mmci.c revision a9a83785def8bf9142b37c86ffcb0fdc93fb851e
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/amba/bus.h>
26#include <linux/clk.h>
27#include <linux/scatterlist.h>
28#include <linux/gpio.h>
29#include <linux/of_gpio.h>
30#include <linux/regulator/consumer.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/amba/mmci.h>
34#include <linux/pm_runtime.h>
35#include <linux/types.h>
36#include <linux/pinctrl/consumer.h>
37
38#include <asm/div64.h>
39#include <asm/io.h>
40#include <asm/sizes.h>
41
42#include "mmci.h"
43
44#define DRIVER_NAME "mmci-pl18x"
45
46static unsigned int fmax = 515633;
47
48/**
49 * struct variant_data - MMCI variant-specific quirks
50 * @clkreg: default value for MCICLOCK register
51 * @clkreg_enable: enable value for MMCICLOCK register
52 * @datalength_bits: number of bits in the MMCIDATALENGTH register
53 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
54 *	      is asserted (likewise for RX)
55 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
56 *		  is asserted (likewise for RX)
57 * @sdio: variant supports SDIO
58 * @st_clkdiv: true if using a ST-specific clock divider algorithm
59 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
60 * @pwrreg_powerup: power up value for MMCIPOWER register
61 * @signal_direction: input/out direction of bus signals can be indicated
62 */
63struct variant_data {
64	unsigned int		clkreg;
65	unsigned int		clkreg_enable;
66	unsigned int		datalength_bits;
67	unsigned int		fifosize;
68	unsigned int		fifohalfsize;
69	bool			sdio;
70	bool			st_clkdiv;
71	bool			blksz_datactrl16;
72	u32			pwrreg_powerup;
73	bool			signal_direction;
74};
75
76static struct variant_data variant_arm = {
77	.fifosize		= 16 * 4,
78	.fifohalfsize		= 8 * 4,
79	.datalength_bits	= 16,
80	.pwrreg_powerup		= MCI_PWR_UP,
81};
82
83static struct variant_data variant_arm_extended_fifo = {
84	.fifosize		= 128 * 4,
85	.fifohalfsize		= 64 * 4,
86	.datalength_bits	= 16,
87	.pwrreg_powerup		= MCI_PWR_UP,
88};
89
90static struct variant_data variant_u300 = {
91	.fifosize		= 16 * 4,
92	.fifohalfsize		= 8 * 4,
93	.clkreg_enable		= MCI_ST_U300_HWFCEN,
94	.datalength_bits	= 16,
95	.sdio			= true,
96	.pwrreg_powerup		= MCI_PWR_ON,
97	.signal_direction	= true,
98};
99
100static struct variant_data variant_nomadik = {
101	.fifosize		= 16 * 4,
102	.fifohalfsize		= 8 * 4,
103	.clkreg			= MCI_CLK_ENABLE,
104	.datalength_bits	= 24,
105	.sdio			= true,
106	.st_clkdiv		= true,
107	.pwrreg_powerup		= MCI_PWR_ON,
108	.signal_direction	= true,
109};
110
111static struct variant_data variant_ux500 = {
112	.fifosize		= 30 * 4,
113	.fifohalfsize		= 8 * 4,
114	.clkreg			= MCI_CLK_ENABLE,
115	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
116	.datalength_bits	= 24,
117	.sdio			= true,
118	.st_clkdiv		= true,
119	.pwrreg_powerup		= MCI_PWR_ON,
120	.signal_direction	= true,
121};
122
123static struct variant_data variant_ux500v2 = {
124	.fifosize		= 30 * 4,
125	.fifohalfsize		= 8 * 4,
126	.clkreg			= MCI_CLK_ENABLE,
127	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
128	.datalength_bits	= 24,
129	.sdio			= true,
130	.st_clkdiv		= true,
131	.blksz_datactrl16	= true,
132	.pwrreg_powerup		= MCI_PWR_ON,
133	.signal_direction	= true,
134};
135
136/*
137 * This must be called with host->lock held
138 */
139static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
140{
141	if (host->clk_reg != clk) {
142		host->clk_reg = clk;
143		writel(clk, host->base + MMCICLOCK);
144	}
145}
146
147/*
148 * This must be called with host->lock held
149 */
150static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
151{
152	if (host->pwr_reg != pwr) {
153		host->pwr_reg = pwr;
154		writel(pwr, host->base + MMCIPOWER);
155	}
156}
157
158/*
159 * This must be called with host->lock held
160 */
161static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
162{
163	struct variant_data *variant = host->variant;
164	u32 clk = variant->clkreg;
165
166	if (desired) {
167		if (desired >= host->mclk) {
168			clk = MCI_CLK_BYPASS;
169			if (variant->st_clkdiv)
170				clk |= MCI_ST_UX500_NEG_EDGE;
171			host->cclk = host->mclk;
