mmci.c revision 9c34b73deec147a042c4bd871a373f76af70e38c
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43#include <asm/sizes.h>
44
45#include "mmci.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 *	      is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 *		  is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @sdio: variant supports SDIO
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 *		     register
69 * @pwrreg_powerup: power up value for MMCIPOWER register
70 * @f_max: maximum clk frequency supported by the controller.
71 * @signal_direction: input/out direction of bus signals can be indicated
72 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
73 * @busy_detect: true if busy detection on dat0 is supported
74 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
75 * @explicit_mclk_control: enable explicit mclk control in driver.
76 * @qcom_fifo: enables qcom specific fifo pio read logic.
77 */
78struct variant_data {
79	unsigned int		clkreg;
80	unsigned int		clkreg_enable;
81	unsigned int		clkreg_8bit_bus_enable;
82	unsigned int		clkreg_neg_edge_enable;
83	unsigned int		datalength_bits;
84	unsigned int		fifosize;
85	unsigned int		fifohalfsize;
86	unsigned int		data_cmd_enable;
87	unsigned int		datactrl_mask_ddrmode;
88	bool			sdio;
89	bool			st_clkdiv;
90	bool			blksz_datactrl16;
91	bool			blksz_datactrl4;
92	u32			pwrreg_powerup;
93	u32			f_max;
94	bool			signal_direction;
95	bool			pwrreg_clkgate;
96	bool			busy_detect;
97	bool			pwrreg_nopower;
98	bool			explicit_mclk_control;
99	bool			qcom_fifo;
100};
101
102static struct variant_data variant_arm = {
103	.fifosize		= 16 * 4,
104	.fifohalfsize		= 8 * 4,
105	.datalength_bits	= 16,
106	.pwrreg_powerup		= MCI_PWR_UP,
107	.f_max			= 100000000,
108};
109
110static struct variant_data variant_arm_extended_fifo = {
111	.fifosize		= 128 * 4,
112	.fifohalfsize		= 64 * 4,
113	.datalength_bits	= 16,
114	.pwrreg_powerup		= MCI_PWR_UP,
115	.f_max			= 100000000,
116};
117
118static struct variant_data variant_arm_extended_fifo_hwfc = {
119	.fifosize		= 128 * 4,
120	.fifohalfsize		= 64 * 4,
121	.clkreg_enable		= MCI_ARM_HWFCEN,
122	.datalength_bits	= 16,
123	.pwrreg_powerup		= MCI_PWR_UP,
124	.f_max			= 100000000,
125};
126
127static struct variant_data variant_u300 = {
128	.fifosize		= 16 * 4,
129	.fifohalfsize		= 8 * 4,
130	.clkreg_enable		= MCI_ST_U300_HWFCEN,
131	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
132	.datalength_bits	= 16,
133	.sdio			= true,
134	.pwrreg_powerup		= MCI_PWR_ON,
135	.f_max			= 100000000,
136	.signal_direction	= true,
137	.pwrreg_clkgate		= true,
138	.pwrreg_nopower		= true,
139};
140
141static struct variant_data variant_nomadik = {
142	.fifosize		= 16 * 4,
143	.fifohalfsize		= 8 * 4,
144	.clkreg			= MCI_CLK_ENABLE,
145	.datalength_bits	= 24,
146	.sdio			= true,
147	.st_clkdiv		= true,
148	.pwrreg_powerup		= MCI_PWR_ON,
149	.f_max			= 100000000,
150	.signal_direction	= true,
151	.pwrreg_clkgate		= true,
152	.pwrreg_nopower		= true,
153};
154
155static struct variant_data variant_ux500 = {
156	.fifosize		= 30 * 4,
157	.fifohalfsize		= 8 * 4,
158	.clkreg			= MCI_CLK_ENABLE,
159	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
160	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
161	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
162	.datalength_bits	= 24,
163	.sdio			= true,
164	.st_clkdiv		= true,
165	.pwrreg_powerup		= MCI_PWR_ON,
166	.f_max			= 100000000,
167	.signal_direction	= true,
168	.pwrreg_clkgate		= true,
169	.busy_detect		= true,
170	.pwrreg_nopower		= true,
171};
172
173static struct variant_data variant_ux500v2 = {
174	.fifosize		= 30 * 4,
175	.fifohalfsize		= 8 * 4,
176	.clkreg			= MCI_CLK_ENABLE,
177	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
178	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
180	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
181	.datalength_bits	= 24,
182	.sdio			= true,
183	.st_clkdiv		= true,
184	.blksz_datactrl16	= true,
185	.pwrreg_powerup		= MCI_PWR_ON,
186	.f_max			= 100000000,
187	.signal_direction	= true,
188	.pwrreg_clkgate		= true,
189	.busy_detect		= true,
190	.pwrreg_nopower		= true,
191};
192
193static int mmci_card_busy(struct mmc_host *mmc)
194{
195	struct mmci_host *host = mmc_priv(mmc);
196	unsigned long flags;
197	int busy = 0;
198
199	pm_runtime_get_sync(mmc_dev(mmc));
200
201	spin_lock_irqsave(&host->lock, flags);
202	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
203		busy = 1;
204	spin_unlock_irqrestore(&host->lock, flags);
205
206	pm_runtime_mark_last_busy(mmc_dev(mmc));
207	pm_runtime_put_autosuspend(mmc_dev(mmc));
208
209	return busy;
210}
211
212/*
213 * Validate mmc prerequisites
214 */
215static int mmci_validate_data(struct mmci_host *host,
216			      struct mmc_data *data)
217{
218	if (!data)
219		return 0;
220
221	if (!is_power_of_2(data->blksz)) {
222		dev_err(mmc_dev(host->mmc),
223			"unsupported block size (%d bytes)\n", data->blksz);
224		return -EINVAL;
225	}
226
227	return 0;
228}
229
230static void mmci_reg_delay(struct mmci_host *host)
231{
232	/*
233	 * According to the spec, at least three feedback clock cycles
234	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
235	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
236	 * Worst delay time during card init is at 100 kHz => 30 us.
237	 * Worst delay time when up and running is at 25 MHz => 120 ns.
