mmci.c revision 9cc639a20fdc0b935e55d4992f93963f95233ca4
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 *	      is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 *		  is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 */
65struct variant_data {
66	unsigned int		clkreg;
67	unsigned int		clkreg_enable;
68	unsigned int		datalength_bits;
69	unsigned int		fifosize;
70	unsigned int		fifohalfsize;
71	bool			sdio;
72	bool			st_clkdiv;
73	bool			blksz_datactrl16;
74	u32			pwrreg_powerup;
75	bool			signal_direction;
76	bool			pwrreg_clkgate;
77};
78
79static struct variant_data variant_arm = {
80	.fifosize		= 16 * 4,
81	.fifohalfsize		= 8 * 4,
82	.datalength_bits	= 16,
83	.pwrreg_powerup		= MCI_PWR_UP,
84};
85
86static struct variant_data variant_arm_extended_fifo = {
87	.fifosize		= 128 * 4,
88	.fifohalfsize		= 64 * 4,
89	.datalength_bits	= 16,
90	.pwrreg_powerup		= MCI_PWR_UP,
91};
92
93static struct variant_data variant_arm_extended_fifo_hwfc = {
94	.fifosize		= 128 * 4,
95	.fifohalfsize		= 64 * 4,
96	.clkreg_enable		= MCI_ARM_HWFCEN,
97	.datalength_bits	= 16,
98	.pwrreg_powerup		= MCI_PWR_UP,
99};
100
101static struct variant_data variant_u300 = {
102	.fifosize		= 16 * 4,
103	.fifohalfsize		= 8 * 4,
104	.clkreg_enable		= MCI_ST_U300_HWFCEN,
105	.datalength_bits	= 16,
106	.sdio			= true,
107	.pwrreg_powerup		= MCI_PWR_ON,
108	.signal_direction	= true,
109	.pwrreg_clkgate		= true,
110};
111
112static struct variant_data variant_nomadik = {
113	.fifosize		= 16 * 4,
114	.fifohalfsize		= 8 * 4,
115	.clkreg			= MCI_CLK_ENABLE,
116	.datalength_bits	= 24,
117	.sdio			= true,
118	.st_clkdiv		= true,
119	.pwrreg_powerup		= MCI_PWR_ON,
120	.signal_direction	= true,
121	.pwrreg_clkgate		= true,
122};
123
124static struct variant_data variant_ux500 = {
125	.fifosize		= 30 * 4,
126	.fifohalfsize		= 8 * 4,
127	.clkreg			= MCI_CLK_ENABLE,
128	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
129	.datalength_bits	= 24,
130	.sdio			= true,
131	.st_clkdiv		= true,
132	.pwrreg_powerup		= MCI_PWR_ON,
133	.signal_direction	= true,
134	.pwrreg_clkgate		= true,
135};
136
137static struct variant_data variant_ux500v2 = {
138	.fifosize		= 30 * 4,
139	.fifohalfsize		= 8 * 4,
140	.clkreg			= MCI_CLK_ENABLE,
141	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
142	.datalength_bits	= 24,
143	.sdio			= true,
144	.st_clkdiv		= true,
145	.blksz_datactrl16	= true,
146	.pwrreg_powerup		= MCI_PWR_ON,
147	.signal_direction	= true,
148	.pwrreg_clkgate		= true,
149};
150
151/*
152 * Validate mmc prerequisites
153 */
154static int mmci_validate_data(struct mmci_host *host,
155			      struct mmc_data *data)
156{
157	if (!data)
158		return 0;
159
160	if (!is_power_of_2(data->blksz)) {
161		dev_err(mmc_dev(host->mmc),
162			"unsupported block size (%d bytes)\n", data->blksz);
163		return -EINVAL;
164	}
165
166	return 0;
167}
168
169/*
170 * This must be called with host->lock held
171 */
172static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
173{
174	if (host->clk_reg != clk) {
175		host->clk_reg = clk;
176		writel(clk, host->base + MMCICLOCK);
177	}
178}
179
180/*
181 * This must be called with host->lock held
182 */
183static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
184{
185	if (host->pwr_reg != pwr) {
186		host->pwr_reg = pwr;
187		writel(pwr, host->base + MMCIPOWER);
188	}
189}
190
191/*
192 * This must be called with host->lock held
193 */
194static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
195{
196	if (host->datactrl_reg != datactrl) {
197		host->datactrl_reg = datactrl;
198		writel(datactrl, host->base + MMCIDATACTRL);
199	}
200}
201
202/*
203 * This must be called with host->lock held
204 */
205static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
206{
207	struct variant_data *variant = host->variant;
208	u32 clk = variant->clkreg;
209
210	/* Make sure cclk reflects the current calculated clock */
211	host->cclk = 0;
212
213	if (desired) {
214		if (desired >= host->mclk) {
215			clk = MCI_CLK_BYPASS;
216			if (variant->st_clkdiv)
217				clk |= MCI_ST_UX500_NEG_EDGE;
218			host->cclk = host->mclk;
219		} else if (variant->st_clkdiv) {
220			/*
221			 * DB8500 TRM says f = mclk / (clkdiv + 2)
222			 * => clkdiv = (mclk / f) - 2
223			 * Round the divider up so we don't exceed the max
224			 * frequency
225			 */
226			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
227			if (clk >= 256)
228				clk = 255;
229			host->cclk = host->mclk / (clk + 2);
230		} else {
231			/*
232			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
233			 * => clkdiv = mclk / (2 * f) - 1
234			 */
235			clk = host->mclk / (2 * desired) - 1;
236			if (clk >= 256)
237				clk = 255;
238			host->cclk = host->mclk / (2 * (clk + 1));
239		}
240
241		clk |= variant->clkreg_enable;
242		clk |= MCI_CLK_ENABLE;
243		/* This hasn't proven to be worthwhile */
244		/* clk |= MCI_CLK_PWRSAVE; */
245	}
246
247	/* Set actual clock for debug */
248	host->mmc->actual_clock = host->cclk;
249
250	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
251		clk |= MCI_4BIT_BUS;
252	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
253		clk |= MCI_ST_8BIT_BUS;
254
255	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
256		clk |= MCI_ST_UX500_NEG_EDGE;
257
258	mmci_write_clkreg(host, clk);
259}
260
261static void
262mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
263{
264	writel(0, host->base + MMCICOMMAND);
265
266	BUG_ON(host->data);
267
268	host->mrq = NULL;
269	host->cmd = NULL;
270
271	mmc_request_done(host->mmc, mrq);
272
273	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
274	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
275}
276
277static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
278{
279	void __iomem *base = host->base;
280
281	if (host->singleirq) {
282		unsigned int mask0 = readl(base + MMCIMASK0);
283
284		mask0 &= ~MCI_IRQ1MASK;
285		mask0 |= mask;
286
287		writel(mask0, base + MMCIMASK0);
288	}
289
290	writel(mask, base + MMCIMASK1);
291}
292
293static void mmci_stop_data(struct mmci_host *host)
294{
295	mmci_write_datactrlreg(host, 0);
296	mmci_set_mask1(host, 0);
297	host->data = NULL;
298}
299
300static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
301{
302	unsigned int flags = SG_MITER_ATOMIC;
303
304	if (data->flags & MMC_DATA_READ)
305		flags |= SG_MITER_TO_SG;
306	else
307		flags |= SG_MITER_FROM_SG;
308
309	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
310}
311
312/*
313 * All the DMA operation mode stuff goes inside this ifdef.