172		} else if (variant->st_clkdiv) {
173			/*
174			 * DB8500 TRM says f = mclk / (clkdiv + 2)
175			 * => clkdiv = (mclk / f) - 2
176			 * Round the divider up so we don't exceed the max
177			 * frequency
178			 */
179			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
180			if (clk >= 256)
181				clk = 255;
182			host->cclk = host->mclk / (clk + 2);
183		} else {
184			/*
185			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
186			 * => clkdiv = mclk / (2 * f) - 1
187			 */
188			clk = host->mclk / (2 * desired) - 1;
189			if (clk >= 256)
190				clk = 255;
191			host->cclk = host->mclk / (2 * (clk + 1));
192		}
193
194		clk |= variant->clkreg_enable;
195		clk |= MCI_CLK_ENABLE;
196		/* This hasn't proven to be worthwhile */
197		/* clk |= MCI_CLK_PWRSAVE; */
198	}
199
200	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
201		clk |= MCI_4BIT_BUS;
202	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
203		clk |= MCI_ST_8BIT_BUS;
204
205	mmci_write_clkreg(host, clk);
206}
207
208static void
209mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
210{
211	writel(0, host->base + MMCICOMMAND);
212
213	BUG_ON(host->data);
214
215	host->mrq = NULL;
216	host->cmd = NULL;
217
218	mmc_request_done(host->mmc, mrq);
219
220	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
221	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
222}
223
224static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
225{
226	void __iomem *base = host->base;
227
228	if (host->singleirq) {
229		unsigned int mask0 = readl(base + MMCIMASK0);
230
231		mask0 &= ~MCI_IRQ1MASK;
232		mask0 |= mask;
233
234		writel(mask0, base + MMCIMASK0);
235	}
236
237	writel(mask, base + MMCIMASK1);
238}
239
240static void mmci_stop_data(struct mmci_host *host)
241{
242	writel(0, host->base + MMCIDATACTRL);
243	mmci_set_mask1(host, 0);
244	host->data = NULL;
245}
246
247static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
248{
249	unsigned int flags = SG_MITER_ATOMIC;
250
251	if (data->flags & MMC_DATA_READ)
252		flags |= SG_MITER_TO_SG;
253	else
254		flags |= SG_MITER_FROM_SG;
255
256	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
257}
258
259/*
260 * All the DMA operation mode stuff goes inside this ifdef.
261 * This assumes that you have a generic DMA device interface,
262 * no custom DMA interfaces are supported.
263 */
264#ifdef CONFIG_DMA_ENGINE
265static void __devinit mmci_dma_setup(struct mmci_host *host)
266{
267	struct mmci_platform_data *plat = host->plat;
268	const char *rxname, *txname;
269	dma_cap_mask_t mask;
270
271	if (!plat || !plat->dma_filter) {
272		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
273		return;
274	}
275
276	/* initialize pre request cookie */
277	host->next_data.cookie = 1;
278
279	/* Try to acquire a generic DMA engine slave channel */
280	dma_cap_zero(mask);
281	dma_cap_set(DMA_SLAVE, mask);
282
283	/*
284	 * If only an RX channel is specified, the driver will
285	 * attempt to use it bidirectionally, however if it is
286	 * is specified but cannot be located, DMA will be disabled.
287	 */
288	if (plat->dma_rx_param) {
289		host->dma_rx_channel = dma_request_channel(mask,
290							   plat->dma_filter,
291							   plat->dma_rx_param);
292		/* E.g if no DMA hardware is present */
293		if (!host->dma_rx_channel)
294			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
295	}
296
297	if (plat->dma_tx_param) {
298		host->dma_tx_channel = dma_request_channel(mask,
299							   plat->dma_filter,
300							   plat->dma_tx_param);
301		if (!host->dma_tx_channel)
302			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
303	} else {
304		host->dma_tx_channel = host->dma_rx_channel;
305	}
306
307	if (host->dma_rx_channel)
308		rxname = dma_chan_name(host->dma_rx_channel);
309	else
310		rxname = "none";
311
312	if (host->dma_tx_channel)
313		txname = dma_chan_name(host->dma_tx_channel);
314	else
315		txname = "none";
316
317	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
318		 rxname, txname);
319
320	/*
321	 * Limit the maximum segment size in any SG entry according to
322	 * the parameters of the DMA engine device.