238	 */
239	if (host->cclk < 25000000)
240		udelay(30);
241	else
242		ndelay(120);
243}
244
245/*
246 * This must be called with host->lock held
247 */
248static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
249{
250	if (host->clk_reg != clk) {
251		host->clk_reg = clk;
252		writel(clk, host->base + MMCICLOCK);
253	}
254}
255
256/*
257 * This must be called with host->lock held
258 */
259static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
260{
261	if (host->pwr_reg != pwr) {
262		host->pwr_reg = pwr;
263		writel(pwr, host->base + MMCIPOWER);
264	}
265}
266
267/*
268 * This must be called with host->lock held
269 */
270static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
271{
272	/* Keep ST Micro busy mode if enabled */
273	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
274
275	if (host->datactrl_reg != datactrl) {
276		host->datactrl_reg = datactrl;
277		writel(datactrl, host->base + MMCIDATACTRL);
278	}
279}
280
281/*
282 * This must be called with host->lock held
283 */
284static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
285{
286	struct variant_data *variant = host->variant;
287	u32 clk = variant->clkreg;
288
289	/* Make sure cclk reflects the current calculated clock */
290	host->cclk = 0;
291
292	if (desired) {
293		if (variant->explicit_mclk_control) {
294			host->cclk = host->mclk;
295		} else if (desired >= host->mclk) {
296			clk = MCI_CLK_BYPASS;
297			if (variant->st_clkdiv)
298				clk |= MCI_ST_UX500_NEG_EDGE;
299			host->cclk = host->mclk;
300		} else if (variant->st_clkdiv) {
301			/*
302			 * DB8500 TRM says f = mclk / (clkdiv + 2)
303			 * => clkdiv = (mclk / f) - 2
304			 * Round the divider up so we don't exceed the max
305			 * frequency
306			 */
307			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
308			if (clk >= 256)
309				clk = 255;
310			host->cclk = host->mclk / (clk + 2);
311		} else {
312			/*
313			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
314			 * => clkdiv = mclk / (2 * f) - 1
315			 */
316			clk = host->mclk / (2 * desired) - 1;
317			if (clk >= 256)
318				clk = 255;
319			host->cclk = host->mclk / (2 * (clk + 1));
320		}
321
322		clk |= variant->clkreg_enable;
323		clk |= MCI_CLK_ENABLE;
324		/* This hasn't proven to be worthwhile */
325		/* clk |= MCI_CLK_PWRSAVE; */
326	}
327
328	/* Set actual clock for debug */
329	host->mmc->actual_clock = host->cclk;
330
331	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
332		clk |= MCI_4BIT_BUS;
333	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
334		clk |= variant->clkreg_8bit_bus_enable;
335
336	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
337	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
338		clk |= variant->clkreg_neg_edge_enable;
339
340	mmci_write_clkreg(host, clk);
341}
342
343static void
344mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
345{
346	writel(0, host->base + MMCICOMMAND);
347
348	BUG_ON(host->data);
349
350	host->mrq = NULL;
351	host->cmd = NULL;
352
353	mmc_request_done(host->mmc, mrq);
354
355	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
356	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
357}
358
359static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
360{
361	void __iomem *base = host->base;
362
363	if (host->singleirq) {
364		unsigned int mask0 = readl(base + MMCIMASK0);
365
366		mask0 &= ~MCI_IRQ1MASK;
367		mask0 |= mask;
368
369		writel(mask0, base + MMCIMASK0);
370	}
371
372	writel(mask, base + MMCIMASK1);
373}
374
375static void mmci_stop_data(struct mmci_host *host)
376{
377	mmci_write_datactrlreg(host, 0);
378	mmci_set_mask1(host, 0);
379	host->data = NULL;
380}
381
382static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
383{
384	unsigned int flags = SG_MITER_ATOMIC;
385
386	if (data->flags & MMC_DATA_READ)
387		flags |= SG_MITER_TO_SG;
388	else
389		flags |= SG_MITER_FROM_SG;
390
391	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
392}
393
394/*
395 * All the DMA operation mode stuff goes inside this ifdef.
396 * This assumes that you have a generic DMA device interface,
397 * no custom DMA interfaces are supported.
398 */
399#ifdef CONFIG_DMA_ENGINE
400static void mmci_dma_setup(struct mmci_host *host)
401{
402	const char *rxname, *txname;
403	dma_cap_mask_t mask;
404
405	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
406	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
407
408	/* initialize pre request cookie */
409	host->next_data.cookie = 1;
410
411	/* Try to acquire a generic DMA engine slave channel */
412	dma_cap_zero(mask);
413	dma_cap_set(DMA_SLAVE, mask);
414
415	/*
416	 * If only an RX channel is specified, the driver will
417	 * attempt to use it bidirectionally, however if it is
418	 * is specified but cannot be located, DMA will be disabled.
419	 */
420	if (host->dma_rx_channel && !host->dma_tx_channel)
421		host->dma_tx_channel = host->dma_rx_channel;
422
423	if (host->dma_rx_channel)
424		rxname = dma_chan_name(host->dma_rx_channel);
425	else
426		rxname = "none";
427
428	if (host->dma_tx_channel)
429		txname = dma_chan_name(host->dma_tx_channel);
430	else
431		txname = "none";
432
433	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
434		 rxname, txname);
435
436	/*
437	 * Limit the maximum segment size in any SG entry according to
438	 * the parameters of the DMA engine device.
439	 */
440	if (host->dma_tx_channel) {
441		struct device *dev = host->dma_tx_channel->device->dev;
442		unsigned int max_seg_size = dma_get_max_seg_size(dev);
443
444		if (max_seg_size < host->mmc->max_seg_size)
445			host->mmc->max_seg_size = max_seg_size;
446	}
447	if (host->dma_rx_channel) {
448		struct device *dev = host->dma_rx_channel->device->dev;
449		unsigned int max_seg_size = dma_get_max_seg_size(dev);
450
451		if (max_seg_size < host->mmc->max_seg_size)
452			host->mmc->max_seg_size = max_seg_size;
453	}
454}
455
456/*
457 * This is used in or so inline it
458 * so it can be discarded.
459 */
460static inline void mmci_dma_release(struct mmci_host *host)
461{
462	if (host->dma_rx_channel)
463		dma_release_channel(host->dma_rx_channel);
464	if (host->dma_tx_channel)
465		dma_release_channel(host->dma_tx_channel);
466	host->dma_rx_channel = host->dma_tx_channel = NULL;
467}
468
469static void mmci_dma_data_error(struct mmci_host *host)
470{
471	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
472	dmaengine_terminate_all(host->dma_current);
473	host->dma_current = NULL;
474	host->dma_desc_current = NULL;
475	host->data->host_cookie = 0;
476}
477
478static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
479{
480	struct dma_chan *chan;
481	enum dma_data_direction dir;
482
483	if (data->flags & MMC_DATA_READ) {
484		dir = DMA_FROM_DEVICE;
485		chan = host->dma_rx_channel;
486	} else {
487		dir = DMA_TO_DEVICE;
488		chan = host->dma_tx_channel;
489	}
490
491	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
492}
493
494static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
495{
496	u32 status;
497	int i;
498
499	/* Wait up to 1ms for the DMA to complete */
500	for (i = 0; ; i++) {
501		status = readl(host->base + MMCISTATUS);
502		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
503			break;
504		udelay(10);
505	}
506
507	/*
508	 * Check to see whether we still have some data left in the FIFO -
509	 * this catches DMA controllers which are unable to monitor the
510	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
511	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
512	 */
513	if (status & MCI_RXDATAAVLBLMASK) {
514		mmci_dma_data_error(host);
515		if (!data->error)
516			data->error = -EIO;
517	}
518
519	if (!data->host_cookie)
520		mmci_dma_unmap(host, data);
521
522	/*
523	 * Use of DMA with scatter-gather is impossible.
