579	unsigned long long clks;
580	void __iomem *base;
581	int blksz_bits;
582
583	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
584		data->blksz, data->blocks, data->flags);
585
586	host->data = data;
587	host->size = data->blksz * data->blocks;
588	data->bytes_xfered = 0;
589
590	clks = (unsigned long long)data->timeout_ns * host->cclk;
591	do_div(clks, 1000000000UL);
592
593	timeout = data->timeout_clks + (unsigned int)clks;
594
595	base = host->base;
596	writel(timeout, base + MMCIDATATIMER);
597	writel(host->size, base + MMCIDATALENGTH);
598
599	blksz_bits = ffs(data->blksz) - 1;
600	BUG_ON(1 << blksz_bits != data->blksz);
601
602	if (variant->blksz_datactrl16)
603		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
604	else
605		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
606
607	if (data->flags & MMC_DATA_READ)
608		datactrl |= MCI_DPSM_DIRECTION;
609
610	/*
611	 * Attempt to use DMA operation mode, if this
612	 * should fail, fall back to PIO mode
613	 */
614	if (!mmci_dma_start_data(host, datactrl))
615		return;
616
617	/* IRQ mode, map the SG list for CPU reading/writing */
618	mmci_init_sg(host, data);
619
620	if (data->flags & MMC_DATA_READ) {
621		irqmask = MCI_RXFIFOHALFFULLMASK;
622
623		/*
624		 * If we have less than the fifo 'half-full' threshold to
625		 * transfer, trigger a PIO interrupt as soon as any data
626		 * is available.
627		 */
628		if (host->size < variant->fifohalfsize)
629			irqmask |= MCI_RXDATAAVLBLMASK;
630	} else {
631		/*
632		 * We don't actually need to include "FIFO empty" here
633		 * since its implicit in "FIFO half empty".
634		 */
635		irqmask = MCI_TXFIFOHALFEMPTYMASK;
636	}
637
638	/* The ST Micro variants has a special bit to enable SDIO */
639	if (variant->sdio && host->mmc->card)
640		if (mmc_card_sdio(host->mmc->card))
641			datactrl |= MCI_ST_DPSM_SDIOEN;
642
643	writel(datactrl, base + MMCIDATACTRL);
644	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
645	mmci_set_mask1(host, irqmask);
646}
647
648static void
649mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
650{
651	void __iomem *base = host->base;
652
653	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
654	    cmd->opcode, cmd->arg, cmd->flags);
655
656	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
657		writel(0, base + MMCICOMMAND);
658		udelay(1);
659	}
660
661	c |= cmd->opcode | MCI_CPSM_ENABLE;
662	if (cmd->flags & MMC_RSP_PRESENT) {
663		if (cmd->flags & MMC_RSP_136)
664			c |= MCI_CPSM_LONGRSP;
665		c |= MCI_CPSM_RESPONSE;
666	}
667	if (/*interrupt*/0)
668		c |= MCI_CPSM_INTERRUPT;
669
670	host->cmd = cmd;
671
672	writel(cmd->arg, base + MMCIARGUMENT);
673	writel(c, base + MMCICOMMAND);
674}
675
676static void
677mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
678	      unsigned int status)
679{
680	/* First check for errors */
681	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
682		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
683		u32 remain, success;
684
685		/* Terminate the DMA transfer */
686		if (dma_inprogress(host))
687			mmci_dma_data_error(host);
688
689		/*
690		 * Calculate how far we are into the transfer.  Note that
691		 * the data counter gives the number of bytes transferred
692		 * on the MMC bus, not on the host side.  On reads, this
693		 * can be as much as a FIFO-worth of data ahead.  This
694		 * matters for FIFO overruns only.