314 * This assumes that you have a generic DMA device interface,
315 * no custom DMA interfaces are supported.
316 */
317#ifdef CONFIG_DMA_ENGINE
318static void mmci_dma_setup(struct mmci_host *host)
319{
320	struct mmci_platform_data *plat = host->plat;
321	const char *rxname, *txname;
322	dma_cap_mask_t mask;
323
324	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
325	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
326
327	/* initialize pre request cookie */
328	host->next_data.cookie = 1;
329
330	/* Try to acquire a generic DMA engine slave channel */
331	dma_cap_zero(mask);
332	dma_cap_set(DMA_SLAVE, mask);
333
334	if (plat && plat->dma_filter) {
335		if (!host->dma_rx_channel && plat->dma_rx_param) {
336			host->dma_rx_channel = dma_request_channel(mask,
337							   plat->dma_filter,
338							   plat->dma_rx_param);
339			/* E.g if no DMA hardware is present */
340			if (!host->dma_rx_channel)
341				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
342		}
343
344		if (!host->dma_tx_channel && plat->dma_tx_param) {
345			host->dma_tx_channel = dma_request_channel(mask,
346							   plat->dma_filter,
347							   plat->dma_tx_param);
348			if (!host->dma_tx_channel)
349				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
350		}
351	}
352
353	/*
354	 * If only an RX channel is specified, the driver will
355	 * attempt to use it bidirectionally, however if it is
356	 * is specified but cannot be located, DMA will be disabled.
357	 */
358	if (host->dma_rx_channel && !host->dma_tx_channel)
359		host->dma_tx_channel = host->dma_rx_channel;
360
361	if (host->dma_rx_channel)
362		rxname = dma_chan_name(host->dma_rx_channel);
363	else
364		rxname = "none";
365
366	if (host->dma_tx_channel)
367		txname = dma_chan_name(host->dma_tx_channel);
368	else
369		txname = "none";
370
371	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
372		 rxname, txname);
373
374	/*
375	 * Limit the maximum segment size in any SG entry according to
376	 * the parameters of the DMA engine device.
377	 */
378	if (host->dma_tx_channel) {
379		struct device *dev = host->dma_tx_channel->device->dev;
380		unsigned int max_seg_size = dma_get_max_seg_size(dev);
381
382		if (max_seg_size < host->mmc->max_seg_size)
383			host->mmc->max_seg_size = max_seg_size;
384	}
385	if (host->dma_rx_channel) {
386		struct device *dev = host->dma_rx_channel->device->dev;
387		unsigned int max_seg_size = dma_get_max_seg_size(dev);
388
389		if (max_seg_size < host->mmc->max_seg_size)
390			host->mmc->max_seg_size = max_seg_size;
391	}
392}
393
394/*
395 * This is used in or so inline it
396 * so it can be discarded.
397 */
398static inline void mmci_dma_release(struct mmci_host *host)
399{
400	struct mmci_platform_data *plat = host->plat;
401
402	if (host->dma_rx_channel)
403		dma_release_channel(host->dma_rx_channel);
404	if (host->dma_tx_channel && plat->dma_tx_param)
405		dma_release_channel(host->dma_tx_channel);
406	host->dma_rx_channel = host->dma_tx_channel = NULL;
407}
408
409static void mmci_dma_data_error(struct mmci_host *host)
410{
411	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
412	dmaengine_terminate_all(host->dma_current);
413	host->dma_current = NULL;
414	host->dma_desc_current = NULL;
415	host->data->host_cookie = 0;
416}
417
418static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
419{
420	struct dma_chan *chan;
421	enum dma_data_direction dir;
422
423	if (data->flags & MMC_DATA_READ) {
424		dir = DMA_FROM_DEVICE;
425		chan = host->dma_rx_channel;
426	} else {
427		dir = DMA_TO_DEVICE;
428		chan = host->dma_tx_channel;
429	}
430
431	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
432}
433
434static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
435{
436	u32 status;
437	int i;
438
439	/* Wait up to 1ms for the DMA to complete */
440	for (i = 0; ; i++) {
441		status = readl(host->base + MMCISTATUS);
442		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
443			break;
444		udelay(10);
445	}
446
447	/*
448	 * Check to see whether we still have some data left in the FIFO -
449	 * this catches DMA controllers which are unable to monitor the
450	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
451	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
452	 */
453	if (status & MCI_RXDATAAVLBLMASK) {
454		mmci_dma_data_error(host);
455		if (!data->error)
456			data->error = -EIO;
457	}
458
459	if (!data->host_cookie)
460		mmci_dma_unmap(host, data);
461
462	/*
463	 * Use of DMA with scatter-gather is impossible.
464	 * Give up with DMA and switch back to PIO mode.