524	 * Give up with DMA and switch back to PIO mode.
525	 */
526	if (status & MCI_RXDATAAVLBLMASK) {
527		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
528		mmci_dma_release(host);
529	}
530
531	host->dma_current = NULL;
532	host->dma_desc_current = NULL;
533}
534
535/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
536static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
537				struct dma_chan **dma_chan,
538				struct dma_async_tx_descriptor **dma_desc)
539{
540	struct variant_data *variant = host->variant;
541	struct dma_slave_config conf = {
542		.src_addr = host->phybase + MMCIFIFO,
543		.dst_addr = host->phybase + MMCIFIFO,
544		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
545		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
546		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
547		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
548		.device_fc = false,
549	};
550	struct dma_chan *chan;
551	struct dma_device *device;
552	struct dma_async_tx_descriptor *desc;
553	enum dma_data_direction buffer_dirn;
554	int nr_sg;
555
556	if (data->flags & MMC_DATA_READ) {
557		conf.direction = DMA_DEV_TO_MEM;
558		buffer_dirn = DMA_FROM_DEVICE;
559		chan = host->dma_rx_channel;
560	} else {
561		conf.direction = DMA_MEM_TO_DEV;
562		buffer_dirn = DMA_TO_DEVICE;
563		chan = host->dma_tx_channel;
564	}
565
566	/* If there's no DMA channel, fall back to PIO */
567	if (!chan)
568		return -EINVAL;
569
570	/* If less than or equal to the fifo size, don't bother with DMA */
571	if (data->blksz * data->blocks <= variant->fifosize)
572		return -EINVAL;
573
574	device = chan->device;
575	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
576	if (nr_sg == 0)
577		return -EINVAL;
578
579	dmaengine_slave_config(chan, &conf);
580	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
581					    conf.direction, DMA_CTRL_ACK);
582	if (!desc)
583		goto unmap_exit;
584
585	*dma_chan = chan;
586	*dma_desc = desc;
587
588	return 0;
589
590 unmap_exit:
591	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
592	return -ENOMEM;
593}
594
595static inline int mmci_dma_prep_data(struct mmci_host *host,
596				     struct mmc_data *data)
597{
598	/* Check if next job is already prepared. */
599	if (host->dma_current && host->dma_desc_current)
600		return 0;
601
602	/* No job were prepared thus do it now. */
603	return __mmci_dma_prep_data(host, data, &host->dma_current,
604				    &host->dma_desc_current);
605}
606
607static inline int mmci_dma_prep_next(struct mmci_host *host,
608				     struct mmc_data *data)
609{
610	struct mmci_host_next *nd = &host->next_data;
611	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
612}
613
614static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
615{
616	int ret;
617	struct mmc_data *data = host->data;
618
619	ret = mmci_dma_prep_data(host, host->data);
620	if (ret)
621		return ret;
622
623	/* Okay, go for it. */
624	dev_vdbg(mmc_dev(host->mmc),
625		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
626		 data->sg_len, data->blksz, data->blocks, data->flags);
627	dmaengine_submit(host->dma_desc_current);
628	dma_async_issue_pending(host->dma_current);
629
630	datactrl |= MCI_DPSM_DMAENABLE;
631
632	/* Trigger the DMA transfer */
633	mmci_write_datactrlreg(host, datactrl);
634
635	/*
636	 * Let the MMCI say when the data is ended and it's time
637	 * to fire next DMA request. When that happens, MMCI will
638	 * call mmci_data_end()
639	 */
640	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
641	       host->base + MMCIMASK0);
642	return 0;
643}
644
645static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
646{
647	struct mmci_host_next *next = &host->next_data;
648
649	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
650	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
651
652	host->dma_desc_current = next->dma_desc;
653	host->dma_current = next->dma_chan;
654	next->dma_desc = NULL;
655	next->dma_chan = NULL;
656}
657
658static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
659			     bool is_first_req)
660{
661	struct mmci_host *host = mmc_priv(mmc);
662	struct mmc_data *data = mrq->data;
663	struct mmci_host_next *nd = &host->next_data;
664
665	if (!data)
666		return;
667
668	BUG_ON(data->host_cookie);
669
670	if (mmci_validate_data(host, data))
671		return;
672
673	if (!mmci_dma_prep_next(host, data))
674		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
675}
676
677static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
678			      int err)
679{
680	struct mmci_host *host = mmc_priv(mmc);
681	struct mmc_data *data = mrq->data;
682
683	if (!data || !data->host_cookie)
684		return;
685
686	mmci_dma_unmap(host, data);
687
688	if (err) {
689		struct mmci_host_next *next = &host->next_data;
690		struct dma_chan *chan;
691		if (data->flags & MMC_DATA_READ)
692			chan = host->dma_rx_channel;
693		else
694			chan = host->dma_tx_channel;
695		dmaengine_terminate_all(chan);
696
697		next->dma_desc = NULL;
698		next->dma_chan = NULL;
699	}
700}
701
702#else
703/* Blank functions if the DMA engine is not available */
704static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
705{
706}
707static inline void mmci_dma_setup(struct mmci_host *host)
708{
709}
710
711static inline void mmci_dma_release(struct mmci_host *host)
712{
713}
714
715static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
716{
717}
718
719static inline void mmci_dma_finalize(struct mmci_host *host,
720				     struct mmc_data *data)
721{
722}
723
724static inline void mmci_dma_data_error(struct mmci_host *host)
725{
726}
727
728static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
729{
730	return -ENOSYS;
731}
732
733#define mmci_pre_request NULL
734#define mmci_post_request NULL
735
736#endif
737
738static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
739{
740	struct variant_data *variant = host->variant;
741	unsigned int datactrl, timeout, irqmask;
742	unsigned long long clks;
743	void __iomem *base;
744	int blksz_bits;
745
746	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
747		data->blksz, data->blocks, data->flags);
748
749	host->data = data;
750	host->size = data->blksz * data->blocks;
751	data->bytes_xfered = 0;
752
753	clks = (unsigned long long)data->timeout_ns * host->cclk;
754	do_div(clks, NSEC_PER_SEC);
755
756	timeout = data->timeout_clks + (unsigned int)clks;
757
758	base = host->base;
759	writel(timeout, base + MMCIDATATIMER);
760	writel(host->size, base + MMCIDATALENGTH);
761
762	blksz_bits = ffs(data->blksz) - 1;
763	BUG_ON(1 << blksz_bits != data->blksz);
764
765	if (variant->blksz_datactrl16)
766		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
767	else if (variant->blksz_datactrl4)
768		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
769	else
770		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
771
772	if (data->flags & MMC_DATA_READ)
773		datactrl |= MCI_DPSM_DIRECTION;
774
775	/* The ST Micro variants has a special bit to enable SDIO */
776	if (variant->sdio && host->mmc->card)
777		if (mmc_card_sdio(host->mmc->card)) {
778			/*
779			 * The ST Micro variants has a special bit
780			 * to enable SDIO.