695		 */
696		remain = readl(host->base + MMCIDATACNT);
697		success = data->blksz * data->blocks - remain;
698
699		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
700			status, success);
701		if (status & MCI_DATACRCFAIL) {
702			/* Last block was not successful */
703			success -= 1;
704			data->error = -EILSEQ;
705		} else if (status & MCI_DATATIMEOUT) {
706			data->error = -ETIMEDOUT;
707		} else if (status & MCI_STARTBITERR) {
708			data->error = -ECOMM;
709		} else if (status & MCI_TXUNDERRUN) {
710			data->error = -EIO;
711		} else if (status & MCI_RXOVERRUN) {
712			if (success > host->variant->fifosize)
713				success -= host->variant->fifosize;
714			else
715				success = 0;
716			data->error = -EIO;
717		}
718		data->bytes_xfered = round_down(success, data->blksz);
719	}
720
721	if (status & MCI_DATABLOCKEND)
722		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
723
724	if (status & MCI_DATAEND || data->error) {
725		if (dma_inprogress(host))
726			mmci_dma_unmap(host, data);
727		mmci_stop_data(host);
728
729		if (!data->error)
730			/* The error clause is handled above, success! */
731			data->bytes_xfered = data->blksz * data->blocks;
732
733		if (!data->stop) {
734			mmci_request_end(host, data->mrq);
735		} else {
736			mmci_start_command(host, data->stop, 0);
737		}
738	}
739}
740
741static void
742mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
743	     unsigned int status)
744{
745	void __iomem *base = host->base;
746
747	host->cmd = NULL;
748
749	if (status & MCI_CMDTIMEOUT) {
750		cmd->error = -ETIMEDOUT;
751	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
752		cmd->error = -EILSEQ;
753	} else {
754		cmd->resp[0] = readl(base + MMCIRESPONSE0);
755		cmd->resp[1] = readl(base + MMCIRESPONSE1);
756		cmd->resp[2] = readl(base + MMCIRESPONSE2);
757		cmd->resp[3] = readl(base + MMCIRESPONSE3);
758	}
759
760	if (!cmd->data || cmd->error) {
761		if (host->data) {
762			/* Terminate the DMA transfer */
763			if (dma_inprogress(host))
764				mmci_dma_data_error(host);
765			mmci_stop_data(host);
766		}
767		mmci_request_end(host, cmd->mrq);
768	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
769		mmci_start_data(host, cmd->data);
770	}
771}
772
773static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
774{
775	void __iomem *base = host->base;
776	char *ptr = buffer;
777	u32 status;
778	int host_remain = host->size;
779
780	do {
781		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
782
783		if (count > remain)
784			count = remain;
785
786		if (count <= 0)
787			break;
788
789		readsl(base + MMCIFIFO, ptr, count >> 2);
790
791		ptr += count;
792		remain -= count;
793		host_remain -= count;
794
795		if (remain == 0)
796			break;
797
798		status = readl(base + MMCISTATUS);
799	} while (status & MCI_RXDATAAVLBL);
800
801	return ptr - buffer;
802}
803
804static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
805{
806	struct variant_data *variant = host->variant;
807	void __iomem *base = host->base;
808	char *ptr = buffer;
809
810	do {
811		unsigned int count, maxcnt;
812
813		maxcnt = status & MCI_TXFIFOEMPTY ?
814			 variant->fifosize : variant->fifohalfsize;
815		count = min(remain, maxcnt);
816
817		/*
818		 * The ST Micro variant for SDIO transfer sizes
819		 * less then 8 bytes should have clock H/W flow
820		 * control disabled.
821		 */
822		if (variant->sdio &&
823		    mmc_card_sdio(host->mmc->card)) {
824			if (count < 8)
825				writel(readl(host->base + MMCICLOCK) &
826					~variant->clkreg_enable,
827					host->base + MMCICLOCK);
828			else
829				writel(readl(host->base + MMCICLOCK) |
830					variant->clkreg_enable,
831					host->base + MMCICLOCK);
832		}
833
834		/*
835		 * SDIO especially may want to send something that is
836		 * not divisible by 4 (as opposed to card sectors
837		 * etc), and the FIFO only accept full 32-bit writes.
838		 * So compensate by adding +3 on the count, a single
839		 * byte become a 32bit write, 7 bytes will be two
840		 * 32bit writes etc.