465	 */
466	if (status & MCI_RXDATAAVLBLMASK) {
467		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
468		mmci_dma_release(host);
469	}
470
471	host->dma_current = NULL;
472	host->dma_desc_current = NULL;
473}
474
475/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
476static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
477				struct dma_chan **dma_chan,
478				struct dma_async_tx_descriptor **dma_desc)
479{
480	struct variant_data *variant = host->variant;
481	struct dma_slave_config conf = {
482		.src_addr = host->phybase + MMCIFIFO,
483		.dst_addr = host->phybase + MMCIFIFO,
484		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
485		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
486		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
487		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
488		.device_fc = false,
489	};
490	struct dma_chan *chan;
491	struct dma_device *device;
492	struct dma_async_tx_descriptor *desc;
493	enum dma_data_direction buffer_dirn;
494	int nr_sg;
495
496	if (data->flags & MMC_DATA_READ) {
497		conf.direction = DMA_DEV_TO_MEM;
498		buffer_dirn = DMA_FROM_DEVICE;
499		chan = host->dma_rx_channel;
500	} else {
501		conf.direction = DMA_MEM_TO_DEV;
502		buffer_dirn = DMA_TO_DEVICE;
503		chan = host->dma_tx_channel;
504	}
505
506	/* If there's no DMA channel, fall back to PIO */
507	if (!chan)
508		return -EINVAL;
509
510	/* If less than or equal to the fifo size, don't bother with DMA */
511	if (data->blksz * data->blocks <= variant->fifosize)
512		return -EINVAL;
513
514	device = chan->device;
515	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
516	if (nr_sg == 0)
517		return -EINVAL;
518
519	dmaengine_slave_config(chan, &conf);
520	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
521					    conf.direction, DMA_CTRL_ACK);
522	if (!desc)
523		goto unmap_exit;
524
525	*dma_chan = chan;
526	*dma_desc = desc;
527
528	return 0;
529
530 unmap_exit:
531	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
532	return -ENOMEM;
533}
534
535static inline int mmci_dma_prep_data(struct mmci_host *host,
536				     struct mmc_data *data)
537{
538	/* Check if next job is already prepared. */
539	if (host->dma_current && host->dma_desc_current)
540		return 0;
541
542	/* No job were prepared thus do it now. */
543	return __mmci_dma_prep_data(host, data, &host->dma_current,
544				    &host->dma_desc_current);
545}
546
547static inline int mmci_dma_prep_next(struct mmci_host *host,
548				     struct mmc_data *data)
549{
550	struct mmci_host_next *nd = &host->next_data;
551	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
552}
553
554static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
555{
556	int ret;
557	struct mmc_data *data = host->data;
558
559	ret = mmci_dma_prep_data(host, host->data);
560	if (ret)
561		return ret;
562
563	/* Okay, go for it. */
564	dev_vdbg(mmc_dev(host->mmc),
565		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
566		 data->sg_len, data->blksz, data->blocks, data->flags);
567	dmaengine_submit(host->dma_desc_current);
568	dma_async_issue_pending(host->dma_current);
569
570	datactrl |= MCI_DPSM_DMAENABLE;
571
572	/* Trigger the DMA transfer */
573	mmci_write_datactrlreg(host, datactrl);
574
575	/*
576	 * Let the MMCI say when the data is ended and it's time
577	 * to fire next DMA request. When that happens, MMCI will
578	 * call mmci_data_end()
579	 */
580	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
581	       host->base + MMCIMASK0);
582	return 0;
583}
584
585static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
586{
587	struct mmci_host_next *next = &host->next_data;
588
589	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
590	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
591
592	host->dma_desc_current = next->dma_desc;
593	host->dma_current = next->dma_chan;
594	next->dma_desc = NULL;
595	next->dma_chan = NULL;
596}
597
598static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
599			     bool is_first_req)
600{
601	struct mmci_host *host = mmc_priv(mmc);
602	struct mmc_data *data = mrq->data;
603	struct mmci_host_next *nd = &host->next_data;
604
605	if (!data)
606		return;
607
608	BUG_ON(data->host_cookie);
609
610	if (mmci_validate_data(host, data))
611		return;
612
613	if (!mmci_dma_prep_next(host, data))
614		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
615}
616
617static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
618			      int err)
619{
620	struct mmci_host *host = mmc_priv(mmc);
621	struct mmc_data *data = mrq->data;
622
623	if (!data || !data->host_cookie)
624		return;
625
626	mmci_dma_unmap(host, data);
627
628	if (err) {
629		struct mmci_host_next *next = &host->next_data;
630		struct dma_chan *chan;
631		if (data->flags & MMC_DATA_READ)
632			chan = host->dma_rx_channel;
633		else
634			chan = host->dma_tx_channel;
635		dmaengine_terminate_all(chan);
636
637		next->dma_desc = NULL;
638		next->dma_chan = NULL;
639	}
640}
641
642#else
643/* Blank functions if the DMA engine is not available */
644static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
645{
646}
647static inline void mmci_dma_setup(struct mmci_host *host)
648{
649}
650
651static inline void mmci_dma_release(struct mmci_host *host)
652{
653}
654
655static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
656{
657}
658
659static inline void mmci_dma_finalize(struct mmci_host *host,
660				     struct mmc_data *data)
661{
662}
663
664static inline void mmci_dma_data_error(struct mmci_host *host)
665{
666}
667
668static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
669{
670	return -ENOSYS;
671}
672
673#define mmci_pre_request NULL
674#define mmci_post_request NULL
675
676#endif
677
678static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
679{
680	struct variant_data *variant = host->variant;
681	unsigned int datactrl, timeout, irqmask;
682	unsigned long long clks;
683	void __iomem *base;
684	int blksz_bits;
685
686	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
687		data->blksz, data->blocks, data->flags);
688
689	host->data = data;
690	host->size = data->blksz * data->blocks;
691	data->bytes_xfered = 0;
692
693	clks = (unsigned long long)data->timeout_ns * host->cclk;
694	do_div(clks, 1000000000UL);
695
696	timeout = data->timeout_clks + (unsigned int)clks;
697
698	base = host->base;
699	writel(timeout, base + MMCIDATATIMER);
700	writel(host->size, base + MMCIDATALENGTH);
701
702	blksz_bits = ffs(data->blksz) - 1;
703	BUG_ON(1 << blksz_bits != data->blksz);
704
705	if (variant->blksz_datactrl16)
706		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
707	else
708		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
709
710	if (data->flags & MMC_DATA_READ)
711		datactrl |= MCI_DPSM_DIRECTION;
712
713	/* The ST Micro variants has a special bit to enable SDIO */
714	if (variant->sdio && host->mmc->card)
715		if (mmc_card_sdio(host->mmc->card)) {
716			/*
717			 * The ST Micro variants has a special bit
718			 * to enable SDIO.
719			 */
720			u32 clk;
721
722			datactrl |= MCI_ST_DPSM_SDIOEN;
723
724			/*
725			 * The ST Micro variant for SDIO small write transfers
726			 * needs to have clock H/W flow control disabled,
727			 * otherwise the transfer will not start. The threshold
728			 * depends on the rate of MCLK.