781			 */
782			u32 clk;
783
784			datactrl |= MCI_ST_DPSM_SDIOEN;
785
786			/*
787			 * The ST Micro variant for SDIO small write transfers
788			 * needs to have clock H/W flow control disabled,
789			 * otherwise the transfer will not start. The threshold
790			 * depends on the rate of MCLK.
791			 */
792			if (data->flags & MMC_DATA_WRITE &&
793			    (host->size < 8 ||
794			     (host->size <= 8 && host->mclk > 50000000)))
795				clk = host->clk_reg & ~variant->clkreg_enable;
796			else
797				clk = host->clk_reg | variant->clkreg_enable;
798
799			mmci_write_clkreg(host, clk);
800		}
801
802	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
803	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
804		datactrl |= variant->datactrl_mask_ddrmode;
805
806	/*
807	 * Attempt to use DMA operation mode, if this
808	 * should fail, fall back to PIO mode
809	 */
810	if (!mmci_dma_start_data(host, datactrl))
811		return;
812
813	/* IRQ mode, map the SG list for CPU reading/writing */
814	mmci_init_sg(host, data);
815
816	if (data->flags & MMC_DATA_READ) {
817		irqmask = MCI_RXFIFOHALFFULLMASK;
818
819		/*
820		 * If we have less than the fifo 'half-full' threshold to
821		 * transfer, trigger a PIO interrupt as soon as any data
822		 * is available.
823		 */
824		if (host->size < variant->fifohalfsize)
825			irqmask |= MCI_RXDATAAVLBLMASK;
826	} else {
827		/*
828		 * We don't actually need to include "FIFO empty" here
829		 * since its implicit in "FIFO half empty".
830		 */
831		irqmask = MCI_TXFIFOHALFEMPTYMASK;
832	}
833
834	mmci_write_datactrlreg(host, datactrl);
835	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
836	mmci_set_mask1(host, irqmask);
837}
838
839static void
840mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
841{
842	void __iomem *base = host->base;
843
844	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
845	    cmd->opcode, cmd->arg, cmd->flags);
846
847	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
848		writel(0, base + MMCICOMMAND);
849		mmci_reg_delay(host);
850	}
851
852	c |= cmd->opcode | MCI_CPSM_ENABLE;
853	if (cmd->flags & MMC_RSP_PRESENT) {
854		if (cmd->flags & MMC_RSP_136)
855			c |= MCI_CPSM_LONGRSP;
856		c |= MCI_CPSM_RESPONSE;
857	}
858	if (/*interrupt*/0)
859		c |= MCI_CPSM_INTERRUPT;
860
861	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
862		c |= host->variant->data_cmd_enable;
863
864	host->cmd = cmd;
865
866	writel(cmd->arg, base + MMCIARGUMENT);
867	writel(c, base + MMCICOMMAND);
868}
869
870static void
871mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
872	      unsigned int status)
873{
874	/* First check for errors */
875	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
876		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
877		u32 remain, success;
878
879		/* Terminate the DMA transfer */
880		if (dma_inprogress(host)) {
881			mmci_dma_data_error(host);
882			mmci_dma_unmap(host, data);
883		}
884
885		/*
886		 * Calculate how far we are into the transfer.  Note that
887		 * the data counter gives the number of bytes transferred
888		 * on the MMC bus, not on the host side.  On reads, this
889		 * can be as much as a FIFO-worth of data ahead.  This
890		 * matters for FIFO overruns only.
891		 */
892		remain = readl(host->base + MMCIDATACNT);
893		success = data->blksz * data->blocks - remain;
894
895		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
896			status, success);
897		if (status & MCI_DATACRCFAIL) {
898			/* Last block was not successful */
899			success -= 1;
900			data->error = -EILSEQ;
901		} else if (status & MCI_DATATIMEOUT) {
902			data->error = -ETIMEDOUT;
903		} else if (status & MCI_STARTBITERR) {
904			data->error = -ECOMM;
905		} else if (status & MCI_TXUNDERRUN) {
906			data->error = -EIO;
907		} else if (status & MCI_RXOVERRUN) {
908			if (success > host->variant->fifosize)
909				success -= host->variant->fifosize;
910			else
911				success = 0;
912			data->error = -EIO;
913		}
914		data->bytes_xfered = round_down(success, data->blksz);
915	}
916
917	if (status & MCI_DATABLOCKEND)
918		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
919
920	if (status & MCI_DATAEND || data->error) {
921		if (dma_inprogress(host))
922			mmci_dma_finalize(host, data);
923		mmci_stop_data(host);
924
925		if (!data->error)
926			/* The error clause is handled above, success! */
927			data->bytes_xfered = data->blksz * data->blocks;
928
929		if (!data->stop || host->mrq->sbc) {
930			mmci_request_end(host, data->mrq);
931		} else {
932			mmci_start_command(host, data->stop, 0);
933		}
934	}
935}
936
937static void
938mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
939	     unsigned int status)
940{
941	void __iomem *base = host->base;
942	bool sbc = (cmd == host->mrq->sbc);
943	bool busy_resp = host->variant->busy_detect &&
944			(cmd->flags & MMC_RSP_BUSY);
945
946	/* Check if we need to wait for busy completion. */
947	if (host->busy_status && (status & MCI_ST_CARDBUSY))
948		return;
949
950	/* Enable busy completion if needed and supported. */
951	if (!host->busy_status && busy_resp &&
952		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
953		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
954		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
955			base + MMCIMASK0);
956		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
957		return;
958	}
959
960	/* At busy completion, mask the IRQ and complete the request. */
961	if (host->busy_status) {
962		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
963			base + MMCIMASK0);
964		host->busy_status = 0;
965	}
966
967	host->cmd = NULL;
968
969	if (status & MCI_CMDTIMEOUT) {
970		cmd->error = -ETIMEDOUT;
971	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
972		cmd->error = -EILSEQ;
973	} else {
974		cmd->resp[0] = readl(base + MMCIRESPONSE0);
975		cmd->resp[1] = readl(base + MMCIRESPONSE1);
976		cmd->resp[2] = readl(base + MMCIRESPONSE2);
977		cmd->resp[3] = readl(base + MMCIRESPONSE3);
978	}
979
980	if ((!sbc && !cmd->data) || cmd->error) {