323	 */
324	if (host->dma_tx_channel) {
325		struct device *dev = host->dma_tx_channel->device->dev;
326		unsigned int max_seg_size = dma_get_max_seg_size(dev);
327
328		if (max_seg_size < host->mmc->max_seg_size)
329			host->mmc->max_seg_size = max_seg_size;
330	}
331	if (host->dma_rx_channel) {
332		struct device *dev = host->dma_rx_channel->device->dev;
333		unsigned int max_seg_size = dma_get_max_seg_size(dev);
334
335		if (max_seg_size < host->mmc->max_seg_size)
336			host->mmc->max_seg_size = max_seg_size;
337	}
338}
339
340/*
341 * This is used in __devinit or __devexit so inline it
342 * so it can be discarded.
343 */
344static inline void mmci_dma_release(struct mmci_host *host)
345{
346	struct mmci_platform_data *plat = host->plat;
347
348	if (host->dma_rx_channel)
349		dma_release_channel(host->dma_rx_channel);
350	if (host->dma_tx_channel && plat->dma_tx_param)
351		dma_release_channel(host->dma_tx_channel);
352	host->dma_rx_channel = host->dma_tx_channel = NULL;
353}
354
355static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
356{
357	struct dma_chan *chan = host->dma_current;
358	enum dma_data_direction dir;
359	u32 status;
360	int i;
361
362	/* Wait up to 1ms for the DMA to complete */
363	for (i = 0; ; i++) {
364		status = readl(host->base + MMCISTATUS);
365		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
366			break;
367		udelay(10);
368	}
369
370	/*
371	 * Check to see whether we still have some data left in the FIFO -
372	 * this catches DMA controllers which are unable to monitor the
373	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
374	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
375	 */
376	if (status & MCI_RXDATAAVLBLMASK) {
377		dmaengine_terminate_all(chan);
378		if (!data->error)
379			data->error = -EIO;
380	}
381
382	if (data->flags & MMC_DATA_WRITE) {
383		dir = DMA_TO_DEVICE;
384	} else {
385		dir = DMA_FROM_DEVICE;
386	}
387
388	if (!data->host_cookie)
389		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
390
391	/*
392	 * Use of DMA with scatter-gather is impossible.
393	 * Give up with DMA and switch back to PIO mode.
394	 */
395	if (status & MCI_RXDATAAVLBLMASK) {
396		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
397		mmci_dma_release(host);
398	}
399}
400
401static void mmci_dma_data_error(struct mmci_host *host)
402{
403	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
404	dmaengine_terminate_all(host->dma_current);
405}
406
407static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
408			      struct mmci_host_next *next)
409{
410	struct variant_data *variant = host->variant;
411	struct dma_slave_config conf = {
412		.src_addr = host->phybase + MMCIFIFO,
413		.dst_addr = host->phybase + MMCIFIFO,
414		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
415		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
416		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
417		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
418		.device_fc = false,
419	};
420	struct dma_chan *chan;
421	struct dma_device *device;
422	struct dma_async_tx_descriptor *desc;
423	enum dma_data_direction buffer_dirn;
424	int nr_sg;
425
426	/* Check if next job is already prepared */
427	if (data->host_cookie && !next &&
428	    host->dma_current && host->dma_desc_current)
429		return 0;
430
431	if (!next) {
432		host->dma_current = NULL;
433		host->dma_desc_current = NULL;
434	}
435
436	if (data->flags & MMC_DATA_READ) {
437		conf.direction = DMA_DEV_TO_MEM;
438		buffer_dirn = DMA_FROM_DEVICE;
439		chan = host->dma_rx_channel;
440	} else {
441		conf.direction = DMA_MEM_TO_DEV;
442		buffer_dirn = DMA_TO_DEVICE;
443		chan = host->dma_tx_channel;
444	}
445
446	/* If there's no DMA channel, fall back to PIO */
447	if (!chan)
448		return -EINVAL;
449
450	/* If less than or equal to the fifo size, don't bother with DMA */
451	if (data->blksz * data->blocks <= variant->fifosize)
452		return -EINVAL;
453
454	device = chan->device;
455	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
456	if (nr_sg == 0)
457		return -EINVAL;
458
459	dmaengine_slave_config(chan, &conf);
460	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
461					    conf.direction, DMA_CTRL_ACK);
462	if (!desc)
463		goto unmap_exit;
464
465	if (next) {
466		next->dma_chan = chan;
467		next->dma_desc = desc;
468	} else {
469		host->dma_current = chan;
470		host->dma_desc_current = desc;
471	}
472
473	return 0;
474
475 unmap_exit:
476	if (!next)
477		dmaengine_terminate_all(chan);
478	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
479	return -ENOMEM;
480}
481
482static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
483{
484	int ret;