729			 */
730			if (data->flags & MMC_DATA_WRITE &&
731			    (host->size < 8 ||
732			     (host->size <= 8 && host->mclk > 50000000)))
733				clk = host->clk_reg & ~variant->clkreg_enable;
734			else
735				clk = host->clk_reg | variant->clkreg_enable;
736
737			mmci_write_clkreg(host, clk);
738		}
739
740	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
741		datactrl |= MCI_ST_DPSM_DDRMODE;
742
743	/*
744	 * Attempt to use DMA operation mode, if this
745	 * should fail, fall back to PIO mode
746	 */
747	if (!mmci_dma_start_data(host, datactrl))
748		return;
749
750	/* IRQ mode, map the SG list for CPU reading/writing */
751	mmci_init_sg(host, data);
752
753	if (data->flags & MMC_DATA_READ) {
754		irqmask = MCI_RXFIFOHALFFULLMASK;
755
756		/*
757		 * If we have less than the fifo 'half-full' threshold to
758		 * transfer, trigger a PIO interrupt as soon as any data
759		 * is available.
760		 */
761		if (host->size < variant->fifohalfsize)
762			irqmask |= MCI_RXDATAAVLBLMASK;
763	} else {
764		/*
765		 * We don't actually need to include "FIFO empty" here
766		 * since its implicit in "FIFO half empty".
767		 */
768		irqmask = MCI_TXFIFOHALFEMPTYMASK;
769	}
770
771	mmci_write_datactrlreg(host, datactrl);
772	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
773	mmci_set_mask1(host, irqmask);
774}
775
776static void
777mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
778{
779	void __iomem *base = host->base;
780
781	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
782	    cmd->opcode, cmd->arg, cmd->flags);
783
784	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
785		writel(0, base + MMCICOMMAND);
786		udelay(1);
787	}
788
789	c |= cmd->opcode | MCI_CPSM_ENABLE;
790	if (cmd->flags & MMC_RSP_PRESENT) {
791		if (cmd->flags & MMC_RSP_136)
792			c |= MCI_CPSM_LONGRSP;
793		c |= MCI_CPSM_RESPONSE;
794	}
795	if (/*interrupt*/0)
796		c |= MCI_CPSM_INTERRUPT;
797
798	host->cmd = cmd;
799
800	writel(cmd->arg, base + MMCIARGUMENT);
801	writel(c, base + MMCICOMMAND);
802}
803
804static void
805mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
806	      unsigned int status)
807{
808	/* First check for errors */
809	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
810		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
811		u32 remain, success;
812
813		/* Terminate the DMA transfer */
814		if (dma_inprogress(host)) {
815			mmci_dma_data_error(host);
816			mmci_dma_unmap(host, data);
817		}
818
819		/*
820		 * Calculate how far we are into the transfer.  Note that
821		 * the data counter gives the number of bytes transferred
822		 * on the MMC bus, not on the host side.  On reads, this
823		 * can be as much as a FIFO-worth of data ahead.  This
824		 * matters for FIFO overruns only.
825		 */
826		remain = readl(host->base + MMCIDATACNT);
827		success = data->blksz * data->blocks - remain;
828
829		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
830			status, success);
831		if (status & MCI_DATACRCFAIL) {
832			/* Last block was not successful */
833			success -= 1;
834			data->error = -EILSEQ;
835		} else if (status & MCI_DATATIMEOUT) {
836			data->error = -ETIMEDOUT;
837		} else if (status & MCI_STARTBITERR) {
838			data->error = -ECOMM;
839		} else if (status & MCI_TXUNDERRUN) {
840			data->error = -EIO;
841		} else if (status & MCI_RXOVERRUN) {
842			if (success > host->variant->fifosize)
843				success -= host->variant->fifosize;
844			else
845				success = 0;
846			data->error = -EIO;
847		}
848		data->bytes_xfered = round_down(success, data->blksz);
849	}
850
851	if (status & MCI_DATABLOCKEND)
852		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
853
854	if (status & MCI_DATAEND || data->error) {
855		if (dma_inprogress(host))
856			mmci_dma_finalize(host, data);
857		mmci_stop_data(host);
858
859		if (!data->error)
860			/* The error clause is handled above, success! */
861			data->bytes_xfered = data->blksz * data->blocks;
862
863		if (!data->stop || host->mrq->sbc) {
864			mmci_request_end(host, data->mrq);
865		} else {
866			mmci_start_command(host, data->stop, 0);
867		}
868	}
869}
870
871static void
872mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
873	     unsigned int status)
874{
875	void __iomem *base = host->base;
876	bool sbc = (cmd == host->mrq->sbc);
877
878	host->cmd = NULL;
879
880	if (status & MCI_CMDTIMEOUT) {
881		cmd->error = -ETIMEDOUT;
882	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
883		cmd->error = -EILSEQ;
884	} else {
885		cmd->resp[0] = readl(base + MMCIRESPONSE0);
886		cmd->resp[1] = readl(base + MMCIRESPONSE1);
887		cmd->resp[2] = readl(base + MMCIRESPONSE2);
888		cmd->resp[3] = readl(base + MMCIRESPONSE3);
889	}
890
891	if ((!sbc && !cmd->data) || cmd->error) {
892		if (host->data) {
893			/* Terminate the DMA transfer */
894			if (dma_inprogress(host)) {
895				mmci_dma_data_error(host);
896				mmci_dma_unmap(host, host->data);
897			}
898			mmci_stop_data(host);
899		}
900		mmci_request_end(host, host->mrq);
901	} else if (sbc) {
902		mmci_start_command(host, host->mrq->cmd, 0);
903	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
904		mmci_start_data(host, cmd->data);
905	}
906}
907
908static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
909{
910	void __iomem *base = host->base;
911	char *ptr = buffer;
912	u32 status;
913	int host_remain = host->size;
914
915	do {
916		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
917
918		if (count > remain)
919			count = remain;
920
921		if (count <= 0)
922			break;
923
924		/*
925		 * SDIO especially may want to send something that is
926		 * not divisible by 4 (as opposed to card sectors
927		 * etc). Therefore make sure to always read the last bytes
928		 * while only doing full 32-bit reads towards the FIFO.
929		 */
930		if (unlikely(count & 0x3)) {
931			if (count < 4) {
932				unsigned char buf[4];
933				ioread32_rep(base + MMCIFIFO, buf, 1);
934				memcpy(ptr, buf, count);
935			} else {
936				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
937				count &= ~0x3;
938			}
939		} else {
940			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
941		}
942
943		ptr += count;
944		remain -= count;
945		host_remain -= count;
946
947		if (remain == 0)
948			break;
949
950		status = readl(base + MMCISTATUS);
951	} while (status & MCI_RXDATAAVLBL);
952
953	return ptr - buffer;
954}
955
956static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
957{
958	struct variant_data *variant = host->variant;
959	void __iomem *base = host->base;
960	char *ptr = buffer;
961
962	do {
963		unsigned int count, maxcnt;
964
965		maxcnt = status & MCI_TXFIFOEMPTY ?