981		if (host->data) {
982			/* Terminate the DMA transfer */
983			if (dma_inprogress(host)) {
984				mmci_dma_data_error(host);
985				mmci_dma_unmap(host, host->data);
986			}
987			mmci_stop_data(host);
988		}
989		mmci_request_end(host, host->mrq);
990	} else if (sbc) {
991		mmci_start_command(host, host->mrq->cmd, 0);
992	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
993		mmci_start_data(host, cmd->data);
994	}
995}
996
997static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
998{
999	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1000}
1001
1002static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1003{
1004	/*
1005	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1006	 * from the fifo range should be used
1007	 */
1008	if (status & MCI_RXFIFOHALFFULL)
1009		return host->variant->fifohalfsize;
1010	else if (status & MCI_RXDATAAVLBL)
1011		return 4;
1012
1013	return 0;
1014}
1015
1016static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1017{
1018	void __iomem *base = host->base;
1019	char *ptr = buffer;
1020	u32 status = readl(host->base + MMCISTATUS);
1021	int host_remain = host->size;
1022
1023	do {
1024		int count = host->get_rx_fifocnt(host, status, host_remain);
1025
1026		if (count > remain)
1027			count = remain;
1028
1029		if (count <= 0)
1030			break;
1031
1032		/*
1033		 * SDIO especially may want to send something that is
1034		 * not divisible by 4 (as opposed to card sectors
1035		 * etc). Therefore make sure to always read the last bytes
1036		 * while only doing full 32-bit reads towards the FIFO.
1037		 */
1038		if (unlikely(count & 0x3)) {
1039			if (count < 4) {
1040				unsigned char buf[4];
1041				ioread32_rep(base + MMCIFIFO, buf, 1);
1042				memcpy(ptr, buf, count);
1043			} else {
1044				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1045				count &= ~0x3;
1046			}
1047		} else {
1048			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1049		}
1050
1051		ptr += count;
1052		remain -= count;
1053		host_remain -= count;
1054
1055		if (remain == 0)
1056			break;
1057
1058		status = readl(base + MMCISTATUS);
1059	} while (status & MCI_RXDATAAVLBL);
1060
1061	return ptr - buffer;
1062}
1063
1064static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1065{
1066	struct variant_data *variant = host->variant;
1067	void __iomem *base = host->base;
1068	char *ptr = buffer;
1069
1070	do {
1071		unsigned int count, maxcnt;
1072
1073		maxcnt = status & MCI_TXFIFOEMPTY ?
1074			 variant->fifosize : variant->fifohalfsize;
1075		count = min(remain, maxcnt);
1076
1077		/*
1078		 * SDIO especially may want to send something that is
1079		 * not divisible by 4 (as opposed to card sectors
1080		 * etc), and the FIFO only accept full 32-bit writes.
1081		 * So compensate by adding +3 on the count, a single
1082		 * byte become a 32bit write, 7 bytes will be two
1083		 * 32bit writes etc.
1084		 */
1085		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1086
1087		ptr += count;
1088		remain -= count;
1089
1090		if (remain == 0)
1091			break;
1092
1093		status = readl(base + MMCISTATUS);
1094	} while (status & MCI_TXFIFOHALFEMPTY);
1095
1096	return ptr - buffer;
1097}
1098
1099/*
1100 * PIO data transfer IRQ handler.
1101 */
1102static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1103{
1104	struct mmci_host *host = dev_id;
1105	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1106	struct variant_data *variant = host->variant;
1107	void __iomem *base = host->base;
1108	unsigned long flags;
1109	u32 status;
1110
1111	status = readl(base + MMCISTATUS);
1112
1113	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1114
1115	local_irq_save(flags);
1116
1117	do {
1118		unsigned int remain, len;
1119		char *buffer;
1120
1121		/*
1122		 * For write, we only need to test the half-empty flag
1123		 * here - if the FIFO is completely empty, then by
1124		 * definition it is more than half empty.
1125		 *
1126		 * For read, check for data available.
1127		 */
1128		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1129			break;
1130
1131		if (!sg_miter_next(sg_miter))
1132			break;
1133
1134		buffer = sg_miter->addr;
1135		remain = sg_miter->length;
1136
1137		len = 0;
1138		if (status & MCI_RXACTIVE)
1139			len = mmci_pio_read(host, buffer, remain);
1140		if (status & MCI_TXACTIVE)
1141			len = mmci_pio_write(host, buffer, remain, status);
1142
1143		sg_miter->consumed = len;
1144
1145		host->size -= len;
1146		remain -= len;
1147
1148		if (remain)
1149			break;
1150
1151		status = readl(base + MMCISTATUS);
1152	} while (1);
1153
1154	sg_miter_stop(sg_miter);
1155
1156	local_irq_restore(flags);
1157
1158	/*
1159	 * If we have less than the fifo 'half-full' threshold to transfer,
1160	 * trigger a PIO interrupt as soon as any data is available.
1161	 */
1162	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1163		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1164
1165	/*
1166	 * If we run out of data, disable the data IRQs; this
1167	 * prevents a race where the FIFO becomes empty before
1168	 * the chip itself has disabled the data path, and
1169	 * stops us racing with our data end IRQ.
1170	 */
1171	if (host->size == 0) {
1172		mmci_set_mask1(host, 0);
1173		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1174	}
1175
1176	return IRQ_HANDLED;
1177}
1178
1179/*
1180 * Handle completion of command and data transfers.
1181 */
1182static irqreturn_t mmci_irq(int irq, void *dev_id)
1183{
1184	struct mmci_host *host = dev_id;
1185	u32 status;
1186	int ret = 0;
1187
1188	spin_lock(&host->lock);
1189
1190	do {
1191		struct mmc_command *cmd;
1192		struct mmc_data *data;
1193
1194		status = readl(host->base + MMCISTATUS);
1195
1196		if (host->singleirq) {
1197			if (status & readl(host->base + MMCIMASK1))
1198				mmci_pio_irq(irq, dev_id);
1199
1200			status &= ~MCI_IRQ1MASK;
1201		}
1202
1203		/*
1204		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1205		 * enabled) since the HW seems to be triggering the IRQ on both
1206		 * edges while monitoring DAT0 for busy completion.