841		 */
842		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
843
844		ptr += count;
845		remain -= count;
846
847		if (remain == 0)
848			break;
849
850		status = readl(base + MMCISTATUS);
851	} while (status & MCI_TXFIFOHALFEMPTY);
852
853	return ptr - buffer;
854}
855
856/*
857 * PIO data transfer IRQ handler.
858 */
859static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
860{
861	struct mmci_host *host = dev_id;
862	struct sg_mapping_iter *sg_miter = &host->sg_miter;
863	struct variant_data *variant = host->variant;
864	void __iomem *base = host->base;
865	unsigned long flags;
866	u32 status;
867
868	status = readl(base + MMCISTATUS);
869
870	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
871
872	local_irq_save(flags);
873
874	do {
875		unsigned int remain, len;
876		char *buffer;
877
878		/*
879		 * For write, we only need to test the half-empty flag
880		 * here - if the FIFO is completely empty, then by
881		 * definition it is more than half empty.
882		 *
883		 * For read, check for data available.
884		 */
885		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
886			break;
887
888		if (!sg_miter_next(sg_miter))
889			break;
890
891		buffer = sg_miter->addr;
892		remain = sg_miter->length;
893
894		len = 0;
895		if (status & MCI_RXACTIVE)
896			len = mmci_pio_read(host, buffer, remain);
897		if (status & MCI_TXACTIVE)
898			len = mmci_pio_write(host, buffer, remain, status);
899
900		sg_miter->consumed = len;
901
902		host->size -= len;
903		remain -= len;
904
905		if (remain)
906			break;
907
908		status = readl(base + MMCISTATUS);
909	} while (1);
910
911	sg_miter_stop(sg_miter);
912
913	local_irq_restore(flags);
914
915	/*
916	 * If we have less than the fifo 'half-full' threshold to transfer,
917	 * trigger a PIO interrupt as soon as any data is available.
918	 */
919	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
920		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
921
922	/*
923	 * If we run out of data, disable the data IRQs; this
924	 * prevents a race where the FIFO becomes empty before
925	 * the chip itself has disabled the data path, and
926	 * stops us racing with our data end IRQ.
927	 */
928	if (host->size == 0) {
929		mmci_set_mask1(host, 0);
930		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
931	}
932
933	return IRQ_HANDLED;
934}
935
936/*
937 * Handle completion of command and data transfers.
938 */
939static irqreturn_t mmci_irq(int irq, void *dev_id)
940{
941	struct mmci_host *host = dev_id;
942	u32 status;
943	int ret = 0;
944
945	spin_lock(&host->lock);
946
947	do {
948		struct mmc_command *cmd;
949		struct mmc_data *data;
950
951		status = readl(host->base + MMCISTATUS);
952
953		if (host->singleirq) {
954			if (status & readl(host->base + MMCIMASK1))
955				mmci_pio_irq(irq, dev_id);
956
957			status &= ~MCI_IRQ1MASK;
958		}
959
960		status &= readl(host->base + MMCIMASK0);
961		writel(status, host->base + MMCICLEAR);
962
963		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
964
965		data = host->data;
966		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
967			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
968			      MCI_DATABLOCKEND) && data)
969			mmci_data_irq(host, data, status);
970
971		cmd = host->cmd;
972		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
973			mmci_cmd_irq(host, cmd, status);
974
975		ret = 1;
976	} while (status);
977
978	spin_unlock(&host->lock);
979
980	return IRQ_RETVAL(ret);
981}
982
983static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
984{
985	struct mmci_host *host = mmc_priv(mmc);
986	unsigned long flags;
987
988	WARN_ON(host->mrq != NULL);
989
990	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
991		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
992			mrq->data->blksz);
993		mrq->cmd->error = -EINVAL;
994		mmc_request_done(mmc, mrq);
995		return;
996	}
997
998	pm_runtime_get_sync(mmc_dev(mmc));
999
1000	spin_lock_irqsave(&host->lock, flags);
1001
1002	host->mrq = mrq;
1003
1004	if (mrq->data)
1005		mmci_get_next_data(host, mrq->data);
1006
1007	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1008		mmci_start_data(host, mrq->data);
1009
1010	mmci_start_command(host, mrq->cmd, 0);
1011
1012	spin_unlock_irqrestore(&host->lock, flags);
1013}
1014
1015static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1016{
1017	struct mmci_host *host = mmc_priv(mmc);
1018	u32 pwr = 0;
1019	unsigned long flags;
1020	int ret;
1021
1022	switch (ios->power_mode) {
1023	case MMC_POWER_OFF:
1024		if (host->vcc)
1025			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1026		break;
1027	case MMC_POWER_UP:
1028		if (host->vcc) {
1029			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1030			if (ret) {
1031				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1032				/*
1033				 * The .set_ios() function in the mmc_host_ops
1034				 * struct return void, and failing to set the
1035				 * power should be rare so we print an error
1036				 * and return here.