966			 variant->fifosize : variant->fifohalfsize;
967		count = min(remain, maxcnt);
968
969		/*
970		 * SDIO especially may want to send something that is
971		 * not divisible by 4 (as opposed to card sectors
972		 * etc), and the FIFO only accept full 32-bit writes.
973		 * So compensate by adding +3 on the count, a single
974		 * byte become a 32bit write, 7 bytes will be two
975		 * 32bit writes etc.
976		 */
977		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
978
979		ptr += count;
980		remain -= count;
981
982		if (remain == 0)
983			break;
984
985		status = readl(base + MMCISTATUS);
986	} while (status & MCI_TXFIFOHALFEMPTY);
987
988	return ptr - buffer;
989}
990
991/*
992 * PIO data transfer IRQ handler.
993 */
994static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
995{
996	struct mmci_host *host = dev_id;
997	struct sg_mapping_iter *sg_miter = &host->sg_miter;
998	struct variant_data *variant = host->variant;
999	void __iomem *base = host->base;
1000	unsigned long flags;
1001	u32 status;
1002
1003	status = readl(base + MMCISTATUS);
1004
1005	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1006
1007	local_irq_save(flags);
1008
1009	do {
1010		unsigned int remain, len;
1011		char *buffer;
1012
1013		/*
1014		 * For write, we only need to test the half-empty flag
1015		 * here - if the FIFO is completely empty, then by
1016		 * definition it is more than half empty.
1017		 *
1018		 * For read, check for data available.
1019		 */
1020		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1021			break;
1022
1023		if (!sg_miter_next(sg_miter))
1024			break;
1025
1026		buffer = sg_miter->addr;
1027		remain = sg_miter->length;
1028
1029		len = 0;
1030		if (status & MCI_RXACTIVE)
1031			len = mmci_pio_read(host, buffer, remain);
1032		if (status & MCI_TXACTIVE)
1033			len = mmci_pio_write(host, buffer, remain, status);
1034
1035		sg_miter->consumed = len;
1036
1037		host->size -= len;
1038		remain -= len;
1039
1040		if (remain)
1041			break;
1042
1043		status = readl(base + MMCISTATUS);
1044	} while (1);
1045
1046	sg_miter_stop(sg_miter);
1047
1048	local_irq_restore(flags);
1049
1050	/*
1051	 * If we have less than the fifo 'half-full' threshold to transfer,
1052	 * trigger a PIO interrupt as soon as any data is available.
1053	 */
1054	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1055		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1056
1057	/*
1058	 * If we run out of data, disable the data IRQs; this
1059	 * prevents a race where the FIFO becomes empty before
1060	 * the chip itself has disabled the data path, and
1061	 * stops us racing with our data end IRQ.
1062	 */
1063	if (host->size == 0) {
1064		mmci_set_mask1(host, 0);
1065		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1066	}
1067
1068	return IRQ_HANDLED;
1069}
1070
1071/*
1072 * Handle completion of command and data transfers.
1073 */
1074static irqreturn_t mmci_irq(int irq, void *dev_id)
1075{
1076	struct mmci_host *host = dev_id;
1077	u32 status;
1078	int ret = 0;
1079
1080	spin_lock(&host->lock);
1081
1082	do {
1083		struct mmc_command *cmd;
1084		struct mmc_data *data;
1085
1086		status = readl(host->base + MMCISTATUS);
1087
1088		if (host->singleirq) {
1089			if (status & readl(host->base + MMCIMASK1))
1090				mmci_pio_irq(irq, dev_id);
1091
1092			status &= ~MCI_IRQ1MASK;
1093		}
1094
1095		status &= readl(host->base + MMCIMASK0);
1096		writel(status, host->base + MMCICLEAR);
1097
1098		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1099
1100		data = host->data;
1101		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1102			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1103			      MCI_DATABLOCKEND) && data)
1104			mmci_data_irq(host, data, status);
1105
1106		cmd = host->cmd;
1107		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1108			mmci_cmd_irq(host, cmd, status);
1109
1110		ret = 1;
1111	} while (status);
1112
1113	spin_unlock(&host->lock);
1114
1115	return IRQ_RETVAL(ret);
1116}
1117
1118static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1119{
1120	struct mmci_host *host = mmc_priv(mmc);
1121	unsigned long flags;
1122
1123	WARN_ON(host->mrq != NULL);
1124
1125	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1126	if (mrq->cmd->error) {
1127		mmc_request_done(mmc, mrq);
1128		return;
1129	}
1130
1131	pm_runtime_get_sync(mmc_dev(mmc));
1132
1133	spin_lock_irqsave(&host->lock, flags);
1134
1135	host->mrq = mrq;
1136
1137	if (mrq->data)
1138		mmci_get_next_data(host, mrq->data);
1139
1140	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1141		mmci_start_data(host, mrq->data);
1142
1143	if (mrq->sbc)
1144		mmci_start_command(host, mrq->sbc, 0);
1145	else
1146		mmci_start_command(host, mrq->cmd, 0);
1147
1148	spin_unlock_irqrestore(&host->lock, flags);
1149}
1150
1151static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1152{
1153	struct mmci_host *host = mmc_priv(mmc);
1154	struct variant_data *variant = host->variant;
1155	u32 pwr = 0;
1156	unsigned long flags;
1157	int ret;
1158
1159	pm_runtime_get_sync(mmc_dev(mmc));
1160
1161	if (host->plat->ios_handler &&
1162		host->plat->ios_handler(mmc_dev(mmc), ios))
1163			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1164
1165	switch (ios->power_mode) {
1166	case MMC_POWER_OFF:
1167		if (!IS_ERR(mmc->supply.vmmc))
1168			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1169
1170		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1171			regulator_disable(mmc->supply.vqmmc);
1172			host->vqmmc_enabled = false;
1173		}
1174
1175		break;
1176	case MMC_POWER_UP:
1177		if (!IS_ERR(mmc->supply.vmmc))
1178			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1179
1180		/*
1181		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1182		 * and instead uses MCI_PWR_ON so apply whatever value is
1183		 * configured in the variant data.
1184		 */
1185		pwr |= variant->pwrreg_powerup;
1186
1187		break;
1188	case MMC_POWER_ON:
1189		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1190			ret = regulator_enable(mmc->supply.vqmmc);
1191			if (ret < 0)
1192				dev_err(mmc_dev(mmc),
1193					"failed to enable vqmmc regulator\n");
1194			else
1195				host->vqmmc_enabled = true;
1196		}
1197
1198		pwr |= MCI_PWR_ON;
1199		break;
1200	}
1201
1202	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1203		/*
1204		 * The ST Micro variant has some additional bits
1205		 * indicating signal direction for the signals in
1206		 * the SD/MMC bus and feedback-clock usage.