1207		 */
1208		status &= readl(host->base + MMCIMASK0);
1209		writel(status, host->base + MMCICLEAR);
1210
1211		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1212
1213		cmd = host->cmd;
1214		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1215			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1216			mmci_cmd_irq(host, cmd, status);
1217
1218		data = host->data;
1219		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1220			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1221			      MCI_DATABLOCKEND) && data)
1222			mmci_data_irq(host, data, status);
1223
1224		/* Don't poll for busy completion in irq context. */
1225		if (host->busy_status)
1226			status &= ~MCI_ST_CARDBUSY;
1227
1228		ret = 1;
1229	} while (status);
1230
1231	spin_unlock(&host->lock);
1232
1233	return IRQ_RETVAL(ret);
1234}
1235
1236static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1237{
1238	struct mmci_host *host = mmc_priv(mmc);
1239	unsigned long flags;
1240
1241	WARN_ON(host->mrq != NULL);
1242
1243	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1244	if (mrq->cmd->error) {
1245		mmc_request_done(mmc, mrq);
1246		return;
1247	}
1248
1249	pm_runtime_get_sync(mmc_dev(mmc));
1250
1251	spin_lock_irqsave(&host->lock, flags);
1252
1253	host->mrq = mrq;
1254
1255	if (mrq->data)
1256		mmci_get_next_data(host, mrq->data);
1257
1258	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1259		mmci_start_data(host, mrq->data);
1260
1261	if (mrq->sbc)
1262		mmci_start_command(host, mrq->sbc, 0);
1263	else
1264		mmci_start_command(host, mrq->cmd, 0);
1265
1266	spin_unlock_irqrestore(&host->lock, flags);
1267}
1268
1269static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1270{
1271	struct mmci_host *host = mmc_priv(mmc);
1272	struct variant_data *variant = host->variant;
1273	u32 pwr = 0;
1274	unsigned long flags;
1275	int ret;
1276
1277	pm_runtime_get_sync(mmc_dev(mmc));
1278
1279	if (host->plat->ios_handler &&
1280		host->plat->ios_handler(mmc_dev(mmc), ios))
1281			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1282
1283	switch (ios->power_mode) {
1284	case MMC_POWER_OFF:
1285		if (!IS_ERR(mmc->supply.vmmc))
1286			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1287
1288		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1289			regulator_disable(mmc->supply.vqmmc);
1290			host->vqmmc_enabled = false;
1291		}
1292
1293		break;
1294	case MMC_POWER_UP:
1295		if (!IS_ERR(mmc->supply.vmmc))
1296			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1297
1298		/*
1299		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1300		 * and instead uses MCI_PWR_ON so apply whatever value is
1301		 * configured in the variant data.
1302		 */
1303		pwr |= variant->pwrreg_powerup;
1304
1305		break;
1306	case MMC_POWER_ON:
1307		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1308			ret = regulator_enable(mmc->supply.vqmmc);
1309			if (ret < 0)
1310				dev_err(mmc_dev(mmc),
1311					"failed to enable vqmmc regulator\n");
1312			else
1313				host->vqmmc_enabled = true;
1314		}
1315
1316		pwr |= MCI_PWR_ON;
1317		break;
1318	}
1319
1320	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1321		/*
1322		 * The ST Micro variant has some additional bits
1323		 * indicating signal direction for the signals in
1324		 * the SD/MMC bus and feedback-clock usage.
1325		 */
1326		pwr |= host->pwr_reg_add;
1327
1328		if (ios->bus_width == MMC_BUS_WIDTH_4)
1329			pwr &= ~MCI_ST_DATA74DIREN;
1330		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1331			pwr &= (~MCI_ST_DATA74DIREN &
1332				~MCI_ST_DATA31DIREN &
1333				~MCI_ST_DATA2DIREN);
1334	}
1335
1336	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1337		if (host->hw_designer != AMBA_VENDOR_ST)
1338			pwr |= MCI_ROD;
1339		else {
1340			/*
1341			 * The ST Micro variant use the ROD bit for something
1342			 * else and only has OD (Open Drain).
1343			 */
1344			pwr |= MCI_OD;
1345		}
1346	}
1347
1348	/*
1349	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1350	 * gating the clock, the MCI_PWR_ON bit is cleared.
1351	 */
1352	if (!ios->clock && variant->pwrreg_clkgate)
1353		pwr &= ~MCI_PWR_ON;
1354
1355	if (host->variant->explicit_mclk_control &&
1356	    ios->clock != host->clock_cache) {
1357		ret = clk_set_rate(host->clk, ios->clock);
1358		if (ret < 0)
1359			dev_err(mmc_dev(host->mmc),
1360				"Error setting clock rate (%d)\n", ret);
1361		else
1362			host->mclk = clk_get_rate(host->clk);
1363	}
1364	host->clock_cache = ios->clock;
1365
1366	spin_lock_irqsave(&host->lock, flags);
1367
1368	mmci_set_clkreg(host, ios->clock);
1369	mmci_write_pwrreg(host, pwr);
1370	mmci_reg_delay(host);
1371
1372	spin_unlock_irqrestore(&host->lock, flags);
1373
1374	pm_runtime_mark_last_busy(mmc_dev(mmc));
1375	pm_runtime_put_autosuspend(mmc_dev(mmc));
1376}
1377
1378static int mmci_get_cd(struct mmc_host *mmc)
1379{
1380	struct mmci_host *host = mmc_priv(mmc);
1381	struct mmci_platform_data *plat = host->plat;
1382	unsigned int status = mmc_gpio_get_cd(mmc);
1383
1384	if (status == -ENOSYS) {
1385		if (!plat->status)
1386			return 1; /* Assume always present */
1387
1388		status = plat->status(mmc_dev(host->mmc));
1389	}
1390	return status;
1391}
1392
1393static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1394{
1395	int ret = 0;
1396
1397	if (!IS_ERR(mmc->supply.vqmmc)) {
1398
1399		pm_runtime_get_sync(mmc_dev(mmc));
1400
1401		switch (ios->signal_voltage) {
1402		case MMC_SIGNAL_VOLTAGE_330:
1403			ret = regulator_set_voltage(mmc->supply.vqmmc,
1404						2700000, 3600000);
1405			break;
1406		case MMC_SIGNAL_VOLTAGE_180:
1407			ret = regulator_set_voltage(mmc->supply.vqmmc,
1408						1700000, 1950000);
1409			break;
1410		case MMC_SIGNAL_VOLTAGE_120:
1411			ret = regulator_set_voltage(mmc->supply.vqmmc,
1412						1100000, 1300000);
1413			break;
1414		}
1415
1416		if (ret)
1417			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1418
1419		pm_runtime_mark_last_busy(mmc_dev(mmc));
1420		pm_runtime_put_autosuspend(mmc_dev(mmc));
1421	}
1422
1423	return ret;
1424}
1425
1426static struct mmc_host_ops mmci_ops = {
1427	.request	= mmci_request,
1428	.pre_req	= mmci_pre_request,
1429	.post_req	= mmci_post_request,
1430	.set_ios	= mmci_set_ios,