1037				 */
1038				return;
1039			}
1040		}
1041		if (host->plat->vdd_handler)
1042			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1043						       ios->power_mode);
1044		/* The ST version does not have this, fall through to POWER_ON */
1045		if (host->hw_designer != AMBA_VENDOR_ST) {
1046			pwr |= MCI_PWR_UP;
1047			break;
1048		}
1049	case MMC_POWER_ON:
1050		pwr |= MCI_PWR_ON;
1051		break;
1052	}
1053
1054	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1055		if (host->hw_designer != AMBA_VENDOR_ST)
1056			pwr |= MCI_ROD;
1057		else {
1058			/*
1059			 * The ST Micro variant use the ROD bit for something
1060			 * else and only has OD (Open Drain).
1061			 */
1062			pwr |= MCI_OD;
1063		}
1064	}
1065
1066	spin_lock_irqsave(&host->lock, flags);
1067
1068	mmci_set_clkreg(host, ios->clock);
1069
1070	if (host->pwr != pwr) {
1071		host->pwr = pwr;
1072		writel(pwr, host->base + MMCIPOWER);
1073	}
1074
1075	spin_unlock_irqrestore(&host->lock, flags);
1076}
1077
1078static int mmci_get_ro(struct mmc_host *mmc)
1079{
1080	struct mmci_host *host = mmc_priv(mmc);
1081
1082	if (host->gpio_wp == -ENOSYS)
1083		return -ENOSYS;
1084
1085	return gpio_get_value_cansleep(host->gpio_wp);
1086}
1087
1088static int mmci_get_cd(struct mmc_host *mmc)
1089{
1090	struct mmci_host *host = mmc_priv(mmc);
1091	struct mmci_platform_data *plat = host->plat;
1092	unsigned int status;
1093
1094	if (host->gpio_cd == -ENOSYS) {
1095		if (!plat->status)
1096			return 1; /* Assume always present */
1097
1098		status = plat->status(mmc_dev(host->mmc));
1099	} else
1100		status = !!gpio_get_value_cansleep(host->gpio_cd)
1101			^ plat->cd_invert;
1102
1103	/*
1104	 * Use positive logic throughout - status is zero for no card,
1105	 * non-zero for card inserted.