1207		 */
1208		pwr |= host->plat->sigdir;
1209
1210		if (ios->bus_width == MMC_BUS_WIDTH_4)
1211			pwr &= ~MCI_ST_DATA74DIREN;
1212		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1213			pwr &= (~MCI_ST_DATA74DIREN &
1214				~MCI_ST_DATA31DIREN &
1215				~MCI_ST_DATA2DIREN);
1216	}
1217
1218	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1219		if (host->hw_designer != AMBA_VENDOR_ST)
1220			pwr |= MCI_ROD;
1221		else {
1222			/*
1223			 * The ST Micro variant use the ROD bit for something
1224			 * else and only has OD (Open Drain).
1225			 */
1226			pwr |= MCI_OD;
1227		}
1228	}
1229
1230	/*
1231	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1232	 * gating the clock, the MCI_PWR_ON bit is cleared.
1233	 */
1234	if (!ios->clock && variant->pwrreg_clkgate)
1235		pwr &= ~MCI_PWR_ON;
1236
1237	spin_lock_irqsave(&host->lock, flags);
1238
1239	mmci_set_clkreg(host, ios->clock);
1240	mmci_write_pwrreg(host, pwr);
1241
1242	spin_unlock_irqrestore(&host->lock, flags);
1243
1244	pm_runtime_mark_last_busy(mmc_dev(mmc));
1245	pm_runtime_put_autosuspend(mmc_dev(mmc));
1246}
1247
1248static int mmci_get_ro(struct mmc_host *mmc)
1249{
1250	struct mmci_host *host = mmc_priv(mmc);
1251
1252	if (host->gpio_wp == -ENOSYS)
1253		return -ENOSYS;
1254
1255	return gpio_get_value_cansleep(host->gpio_wp);
1256}
1257
1258static int mmci_get_cd(struct mmc_host *mmc)
1259{
1260	struct mmci_host *host = mmc_priv(mmc);
1261	struct mmci_platform_data *plat = host->plat;
1262	unsigned int status;
1263
1264	if (host->gpio_cd == -ENOSYS) {
1265		if (!plat->status)
1266			return 1; /* Assume always present */
1267
1268		status = plat->status(mmc_dev(host->mmc));
1269	} else
1270		status = !!gpio_get_value_cansleep(host->gpio_cd)
1271			^ plat->cd_invert;
1272
1273	/*
1274	 * Use positive logic throughout - status is zero for no card,
1275	 * non-zero for card inserted.
1276	 */
1277	return status;
1278}
1279
1280static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1281{
1282	int ret = 0;
1283
1284	if (!IS_ERR(mmc->supply.vqmmc)) {
1285
1286		pm_runtime_get_sync(mmc_dev(mmc));
1287
1288		switch (ios->signal_voltage) {
1289		case MMC_SIGNAL_VOLTAGE_330:
1290			ret = regulator_set_voltage(mmc->supply.vqmmc,
1291						2700000, 3600000);
1292			break;
1293		case MMC_SIGNAL_VOLTAGE_180:
1294			ret = regulator_set_voltage(mmc->supply.vqmmc,
1295						1700000, 1950000);
1296			break;
1297		case MMC_SIGNAL_VOLTAGE_120:
1298			ret = regulator_set_voltage(mmc->supply.vqmmc,
1299						1100000, 1300000);
1300			break;
1301		}
1302
1303		if (ret)
1304			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1305
1306		pm_runtime_mark_last_busy(mmc_dev(mmc));
1307		pm_runtime_put_autosuspend(mmc_dev(mmc));
1308	}
1309
1310	return ret;
1311}
1312
1313static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1314{
1315	struct mmci_host *host = dev_id;
1316
1317	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1318
1319	return IRQ_HANDLED;
1320}
1321
1322static const struct mmc_host_ops mmci_ops = {
1323	.request	= mmci_request,
1324	.pre_req	= mmci_pre_request,
1325	.post_req	= mmci_post_request,
1326	.set_ios	= mmci_set_ios,
1327	.get_ro		= mmci_get_ro,
1328	.get_cd		= mmci_get_cd,
1329	.start_signal_voltage_switch = mmci_sig_volt_switch,
1330};
1331
1332#ifdef CONFIG_OF
1333static void mmci_dt_populate_generic_pdata(struct device_node *np,
1334					struct mmci_platform_data *pdata)
1335{
1336	int bus_width = 0;
1337
1338	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1339	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1340
1341	if (of_get_property(np, "cd-inverted", NULL))
1342		pdata->cd_invert = true;
1343	else
1344		pdata->cd_invert = false;
1345
1346	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1347	if (!pdata->f_max)
1348		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1349
1350	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1351		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1352	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1353		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1354
1355	of_property_read_u32(np, "bus-width", &bus_width);
1356	switch (bus_width) {
1357	case 0 :
1358		/* No bus-width supplied. */
1359		break;
1360	case 4 :
1361		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1362		break;
1363	case 8 :
1364		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1365		break;
1366	default :
1367		pr_warn("%s: Unsupported bus width\n", np->full_name);
1368	}
1369}
1370#else
1371static void mmci_dt_populate_generic_pdata(struct device_node *np,
1372					struct mmci_platform_data *pdata)
1373{
1374	return;
1375}
1376#endif
1377
1378static int mmci_probe(struct amba_device *dev,
1379	const struct amba_id *id)
1380{
1381	struct mmci_platform_data *plat = dev->dev.platform_data;
1382	struct device_node *np = dev->dev.of_node;
1383	struct variant_data *variant = id->data;
1384	struct mmci_host *host;
1385	struct mmc_host *mmc;
1386	int ret;
1387
1388	/* Must have platform data or Device Tree. */
1389	if (!plat && !np) {
1390		dev_err(&dev->dev, "No plat data or DT found\n");
1391		return -EINVAL;
1392	}
1393
1394	if (!plat) {
1395		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1396		if (!plat)
1397			return -ENOMEM;
1398	}
1399
1400	if (np)
1401		mmci_dt_populate_generic_pdata(np, plat);
1402
1403	ret = amba_request_regions(dev, DRIVER_NAME);
1404	if (ret)
1405		goto out;
1406
1407	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1408	if (!mmc) {
1409		ret = -ENOMEM;
1410		goto rel_regions;
1411	}
1412
1413	host = mmc_priv(mmc);
1414	host->mmc = mmc;
1415
1416	host->gpio_wp = -ENOSYS;
1417	host->gpio_cd = -ENOSYS;
1418	host->gpio_cd_irq = -1;
1419
1420	host->hw_designer = amba_manf(dev);
1421	host->hw_revision = amba_rev(dev);
1422	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1423	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1424
1425	host->clk = devm_clk_get(&dev->dev, NULL);
1426	if (IS_ERR(host->clk)) {
1427		ret = PTR_ERR(host->clk);
1428		goto host_free;
1429	}
1430
1431	ret = clk_prepare_enable(host->clk);
1432	if (ret)
1433		goto host_free;
1434
1435	host->plat = plat;
1436	host->variant = variant;
1437	host->mclk = clk_get_rate(host->clk);
1438	/*
1439	 * According to the spec, mclk is max 100 MHz,
1440	 * so we try to adjust the clock down to this,
1441	 * (if possible).