485	struct mmc_data *data = host->data;
486
487	ret = mmci_dma_prep_data(host, host->data, NULL);
488	if (ret)
489		return ret;
490
491	/* Okay, go for it. */
492	dev_vdbg(mmc_dev(host->mmc),
493		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
494		 data->sg_len, data->blksz, data->blocks, data->flags);
495	dmaengine_submit(host->dma_desc_current);
496	dma_async_issue_pending(host->dma_current);
497
498	datactrl |= MCI_DPSM_DMAENABLE;
499
500	/* Trigger the DMA transfer */
501	writel(datactrl, host->base + MMCIDATACTRL);
502
503	/*
504	 * Let the MMCI say when the data is ended and it's time
505	 * to fire next DMA request. When that happens, MMCI will
506	 * call mmci_data_end()
507	 */
508	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
509	       host->base + MMCIMASK0);
510	return 0;
511}
512
513static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
514{
515	struct mmci_host_next *next = &host->next_data;
516
517	if (data->host_cookie && data->host_cookie != next->cookie) {
518		pr_warning("[%s] invalid cookie: data->host_cookie %d"
519		       " host->next_data.cookie %d\n",
520		       __func__, data->host_cookie, host->next_data.cookie);
521		data->host_cookie = 0;
522	}
523
524	if (!data->host_cookie)
525		return;
526
527	host->dma_desc_current = next->dma_desc;
528	host->dma_current = next->dma_chan;
529
530	next->dma_desc = NULL;
531	next->dma_chan = NULL;
532}
533
534static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
535			     bool is_first_req)
536{
537	struct mmci_host *host = mmc_priv(mmc);
538	struct mmc_data *data = mrq->data;
539	struct mmci_host_next *nd = &host->next_data;
540
541	if (!data)
542		return;
543
544	if (data->host_cookie) {
545		data->host_cookie = 0;
546		return;
547	}
548
549	/* if config for dma */
550	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
551	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
552		if (mmci_dma_prep_data(host, data, nd))
553			data->host_cookie = 0;
554		else
555			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
556	}
557}
558
559static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
560			      int err)
561{
562	struct mmci_host *host = mmc_priv(mmc);
563	struct mmc_data *data = mrq->data;
564	struct dma_chan *chan;
565	enum dma_data_direction dir;
566
567	if (!data)
568		return;
569
570	if (data->flags & MMC_DATA_READ) {
571		dir = DMA_FROM_DEVICE;
572		chan = host->dma_rx_channel;
573	} else {
574		dir = DMA_TO_DEVICE;
575		chan = host->dma_tx_channel;
576	}
577
578
579	/* if config for dma */
580	if (chan) {
581		if (err)
582			dmaengine_terminate_all(chan);
583		if (data->host_cookie)
584			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
585				     data->sg_len, dir);
586		mrq->data->host_cookie = 0;
587	}
588}
589
590#else
591/* Blank functions if the DMA engine is not available */
592static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
593{
594}
595static inline void mmci_dma_setup(struct mmci_host *host)
596{
597}
598
599static inline void mmci_dma_release(struct mmci_host *host)
600{
601}
602
603static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
604{
605}
606
607static inline void mmci_dma_data_error(struct mmci_host *host)
608{
609}
610
611static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
612{
613	return -ENOSYS;
614}
615
616#define mmci_pre_request NULL
617#define mmci_post_request NULL
618
619#endif
620
621static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
622{
623	struct variant_data *variant = host->variant;
624	unsigned int datactrl, timeout, irqmask;
625	unsigned long long clks;
626	void __iomem *base;
627	int blksz_bits;
628
629	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
630		data->blksz, data->blocks, data->flags);
631
632	host->data = data;
633	host->size = data->blksz * data->blocks;
634	data->bytes_xfered = 0;
635
636	clks = (unsigned long long)data->timeout_ns * host->cclk;
637	do_div(clks, 1000000000UL);
638
639	timeout = data->timeout_clks + (unsigned int)clks;
640
641	base = host->base;
642	writel(timeout, base + MMCIDATATIMER);
643	writel(host->size, base + MMCIDATALENGTH);
644
645	blksz_bits = ffs(data->blksz) - 1;
646	BUG_ON(1 << blksz_bits != data->blksz);
647
648	if (variant->blksz_datactrl16)
649		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
650	else
651		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
652
653	if (data->flags & MMC_DATA_READ)
654		datactrl |= MCI_DPSM_DIRECTION;
655
656	/* The ST Micro variants has a special bit to enable SDIO */
657	if (variant->sdio && host->mmc->card)
658		if (mmc_card_sdio(host->mmc->card)) {
659			/*
660			 * The ST Micro variants has a special bit
661			 * to enable SDIO.