1106	 */
1107	return status;
1108}
1109
1110static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1111{
1112	struct mmci_host *host = dev_id;
1113
1114	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1115
1116	return IRQ_HANDLED;
1117}
1118
1119static const struct mmc_host_ops mmci_ops = {
1120	.request	= mmci_request,
1121	.pre_req	= mmci_pre_request,
1122	.post_req	= mmci_post_request,
1123	.set_ios	= mmci_set_ios,
1124	.get_ro		= mmci_get_ro,
1125	.get_cd		= mmci_get_cd,
1126};
1127
1128static int __devinit mmci_probe(struct amba_device *dev,
1129	const struct amba_id *id)
1130{
1131	struct mmci_platform_data *plat = dev->dev.platform_data;
1132	struct variant_data *variant = id->data;
1133	struct mmci_host *host;
1134	struct mmc_host *mmc;
1135	int ret;
1136
1137	/* must have platform data */
1138	if (!plat) {
1139		ret = -EINVAL;
1140		goto out;
1141	}
1142
1143	ret = amba_request_regions(dev, DRIVER_NAME);
1144	if (ret)
1145		goto out;
1146
1147	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1148	if (!mmc) {
1149		ret = -ENOMEM;
1150		goto rel_regions;
1151	}
1152
1153	host = mmc_priv(mmc);
1154	host->mmc = mmc;
1155
1156	host->gpio_wp = -ENOSYS;
1157	host->gpio_cd = -ENOSYS;
1158	host->gpio_cd_irq = -1;
1159
1160	host->hw_designer = amba_manf(dev);
1161	host->hw_revision = amba_rev(dev);
1162	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1163	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1164
1165	host->clk = clk_get(&dev->dev, NULL);
1166	if (IS_ERR(host->clk)) {
1167		ret = PTR_ERR(host->clk);
1168		host->clk = NULL;
1169		goto host_free;
1170	}
1171
1172	ret = clk_prepare(host->clk);
1173	if (ret)
1174		goto clk_free;
1175
1176	ret = clk_enable(host->clk);
1177	if (ret)
1178		goto clk_unprep;
1179
1180	host->plat = plat;
1181	host->variant = variant;
1182	host->mclk = clk_get_rate(host->clk);
1183	/*
1184	 * According to the spec, mclk is max 100 MHz,
1185	 * so we try to adjust the clock down to this,
1186	 * (if possible).
1187	 */
1188	if (host->mclk > 100000000) {
1189		ret = clk_set_rate(host->clk, 100000000);
1190		if (ret < 0)
1191			goto clk_disable;
1192		host->mclk = clk_get_rate(host->clk);
1193		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1194			host->mclk);
1195	}
1196	host->phybase = dev->res.start;
1197	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1198	if (!host->base) {
1199		ret = -ENOMEM;
1200		goto clk_disable;
1201	}
1202
1203	mmc->ops = &mmci_ops;
1204	/*
1205	 * The ARM and ST versions of the block have slightly different
1206	 * clock divider equations which means that the minimum divider
1207	 * differs too.
1208	 */
1209	if (variant->st_clkdiv)
1210		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1211	else
1212		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1213	/*
1214	 * If the platform data supplies a maximum operating
1215	 * frequency, this takes precedence. Else, we fall back
1216	 * to using the module parameter, which has a (low)
1217	 * default value in case it is not specified. Either
1218	 * value must not exceed the clock rate into the block,
1219	 * of course.
1220	 */
1221	if (plat->f_max)
1222		mmc->f_max = min(host->mclk, plat->f_max);
1223	else
1224		mmc->f_max = min(host->mclk, fmax);
1225	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1226
1227#ifdef CONFIG_REGULATOR
1228	/* If we're using the regulator framework, try to fetch a regulator */
1229	host->vcc = regulator_get(&dev->dev, "vmmc");
1230	if (IS_ERR(host->vcc))
1231		host->vcc = NULL;
1232	else {
1233		int mask = mmc_regulator_get_ocrmask(host->vcc);
1234
1235		if (mask < 0)
1236			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1237				mask);
1238		else {
1239			host->mmc->ocr_avail = (u32) mask;
1240			if (plat->ocr_mask)
1241				dev_warn(&dev->dev,
1242				 "Provided ocr_mask/setpower will not be used "
1243				 "(using regulator instead)\n");
1244		}
1245	}
1246#endif
1247	/* Fall back to platform data if no regulator is found */
1248	if (host->vcc == NULL)
1249		mmc->ocr_avail = plat->ocr_mask;
1250	mmc->caps = plat->capabilities;
1251	mmc->caps2 = plat->capabilities2;
1252
1253	/*
1254	 * We can do SGIO
1255	 */
1256	mmc->max_segs = NR_SG;
1257
1258	/*
1259	 * Since only a certain number of bits are valid in the data length
1260	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1261	 * single request.
1262	 */
1263	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1264
1265	/*
1266	 * Set the maximum segment size.  Since we aren't doing DMA
1267	 * (yet) we are only limited by the data length register.
1268	 */
1269	mmc->max_seg_size = mmc->max_req_size;
1270
1271	/*
1272	 * Block size can be up to 2048 bytes, but must be a power of two.