1442	 */
1443	if (host->mclk > 100000000) {
1444		ret = clk_set_rate(host->clk, 100000000);
1445		if (ret < 0)
1446			goto clk_disable;
1447		host->mclk = clk_get_rate(host->clk);
1448		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1449			host->mclk);
1450	}
1451	host->phybase = dev->res.start;
1452	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1453	if (!host->base) {
1454		ret = -ENOMEM;
1455		goto clk_disable;
1456	}
1457
1458	mmc->ops = &mmci_ops;
1459	/*
1460	 * The ARM and ST versions of the block have slightly different
1461	 * clock divider equations which means that the minimum divider
1462	 * differs too.
1463	 */
1464	if (variant->st_clkdiv)
1465		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1466	else
1467		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1468	/*
1469	 * If the platform data supplies a maximum operating
1470	 * frequency, this takes precedence. Else, we fall back
1471	 * to using the module parameter, which has a (low)
1472	 * default value in case it is not specified. Either
1473	 * value must not exceed the clock rate into the block,
1474	 * of course.
1475	 */
1476	if (plat->f_max)
1477		mmc->f_max = min(host->mclk, plat->f_max);
1478	else
1479		mmc->f_max = min(host->mclk, fmax);
1480	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1481
1482	host->pinctrl = devm_pinctrl_get(&dev->dev);
1483	if (IS_ERR(host->pinctrl)) {
1484		ret = PTR_ERR(host->pinctrl);
1485		goto clk_disable;
1486	}
1487
1488	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1489			PINCTRL_STATE_DEFAULT);
1490
1491	/* enable pins to be muxed in and configured */
1492	if (!IS_ERR(host->pins_default)) {
1493		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1494		if (ret)
1495			dev_warn(&dev->dev, "could not set default pins\n");
1496	} else
1497		dev_warn(&dev->dev, "could not get default pinstate\n");
1498
1499	/* Get regulators and the supported OCR mask */
1500	mmc_regulator_get_supply(mmc);
1501	if (!mmc->ocr_avail)
1502		mmc->ocr_avail = plat->ocr_mask;
1503	else if (plat->ocr_mask)
1504		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1505
1506	mmc->caps = plat->capabilities;
1507	mmc->caps2 = plat->capabilities2;
1508
1509	/* We support these PM capabilities. */
1510	mmc->pm_caps = MMC_PM_KEEP_POWER;
1511
1512	/*
1513	 * We can do SGIO
1514	 */
1515	mmc->max_segs = NR_SG;
1516
1517	/*
1518	 * Since only a certain number of bits are valid in the data length
1519	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1520	 * single request.
1521	 */
1522	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1523
1524	/*
1525	 * Set the maximum segment size.  Since we aren't doing DMA
1526	 * (yet) we are only limited by the data length register.
1527	 */
1528	mmc->max_seg_size = mmc->max_req_size;
1529
1530	/*
1531	 * Block size can be up to 2048 bytes, but must be a power of two.
1532	 */
1533	mmc->max_blk_size = 1 << 11;
1534
1535	/*
1536	 * Limit the number of blocks transferred so that we don't overflow
1537	 * the maximum request size.
1538	 */
1539	mmc->max_blk_count = mmc->max_req_size >> 11;
1540
1541	spin_lock_init(&host->lock);
1542
1543	writel(0, host->base + MMCIMASK0);
1544	writel(0, host->base + MMCIMASK1);
1545	writel(0xfff, host->base + MMCICLEAR);
1546
1547	if (plat->gpio_cd == -EPROBE_DEFER) {
1548		ret = -EPROBE_DEFER;
1549		goto err_gpio_cd;
1550	}
1551	if (gpio_is_valid(plat->gpio_cd)) {
1552		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1553		if (ret == 0)
1554			ret = gpio_direction_input(plat->gpio_cd);
1555		if (ret == 0)
1556			host->gpio_cd = plat->gpio_cd;
1557		else if (ret != -ENOSYS)
1558			goto err_gpio_cd;
1559
1560		/*
1561		 * A gpio pin that will detect cards when inserted and removed
1562		 * will most likely want to trigger on the edges if it is
1563		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1564		 * for the inverted case) so we request triggers on both
1565		 * edges.
1566		 */
1567		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1568				mmci_cd_irq,
1569				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1570				DRIVER_NAME " (cd)", host);
1571		if (ret >= 0)
1572			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1573	}
1574	if (plat->gpio_wp == -EPROBE_DEFER) {
1575		ret = -EPROBE_DEFER;
1576		goto err_gpio_wp;
1577	}
1578	if (gpio_is_valid(plat->gpio_wp)) {
1579		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1580		if (ret == 0)
1581			ret = gpio_direction_input(plat->gpio_wp);
1582		if (ret == 0)
1583			host->gpio_wp = plat->gpio_wp;
1584		else if (ret != -ENOSYS)
1585			goto err_gpio_wp;
1586	}
1587
1588	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1589	    && host->gpio_cd_irq < 0)
1590		mmc->caps |= MMC_CAP_NEEDS_POLL;
1591
1592	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1593	if (ret)
1594		goto unmap;
1595
1596	if (!dev->irq[1])
1597		host->singleirq = true;
1598	else {
1599		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1600				  DRIVER_NAME " (pio)", host);
1601		if (ret)
1602			goto irq0_free;
1603	}
1604
1605	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1606
1607	amba_set_drvdata(dev, mmc);
1608
1609	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1610		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1611		 amba_rev(dev), (unsigned long long)dev->res.start,
1612		 dev->irq[0], dev->irq[1]);
1613
1614	mmci_dma_setup(host);
1615
1616	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1617	pm_runtime_use_autosuspend(&dev->dev);
1618	pm_runtime_put(&dev->dev);
1619
1620	mmc_add_host(mmc);
1621
1622	return 0;
1623
1624 irq0_free:
1625	free_irq(dev->irq[0], host);
1626 unmap:
1627	if (host->gpio_wp != -ENOSYS)
1628		gpio_free(host->gpio_wp);
1629 err_gpio_wp:
1630	if (host->gpio_cd_irq >= 0)
1631		free_irq(host->gpio_cd_irq, host);
1632	if (host->gpio_cd != -ENOSYS)
1633		gpio_free(host->gpio_cd);
1634 err_gpio_cd:
1635	iounmap(host->base);
1636 clk_disable:
1637	clk_disable_unprepare(host->clk);
1638 host_free:
1639	mmc_free_host(mmc);
1640 rel_regions:
1641	amba_release_regions(dev);
1642 out:
1643	return ret;
1644}
1645
1646static int mmci_remove(struct amba_device *dev)
1647{
1648	struct mmc_host *mmc = amba_get_drvdata(dev);
1649
1650	amba_set_drvdata(dev, NULL);
1651
1652	if (mmc) {
1653		struct mmci_host *host = mmc_priv(mmc);
1654
1655		/*
1656		 * Undo pm_runtime_put() in probe.  We use the _sync
1657		 * version here so that we can access the primecell.