1431	.get_ro		= mmc_gpio_get_ro,
1432	.get_cd		= mmci_get_cd,
1433	.start_signal_voltage_switch = mmci_sig_volt_switch,
1434};
1435
1436static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1437{
1438	struct mmci_host *host = mmc_priv(mmc);
1439	int ret = mmc_of_parse(mmc);
1440
1441	if (ret)
1442		return ret;
1443
1444	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1445		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1446	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1447		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1448	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1449		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1450	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1451		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1452	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1453		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1454	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1455		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1456
1457	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1458		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1459	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1460		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1461
1462	return 0;
1463}
1464
1465static int mmci_probe(struct amba_device *dev,
1466	const struct amba_id *id)
1467{
1468	struct mmci_platform_data *plat = dev->dev.platform_data;
1469	struct device_node *np = dev->dev.of_node;
1470	struct variant_data *variant = id->data;
1471	struct mmci_host *host;
1472	struct mmc_host *mmc;
1473	int ret;
1474
1475	/* Must have platform data or Device Tree. */
1476	if (!plat && !np) {
1477		dev_err(&dev->dev, "No plat data or DT found\n");
1478		return -EINVAL;
1479	}
1480
1481	if (!plat) {
1482		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1483		if (!plat)
1484			return -ENOMEM;
1485	}
1486
1487	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1488	if (!mmc)
1489		return -ENOMEM;
1490
1491	ret = mmci_of_parse(np, mmc);
1492	if (ret)
1493		goto host_free;
1494
1495	host = mmc_priv(mmc);
1496	host->mmc = mmc;
1497
1498	host->hw_designer = amba_manf(dev);
1499	host->hw_revision = amba_rev(dev);
1500	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1501	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1502
1503	host->clk = devm_clk_get(&dev->dev, NULL);
1504	if (IS_ERR(host->clk)) {
1505		ret = PTR_ERR(host->clk);
1506		goto host_free;
1507	}
1508
1509	ret = clk_prepare_enable(host->clk);
1510	if (ret)
1511		goto host_free;
1512
1513	if (variant->qcom_fifo)
1514		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1515	else
1516		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1517
1518	host->plat = plat;
1519	host->variant = variant;
1520	host->mclk = clk_get_rate(host->clk);
1521	/*
1522	 * According to the spec, mclk is max 100 MHz,
1523	 * so we try to adjust the clock down to this,
1524	 * (if possible).
1525	 */
1526	if (host->mclk > variant->f_max) {
1527		ret = clk_set_rate(host->clk, variant->f_max);
1528		if (ret < 0)
1529			goto clk_disable;
1530		host->mclk = clk_get_rate(host->clk);
1531		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1532			host->mclk);
1533	}
1534
1535	host->phybase = dev->res.start;
1536	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1537	if (IS_ERR(host->base)) {
1538		ret = PTR_ERR(host->base);
1539		goto clk_disable;
1540	}
1541
1542	/*
1543	 * The ARM and ST versions of the block have slightly different
1544	 * clock divider equations which means that the minimum divider
1545	 * differs too.
1546	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1547	 */
1548	if (variant->st_clkdiv)
1549		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1550	else if (variant->explicit_mclk_control)
1551		mmc->f_min = clk_round_rate(host->clk, 100000);
1552	else
1553		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1554	/*
1555	 * If no maximum operating frequency is supplied, fall back to use
1556	 * the module parameter, which has a (low) default value in case it
1557	 * is not specified. Either value must not exceed the clock rate into
1558	 * the block, of course.
1559	 */
1560	if (mmc->f_max)
1561		mmc->f_max = variant->explicit_mclk_control ?
1562				min(variant->f_max, mmc->f_max) :
1563				min(host->mclk, mmc->f_max);
1564	else
1565		mmc->f_max = variant->explicit_mclk_control ?
1566				fmax : min(host->mclk, fmax);
1567
1568
1569	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1570
1571	/* Get regulators and the supported OCR mask */
1572	mmc_regulator_get_supply(mmc);
1573	if (!mmc->ocr_avail)
1574		mmc->ocr_avail = plat->ocr_mask;
1575	else if (plat->ocr_mask)
1576		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1577
1578	/* DT takes precedence over platform data. */
1579	if (!np) {
1580		if (!plat->cd_invert)
1581			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1582		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1583	}
1584
1585	/* We support these capabilities. */
1586	mmc->caps |= MMC_CAP_CMD23;
1587
1588	if (variant->busy_detect) {
1589		mmci_ops.card_busy = mmci_card_busy;
1590		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1591		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1592		mmc->max_busy_timeout = 0;
1593	}
1594
1595	mmc->ops = &mmci_ops;
1596
1597	/* We support these PM capabilities. */
1598	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1599
1600	/*
1601	 * We can do SGIO
1602	 */
1603	mmc->max_segs = NR_SG;
1604
1605	/*
1606	 * Since only a certain number of bits are valid in the data length
1607	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1608	 * single request.
1609	 */
1610	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1611
1612	/*
1613	 * Set the maximum segment size.  Since we aren't doing DMA
1614	 * (yet) we are only limited by the data length register.
1615	 */
1616	mmc->max_seg_size = mmc->max_req_size;
1617
1618	/*
1619	 * Block size can be up to 2048 bytes, but must be a power of two.
1620	 */
1621	mmc->max_blk_size = 1 << 11;
1622
1623	/*
1624	 * Limit the number of blocks transferred so that we don't overflow
1625	 * the maximum request size.