1273	 */
1274	mmc->max_blk_size = 1 << 11;
1275
1276	/*
1277	 * Limit the number of blocks transferred so that we don't overflow
1278	 * the maximum request size.
1279	 */
1280	mmc->max_blk_count = mmc->max_req_size >> 11;
1281
1282	spin_lock_init(&host->lock);
1283
1284	writel(0, host->base + MMCIMASK0);
1285	writel(0, host->base + MMCIMASK1);
1286	writel(0xfff, host->base + MMCICLEAR);
1287
1288	if (gpio_is_valid(plat->gpio_cd)) {
1289		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1290		if (ret == 0)
1291			ret = gpio_direction_input(plat->gpio_cd);
1292		if (ret == 0)
1293			host->gpio_cd = plat->gpio_cd;
1294		else if (ret != -ENOSYS)
1295			goto err_gpio_cd;
1296
1297		/*
1298		 * A gpio pin that will detect cards when inserted and removed
1299		 * will most likely want to trigger on the edges if it is
1300		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1301		 * for the inverted case) so we request triggers on both
1302		 * edges.
1303		 */
1304		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1305				mmci_cd_irq,
1306				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1307				DRIVER_NAME " (cd)", host);
1308		if (ret >= 0)
1309			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1310	}
1311	if (gpio_is_valid(plat->gpio_wp)) {
1312		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1313		if (ret == 0)
1314			ret = gpio_direction_input(plat->gpio_wp);
1315		if (ret == 0)
1316			host->gpio_wp = plat->gpio_wp;
1317		else if (ret != -ENOSYS)
1318			goto err_gpio_wp;
1319	}
1320
1321	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1322	    && host->gpio_cd_irq < 0)
1323		mmc->caps |= MMC_CAP_NEEDS_POLL;
1324
1325	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1326	if (ret)
1327		goto unmap;
1328
1329	if (dev->irq[1] == NO_IRQ)
1330		host->singleirq = true;
1331	else {
1332		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1333				  DRIVER_NAME " (pio)", host);
1334		if (ret)
1335			goto irq0_free;
1336	}
1337
1338	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1339
1340	amba_set_drvdata(dev, mmc);
1341
1342	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1343		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1344		 amba_rev(dev), (unsigned long long)dev->res.start,
1345		 dev->irq[0], dev->irq[1]);
1346
1347	mmci_dma_setup(host);
1348
1349	pm_runtime_put(&dev->dev);
1350
1351	mmc_add_host(mmc);
1352
1353	return 0;
1354
1355 irq0_free:
1356	free_irq(dev->irq[0], host);
1357 unmap:
1358	if (host->gpio_wp != -ENOSYS)
1359		gpio_free(host->gpio_wp);
1360 err_gpio_wp:
1361	if (host->gpio_cd_irq >= 0)
1362		free_irq(host->gpio_cd_irq, host);
1363	if (host->gpio_cd != -ENOSYS)
1364		gpio_free(host->gpio_cd);
1365 err_gpio_cd:
1366	iounmap(host->base);
1367 clk_disable:
1368	clk_disable(host->clk);
1369 clk_unprep:
1370	clk_unprepare(host->clk);
1371 clk_free:
1372	clk_put(host->clk);
1373 host_free:
1374	mmc_free_host(mmc);
1375 rel_regions:
1376	amba_release_regions(dev);
1377 out:
1378	return ret;
1379}
1380
1381static int __devexit mmci_remove(struct amba_device *dev)
1382{
1383	struct mmc_host *mmc = amba_get_drvdata(dev);
1384
1385	amba_set_drvdata(dev, NULL);
1386
1387	if (mmc) {
1388		struct mmci_host *host = mmc_priv(mmc);
1389
1390		/*
1391		 * Undo pm_runtime_put() in probe.  We use the _sync
1392		 * version here so that we can access the primecell.