662			 */
663			u32 clk;
664
665			datactrl |= MCI_ST_DPSM_SDIOEN;
666
667			/*
668			 * The ST Micro variant for SDIO small write transfers
669			 * needs to have clock H/W flow control disabled,
670			 * otherwise the transfer will not start. The threshold
671			 * depends on the rate of MCLK.
672			 */
673			if (data->flags & MMC_DATA_WRITE &&
674			    (host->size < 8 ||
675			     (host->size <= 8 && host->mclk > 50000000)))
676				clk = host->clk_reg & ~variant->clkreg_enable;
677			else
678				clk = host->clk_reg | variant->clkreg_enable;
679
680			mmci_write_clkreg(host, clk);
681		}
682
683	/*
684	 * Attempt to use DMA operation mode, if this
685	 * should fail, fall back to PIO mode
686	 */
687	if (!mmci_dma_start_data(host, datactrl))
688		return;
689
690	/* IRQ mode, map the SG list for CPU reading/writing */
691	mmci_init_sg(host, data);
692
693	if (data->flags & MMC_DATA_READ) {
694		irqmask = MCI_RXFIFOHALFFULLMASK;
695
696		/*
697		 * If we have less than the fifo 'half-full' threshold to
698		 * transfer, trigger a PIO interrupt as soon as any data
699		 * is available.
700		 */
701		if (host->size < variant->fifohalfsize)
702			irqmask |= MCI_RXDATAAVLBLMASK;
703	} else {
704		/*
705		 * We don't actually need to include "FIFO empty" here
706		 * since its implicit in "FIFO half empty".
707		 */
708		irqmask = MCI_TXFIFOHALFEMPTYMASK;
709	}
710
711	writel(datactrl, base + MMCIDATACTRL);
712	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
713	mmci_set_mask1(host, irqmask);
714}
715
716static void
717mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
718{
719	void __iomem *base = host->base;
720
721	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
722	    cmd->opcode, cmd->arg, cmd->flags);
723
724	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
725		writel(0, base + MMCICOMMAND);
726		udelay(1);
727	}
728
729	c |= cmd->opcode | MCI_CPSM_ENABLE;
730	if (cmd->flags & MMC_RSP_PRESENT) {
731		if (cmd->flags & MMC_RSP_136)
732			c |= MCI_CPSM_LONGRSP;
733		c |= MCI_CPSM_RESPONSE;
734	}
735	if (/*interrupt*/0)
736		c |= MCI_CPSM_INTERRUPT;
737
738	host->cmd = cmd;
739
740	writel(cmd->arg, base + MMCIARGUMENT);
741	writel(c, base + MMCICOMMAND);
742}
743
744static void
745mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
746	      unsigned int status)
747{
748	/* First check for errors */
749	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
750		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
751		u32 remain, success;
752
753		/* Terminate the DMA transfer */
754		if (dma_inprogress(host))
755			mmci_dma_data_error(host);
756
757		/*
758		 * Calculate how far we are into the transfer.  Note that
759		 * the data counter gives the number of bytes transferred
760		 * on the MMC bus, not on the host side.  On reads, this
761		 * can be as much as a FIFO-worth of data ahead.  This
762		 * matters for FIFO overruns only.