1658		 */
1659		pm_runtime_get_sync(&dev->dev);
1660
1661		mmc_remove_host(mmc);
1662
1663		writel(0, host->base + MMCIMASK0);
1664		writel(0, host->base + MMCIMASK1);
1665
1666		writel(0, host->base + MMCICOMMAND);
1667		writel(0, host->base + MMCIDATACTRL);
1668
1669		mmci_dma_release(host);
1670		free_irq(dev->irq[0], host);
1671		if (!host->singleirq)
1672			free_irq(dev->irq[1], host);
1673
1674		if (host->gpio_wp != -ENOSYS)
1675			gpio_free(host->gpio_wp);
1676		if (host->gpio_cd_irq >= 0)
1677			free_irq(host->gpio_cd_irq, host);
1678		if (host->gpio_cd != -ENOSYS)
1679			gpio_free(host->gpio_cd);
1680
1681		iounmap(host->base);
1682		clk_disable_unprepare(host->clk);
1683
1684		mmc_free_host(mmc);
1685
1686		amba_release_regions(dev);
1687	}
1688
1689	return 0;
1690}
1691
1692#ifdef CONFIG_SUSPEND
1693static int mmci_suspend(struct device *dev)
1694{
1695	struct amba_device *adev = to_amba_device(dev);
1696	struct mmc_host *mmc = amba_get_drvdata(adev);
1697	int ret = 0;
1698
1699	if (mmc) {
1700		struct mmci_host *host = mmc_priv(mmc);
1701
1702		ret = mmc_suspend_host(mmc);
1703		if (ret == 0) {
1704			pm_runtime_get_sync(dev);
1705			writel(0, host->base + MMCIMASK0);
1706		}
1707	}
1708
1709	return ret;
1710}
1711
1712static int mmci_resume(struct device *dev)
1713{
1714	struct amba_device *adev = to_amba_device(dev);
1715	struct mmc_host *mmc = amba_get_drvdata(adev);
1716	int ret = 0;
1717
1718	if (mmc) {
1719		struct mmci_host *host = mmc_priv(mmc);
1720
1721		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1722		pm_runtime_put(dev);
1723
1724		ret = mmc_resume_host(mmc);
1725	}
1726
1727	return ret;
1728}
1729#endif
1730
1731#ifdef CONFIG_PM_RUNTIME
1732static int mmci_runtime_suspend(struct device *dev)
1733{
1734	struct amba_device *adev = to_amba_device(dev);
1735	struct mmc_host *mmc = amba_get_drvdata(adev);
1736
1737	if (mmc) {
1738		struct mmci_host *host = mmc_priv(mmc);
1739		clk_disable_unprepare(host->clk);
1740	}
1741
1742	return 0;
1743}
1744
1745static int mmci_runtime_resume(struct device *dev)
1746{
1747	struct amba_device *adev = to_amba_device(dev);
1748	struct mmc_host *mmc = amba_get_drvdata(adev);
1749
1750	if (mmc) {
1751		struct mmci_host *host = mmc_priv(mmc);
1752		clk_prepare_enable(host->clk);
1753	}
1754
1755	return 0;
1756}
1757#endif
1758
1759static const struct dev_pm_ops mmci_dev_pm_ops = {
1760	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1761	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1762};
1763
1764static struct amba_id mmci_ids[] = {
1765	{
1766		.id	= 0x00041180,
1767		.mask	= 0xff0fffff,
1768		.data	= &variant_arm,
1769	},
1770	{
1771		.id	= 0x01041180,
1772		.mask	= 0xff0fffff,
1773		.data	= &variant_arm_extended_fifo,
1774	},
1775	{
1776		.id	= 0x02041180,
1777		.mask	= 0xff0fffff,
1778		.data	= &variant_arm_extended_fifo_hwfc,
1779	},
1780	{
1781		.id	= 0x00041181,
1782		.mask	= 0x000fffff,
1783		.data	= &variant_arm,
1784	},
1785	/* ST Micro variants */
1786	{
1787		.id     = 0x00180180,
1788		.mask   = 0x00ffffff,
1789		.data	= &variant_u300,
1790	},
1791	{
1792		.id     = 0x10180180,
1793		.mask   = 0xf0ffffff,
1794		.data	= &variant_nomadik,
1795	},
1796	{
1797		.id     = 0x00280180,
1798		.mask   = 0x00ffffff,
1799		.data	= &variant_u300,
1800	},
1801	{
1802		.id     = 0x00480180,
1803		.mask   = 0xf0ffffff,
1804		.data	= &variant_ux500,
1805	},
1806	{
1807		.id     = 0x10480180,
1808		.mask   = 0xf0ffffff,
1809		.data	= &variant_ux500v2,
1810	},
1811	{ 0, 0 },
1812};
1813
1814MODULE_DEVICE_TABLE(amba, mmci_ids);
1815
1816static struct amba_driver mmci_driver = {
1817	.drv		= {
1818		.name	= DRIVER_NAME,
1819		.pm	= &mmci_dev_pm_ops,
1820	},
1821	.probe		= mmci_probe,
1822	.remove		= mmci_remove,
1823	.id_table	= mmci_ids,
1824};
1825
1826module_amba_driver(mmci_driver);
1827
1828module_param(fmax, uint, 0444);
1829
1830MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1831MODULE_LICENSE("GPL");
1832