1393		 */
1394		pm_runtime_get_sync(&dev->dev);
1395
1396		mmc_remove_host(mmc);
1397
1398		writel(0, host->base + MMCIMASK0);
1399		writel(0, host->base + MMCIMASK1);
1400
1401		writel(0, host->base + MMCICOMMAND);
1402		writel(0, host->base + MMCIDATACTRL);
1403
1404		mmci_dma_release(host);
1405		free_irq(dev->irq[0], host);
1406		if (!host->singleirq)
1407			free_irq(dev->irq[1], host);
1408
1409		if (host->gpio_wp != -ENOSYS)
1410			gpio_free(host->gpio_wp);
1411		if (host->gpio_cd_irq >= 0)
1412			free_irq(host->gpio_cd_irq, host);
1413		if (host->gpio_cd != -ENOSYS)
1414			gpio_free(host->gpio_cd);
1415
1416		iounmap(host->base);
1417		clk_disable(host->clk);
1418		clk_unprepare(host->clk);
1419		clk_put(host->clk);
1420
1421		if (host->vcc)
1422			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1423		regulator_put(host->vcc);
1424
1425		mmc_free_host(mmc);
1426
1427		amba_release_regions(dev);
1428	}
1429
1430	return 0;
1431}
1432
1433#ifdef CONFIG_PM
1434static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1435{
1436	struct mmc_host *mmc = amba_get_drvdata(dev);
1437	int ret = 0;
1438
1439	if (mmc) {
1440		struct mmci_host *host = mmc_priv(mmc);
1441
1442		ret = mmc_suspend_host(mmc);
1443		if (ret == 0)
1444			writel(0, host->base + MMCIMASK0);
1445	}
1446
1447	return ret;
1448}
1449
1450static int mmci_resume(struct amba_device *dev)
1451{
1452	struct mmc_host *mmc = amba_get_drvdata(dev);
1453	int ret = 0;
1454
1455	if (mmc) {
1456		struct mmci_host *host = mmc_priv(mmc);
1457
1458		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1459
1460		ret = mmc_resume_host(mmc);
1461	}
1462
1463	return ret;
1464}
1465#else
1466#define mmci_suspend	NULL
1467#define mmci_resume	NULL
1468#endif
1469
1470static struct amba_id mmci_ids[] = {
1471	{
1472		.id	= 0x00041180,
1473		.mask	= 0xff0fffff,
1474		.data	= &variant_arm,
1475	},
1476	{
1477		.id	= 0x01041180,
1478		.mask	= 0xff0fffff,
1479		.data	= &variant_arm_extended_fifo,
1480	},
1481	{
1482		.id	= 0x00041181,
1483		.mask	= 0x000fffff,
1484		.data	= &variant_arm,
1485	},
1486	/* ST Micro variants */
1487	{
1488		.id     = 0x00180180,
1489		.mask   = 0x00ffffff,
1490		.data	= &variant_u300,
1491	},
1492	{
1493		.id     = 0x00280180,
1494		.mask   = 0x00ffffff,
1495		.data	= &variant_u300,
1496	},
1497	{
1498		.id     = 0x00480180,
1499		.mask   = 0xf0ffffff,
1500		.data	= &variant_ux500,
1501	},
1502	{
1503		.id     = 0x10480180,
1504		.mask   = 0xf0ffffff,
1505		.data	= &variant_ux500v2,
1506	},
1507	{ 0, 0 },
1508};
1509
1510MODULE_DEVICE_TABLE(amba, mmci_ids);
1511
1512static struct amba_driver mmci_driver = {
1513	.drv		= {
1514		.name	= DRIVER_NAME,
1515	},
1516	.probe		= mmci_probe,
1517	.remove		= __devexit_p(mmci_remove),
1518	.suspend	= mmci_suspend,
1519	.resume		= mmci_resume,
1520	.id_table	= mmci_ids,
1521};
1522
1523static int __init mmci_init(void)
1524{
1525	return amba_driver_register(&mmci_driver);
1526}
1527
1528static void __exit mmci_exit(void)
1529{
1530	amba_driver_unregister(&mmci_driver);
1531}
1532
1533module_init(mmci_init);
1534module_exit(mmci_exit);
1535module_param(fmax, uint, 0444);
1536
1537MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1538MODULE_LICENSE("GPL");
1539