763		 */
764		remain = readl(host->base + MMCIDATACNT);
765		success = data->blksz * data->blocks - remain;
766
767		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
768			status, success);
769		if (status & MCI_DATACRCFAIL) {
770			/* Last block was not successful */
771			success -= 1;
772			data->error = -EILSEQ;
773		} else if (status & MCI_DATATIMEOUT) {
774			data->error = -ETIMEDOUT;
775		} else if (status & MCI_STARTBITERR) {
776			data->error = -ECOMM;
777		} else if (status & MCI_TXUNDERRUN) {
778			data->error = -EIO;
779		} else if (status & MCI_RXOVERRUN) {
780			if (success > host->variant->fifosize)
781				success -= host->variant->fifosize;
782			else
783				success = 0;
784			data->error = -EIO;
785		}
786		data->bytes_xfered = round_down(success, data->blksz);
787	}
788
789	if (status & MCI_DATABLOCKEND)
790		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
791
792	if (status & MCI_DATAEND || data->error) {
793		if (dma_inprogress(host))
794			mmci_dma_unmap(host, data);
795		mmci_stop_data(host);
796
797		if (!data->error)
798			/* The error clause is handled above, success! */
799			data->bytes_xfered = data->blksz * data->blocks;
800
801		if (!data->stop) {
802			mmci_request_end(host, data->mrq);
803		} else {
804			mmci_start_command(host, data->stop, 0);
805		}
806	}
807}
808
809static void
810mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
811	     unsigned int status)
812{
813	void __iomem *base = host->base;
814
815	host->cmd = NULL;
816
817	if (status & MCI_CMDTIMEOUT) {
818		cmd->error = -ETIMEDOUT;
819	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
820		cmd->error = -EILSEQ;
821	} else {
822		cmd->resp[0] = readl(base + MMCIRESPONSE0);
823		cmd->resp[1] = readl(base + MMCIRESPONSE1);
824		cmd->resp[2] = readl(base + MMCIRESPONSE2);
825		cmd->resp[3] = readl(base + MMCIRESPONSE3);
826	}
827
828	if (!cmd->data || cmd->error) {
829		if (host->data) {
830			/* Terminate the DMA transfer */
831			if (dma_inprogress(host))
832				mmci_dma_data_error(host);
833			mmci_stop_data(host);
834		}
835		mmci_request_end(host, cmd->mrq);
836	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
837		mmci_start_data(host, cmd->data);
838	}
839}
840
841static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
842{
843	void __iomem *base = host->base;
844	char *ptr = buffer;
845	u32 status;
846	int host_remain = host->size;
847
848	do {
849		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
850
851		if (count > remain)
852			count = remain;
853
854		if (count <= 0)
855			break;
856
857		/*
858		 * SDIO especially may want to send something that is
859		 * not divisible by 4 (as opposed to card sectors
860		 * etc). Therefore make sure to always read the last bytes
861		 * while only doing full 32-bit reads towards the FIFO.
862		 */
863		if (unlikely(count & 0x3)) {
864			if (count < 4) {
865				unsigned char buf[4];
866				readsl(base + MMCIFIFO, buf, 1);
867				memcpy(ptr, buf, count);
868			} else {
869				readsl(base + MMCIFIFO, ptr, count >> 2);
870				count &= ~0x3;
871			}
872		} else {
873			readsl(base + MMCIFIFO, ptr, count >> 2);
874		}
875
876		ptr += count;
877		remain -= count;
878		host_remain -= count;
879
880		if (remain == 0)
881			break;
882
883		status = readl(base + MMCISTATUS);
884	} while (status & MCI_RXDATAAVLBL);
885
886	return ptr - buffer;
887}
888
889static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
890{
891	struct variant_data *variant = host->variant;
892	void __iomem *base = host->base;
893	char *ptr = buffer;
894
895	do {
896		unsigned int count, maxcnt;
897
898		maxcnt = status & MCI_TXFIFOEMPTY ?
899			 variant->fifosize : variant->fifohalfsize;
900		count = min(remain, maxcnt);
901
902		/*
903		 * SDIO especially may want to send something that is
904		 * not divisible by 4 (as opposed to card sectors
905		 * etc), and the FIFO only accept full 32-bit writes.
906		 * So compensate by adding +3 on the count, a single
907		 * byte become a 32bit write, 7 bytes will be two
908		 * 32bit writes etc.