1626	 */
1627	mmc->max_blk_count = mmc->max_req_size >> 11;
1628
1629	spin_lock_init(&host->lock);
1630
1631	writel(0, host->base + MMCIMASK0);
1632	writel(0, host->base + MMCIMASK1);
1633	writel(0xfff, host->base + MMCICLEAR);
1634
1635	/* If DT, cd/wp gpios must be supplied through it. */
1636	if (!np && gpio_is_valid(plat->gpio_cd)) {
1637		ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1638		if (ret)
1639			goto clk_disable;
1640	}
1641	if (!np && gpio_is_valid(plat->gpio_wp)) {
1642		ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1643		if (ret)
1644			goto clk_disable;
1645	}
1646
1647	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1648			DRIVER_NAME " (cmd)", host);
1649	if (ret)
1650		goto clk_disable;
1651
1652	if (!dev->irq[1])
1653		host->singleirq = true;
1654	else {
1655		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1656				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1657		if (ret)
1658			goto clk_disable;
1659	}
1660
1661	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1662
1663	amba_set_drvdata(dev, mmc);
1664
1665	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1666		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1667		 amba_rev(dev), (unsigned long long)dev->res.start,
1668		 dev->irq[0], dev->irq[1]);
1669
1670	mmci_dma_setup(host);
1671
1672	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1673	pm_runtime_use_autosuspend(&dev->dev);
1674	pm_runtime_put(&dev->dev);
1675
1676	mmc_add_host(mmc);
1677
1678	return 0;
1679
1680 clk_disable:
1681	clk_disable_unprepare(host->clk);
1682 host_free:
1683	mmc_free_host(mmc);
1684	return ret;
1685}
1686
1687static int mmci_remove(struct amba_device *dev)
1688{
1689	struct mmc_host *mmc = amba_get_drvdata(dev);
1690
1691	if (mmc) {
1692		struct mmci_host *host = mmc_priv(mmc);
1693
1694		/*
1695		 * Undo pm_runtime_put() in probe.  We use the _sync
1696		 * version here so that we can access the primecell.
1697		 */
1698		pm_runtime_get_sync(&dev->dev);
1699
1700		mmc_remove_host(mmc);
1701
1702		writel(0, host->base + MMCIMASK0);
1703		writel(0, host->base + MMCIMASK1);
1704
1705		writel(0, host->base + MMCICOMMAND);
1706		writel(0, host->base + MMCIDATACTRL);
1707
1708		mmci_dma_release(host);
1709		clk_disable_unprepare(host->clk);
1710		mmc_free_host(mmc);
1711	}
1712
1713	return 0;
1714}
1715
1716#ifdef CONFIG_PM
1717static void mmci_save(struct mmci_host *host)
1718{
1719	unsigned long flags;
1720
1721	spin_lock_irqsave(&host->lock, flags);
1722
1723	writel(0, host->base + MMCIMASK0);
1724	if (host->variant->pwrreg_nopower) {
1725		writel(0, host->base + MMCIDATACTRL);
1726		writel(0, host->base + MMCIPOWER);
1727		writel(0, host->base + MMCICLOCK);
1728	}
1729	mmci_reg_delay(host);
1730
1731	spin_unlock_irqrestore(&host->lock, flags);
1732}
1733
1734static void mmci_restore(struct mmci_host *host)
1735{
1736	unsigned long flags;
1737
1738	spin_lock_irqsave(&host->lock, flags);
1739
1740	if (host->variant->pwrreg_nopower) {
1741		writel(host->clk_reg, host->base + MMCICLOCK);
1742		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1743		writel(host->pwr_reg, host->base + MMCIPOWER);
1744	}
1745	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1746	mmci_reg_delay(host);
1747
1748	spin_unlock_irqrestore(&host->lock, flags);
1749}
1750
1751static int mmci_runtime_suspend(struct device *dev)
1752{
1753	struct amba_device *adev = to_amba_device(dev);
1754	struct mmc_host *mmc = amba_get_drvdata(adev);
1755
1756	if (mmc) {
1757		struct mmci_host *host = mmc_priv(mmc);
1758		pinctrl_pm_select_sleep_state(dev);
1759		mmci_save(host);
1760		clk_disable_unprepare(host->clk);
1761	}
1762
1763	return 0;
1764}
1765
1766static int mmci_runtime_resume(struct device *dev)
1767{
1768	struct amba_device *adev = to_amba_device(dev);
1769	struct mmc_host *mmc = amba_get_drvdata(adev);
1770
1771	if (mmc) {
1772		struct mmci_host *host = mmc_priv(mmc);
1773		clk_prepare_enable(host->clk);
1774		mmci_restore(host);
1775		pinctrl_pm_select_default_state(dev);
1776	}
1777
1778	return 0;
1779}
1780#endif
1781
1782static const struct dev_pm_ops mmci_dev_pm_ops = {
1783	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1784				pm_runtime_force_resume)
1785	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1786};
1787
1788static struct amba_id mmci_ids[] = {
1789	{
1790		.id	= 0x00041180,
1791		.mask	= 0xff0fffff,
1792		.data	= &variant_arm,
1793	},
1794	{
1795		.id	= 0x01041180,
1796		.mask	= 0xff0fffff,
1797		.data	= &variant_arm_extended_fifo,
1798	},
1799	{
1800		.id	= 0x02041180,
1801		.mask	= 0xff0fffff,
1802		.data	= &variant_arm_extended_fifo_hwfc,
1803	},
1804	{
1805		.id	= 0x00041181,
1806		.mask	= 0x000fffff,
1807		.data	= &variant_arm,
1808	},
1809	/* ST Micro variants */
1810	{
1811		.id     = 0x00180180,
1812		.mask   = 0x00ffffff,
1813		.data	= &variant_u300,
1814	},
1815	{
1816		.id     = 0x10180180,
1817		.mask   = 0xf0ffffff,
1818		.data	= &variant_nomadik,
1819	},
1820	{
1821		.id     = 0x00280180,
1822		.mask   = 0x00ffffff,
1823		.data	= &variant_u300,
1824	},
1825	{
1826		.id     = 0x00480180,
1827		.mask   = 0xf0ffffff,
1828		.data	= &variant_ux500,
1829	},
1830	{
1831		.id     = 0x10480180,
1832		.mask   = 0xf0ffffff,
1833		.data	= &variant_ux500v2,
1834	},
1835	{ 0, 0 },
1836};
1837
1838MODULE_DEVICE_TABLE(amba, mmci_ids);
1839
1840static struct amba_driver mmci_driver = {
1841	.drv		= {
1842		.name	= DRIVER_NAME,
1843		.pm	= &mmci_dev_pm_ops,
1844	},
1845	.probe		= mmci_probe,
1846	.remove		= mmci_remove,
1847	.id_table	= mmci_ids,
1848};
1849
1850module_amba_driver(mmci_driver);
1851
1852module_param(fmax, uint, 0444);
1853
1854MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1855MODULE_LICENSE("GPL");
1856