909		 */
910		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
911
912		ptr += count;
913		remain -= count;
914
915		if (remain == 0)
916			break;
917
918		status = readl(base + MMCISTATUS);
919	} while (status & MCI_TXFIFOHALFEMPTY);
920
921	return ptr - buffer;
922}
923
924/*
925 * PIO data transfer IRQ handler.
926 */
927static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
928{
929	struct mmci_host *host = dev_id;
930	struct sg_mapping_iter *sg_miter = &host->sg_miter;
931	struct variant_data *variant = host->variant;
932	void __iomem *base = host->base;
933	unsigned long flags;
934	u32 status;
935
936	status = readl(base + MMCISTATUS);
937
938	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
939
940	local_irq_save(flags);
941
942	do {
943		unsigned int remain, len;
944		char *buffer;
945
946		/*
947		 * For write, we only need to test the half-empty flag
948		 * here - if the FIFO is completely empty, then by
949		 * definition it is more than half empty.
950		 *
951		 * For read, check for data available.
952		 */
953		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
954			break;
955
956		if (!sg_miter_next(sg_miter))
957			break;
958
959		buffer = sg_miter->addr;
960		remain = sg_miter->length;
961
962		len = 0;
963		if (status & MCI_RXACTIVE)
964			len = mmci_pio_read(host, buffer, remain);
965		if (status & MCI_TXACTIVE)
966			len = mmci_pio_write(host, buffer, remain, status);
967
968		sg_miter->consumed = len;
969
970		host->size -= len;
971		remain -= len;
972
973		if (remain)
974			break;
975
976		status = readl(base + MMCISTATUS);
977	} while (1);
978
979	sg_miter_stop(sg_miter);
980
981	local_irq_restore(flags);
982
983	/*
984	 * If we have less than the fifo 'half-full' threshold to transfer,
985	 * trigger a PIO interrupt as soon as any data is available.
986	 */
987	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
988		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
989
990	/*
991	 * If we run out of data, disable the data IRQs; this
992	 * prevents a race where the FIFO becomes empty before
993	 * the chip itself has disabled the data path, and
994	 * stops us racing with our data end IRQ.
995	 */
996	if (host->size == 0) {
997		mmci_set_mask1(host, 0);
998		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
999	}
1000
1001	return IRQ_HANDLED;
1002}
1003
1004/*
1005 * Handle completion of command and data transfers.
1006 */
1007static irqreturn_t mmci_irq(int irq, void *dev_id)
1008{
1009	struct mmci_host *host = dev_id;
1010	u32 status;
1011	int ret = 0;
1012
1013	spin_lock(&host->lock);
1014
1015	do {
1016		struct mmc_command *cmd;
1017		struct mmc_data *data;
1018
1019		status = readl(host->base + MMCISTATUS);
1020
1021		if (host->singleirq) {
1022			if (status & readl(host->base + MMCIMASK1))
1023				mmci_pio_irq(irq, dev_id);
1024
1025			status &= ~MCI_IRQ1MASK;
1026		}
1027
1028		status &= readl(host->base + MMCIMASK0);
1029		writel(status, host->base + MMCICLEAR);
1030
1031		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1032
1033		data = host->data;
1034		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1035			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1036			      MCI_DATABLOCKEND) && data)
1037			mmci_data_irq(host, data, status);
1038
1039		cmd = host->cmd;
1040		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1041			mmci_cmd_irq(host, cmd, status);
1042
1043		ret = 1;
1044	} while (status);
1045
1046	spin_unlock(&host->lock);
1047
1048	return IRQ_RETVAL(ret);
1049}
1050
1051static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1052{
1053	struct mmci_host *host = mmc_priv(mmc);
1054	unsigned long flags;
1055
1056	WARN_ON(host->mrq != NULL);
1057
1058	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1059		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1060			mrq->data->blksz);
1061		mrq->cmd->error = -EINVAL;
1062		mmc_request_done(mmc, mrq);
1063		return;
1064	}
1065
1066	pm_runtime_get_sync(mmc_dev(mmc));
1067
1068	spin_lock_irqsave(&host->lock, flags);
1069
1070	host->mrq = mrq;
1071
1072	if (mrq->data)
1073		mmci_get_next_data(host, mrq->data);
1074
1075	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1076		mmci_start_data(host, mrq->data);
1077
1078	mmci_start_command(host, mrq->cmd, 0);
1079
1080	spin_unlock_irqrestore(&host->lock, flags);
1081}
1082
1083static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1084{
1085	struct mmci_host *host = mmc_priv(mmc);
1086	struct variant_data *variant = host->variant;
1087	u32 pwr = 0;
1088	unsigned long flags;
1089	int ret;
1090
1091	pm_runtime_get_sync(mmc_dev(mmc));
1092
1093	if (host->plat->ios_handler &&
1094		host->plat->ios_handler(mmc_dev(mmc), ios))
1095			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1096
1097	switch (ios->power_mode) {
1098	case MMC_POWER_OFF:
1099		if (host->vcc)
1100			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1101		break;
1102	case MMC_POWER_UP:
1103		if (host->vcc) {
1104			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1105			if (ret) {
1106				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1107				/*
1108				 * The .set_ios() function in the mmc_host_ops
1109				 * struct return void, and failing to set the
1110				 * power should be rare so we print an error
1111				 * and return here.
1112				 */
1113				goto out;
1114			}
1115		}
1116		/*
1117		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1118		 * and instead uses MCI_PWR_ON so apply whatever value is
1119		 * configured in the variant data.
1120		 */
1121		pwr |= variant->pwrreg_powerup;
1122
1123		break;
1124	case MMC_POWER_ON:
1125		pwr |= MCI_PWR_ON;
1126		break;
1127	}
1128
1129	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1130		/*
1131		 * The ST Micro variant has some additional bits
1132		 * indicating signal direction for the signals in
1133		 * the SD/MMC bus and feedback-clock usage.
1134		 */
1135		pwr |= host->plat->sigdir;
1136
1137		if (ios->bus_width == MMC_BUS_WIDTH_4)
1138			pwr &= ~MCI_ST_DATA74DIREN;
1139		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1140			pwr &= (~MCI_ST_DATA74DIREN &
1141				~MCI_ST_DATA31DIREN &
1142				~MCI_ST_DATA2DIREN);
1143	}
1144
1145	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1146		if (host->hw_designer != AMBA_VENDOR_ST)
1147			pwr |= MCI_ROD;
1148		else {
1149			/*
1150			 * The ST Micro variant use the ROD bit for something
1151			 * else and only has OD (Open Drain).
1152			 */
1153			pwr |= MCI_OD;
1154		}
1155	}
1156
1157	spin_lock_irqsave(&host->lock, flags);
1158
1159	mmci_set_clkreg(host, ios->clock);
1160	mmci_write_pwrreg(host, pwr);
1161
1162	spin_unlock_irqrestore(&host->lock, flags);
1163
1164 out:
1165	pm_runtime_mark_last_busy(mmc_dev(mmc));
1166	pm_runtime_put_autosuspend(mmc_dev(mmc));
1167}
1168
1169static int mmci_get_ro(struct mmc_host *mmc)
1170{
1171	struct mmci_host *host = mmc_priv(mmc);
1172
1173	if (host->gpio_wp == -ENOSYS)
1174		return -ENOSYS;
1175
1176	return gpio_get_value_cansleep(host->gpio_wp);
1177}
1178
1179static int mmci_get_cd(struct mmc_host *mmc)
1180{
1181	struct mmci_host *host = mmc_priv(mmc);
1182	struct mmci_platform_data *plat = host->plat;
1183	unsigned int status;
1184
1185	if (host->gpio_cd == -ENOSYS) {
1186		if (!plat->status)
1187			return 1; /* Assume always present */
1188
1189		status = plat->status(mmc_dev(host->mmc));
1190	} else
1191		status = !!gpio_get_value_cansleep(host->gpio_cd)
1192			^ plat->cd_invert;
1193
1194	/*
1195	 * Use positive logic throughout - status is zero for no card,
1196	 * non-zero for card inserted.
1197	 */
1198	return status;
1199}
1200
1201static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1202{
1203	struct mmci_host *host = dev_id;
1204
1205	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1206
1207	return IRQ_HANDLED;
1208}
1209
1210static const struct mmc_host_ops mmci_ops = {
1211	.request	= mmci_request,
1212	.pre_req	= mmci_pre_request,
1213	.post_req	= mmci_post_request,
1214	.set_ios	= mmci_set_ios,
1215	.get_ro		= mmci_get_ro,
1216	.get_cd		= mmci_get_cd,
1217};
1218
1219#ifdef CONFIG_OF
1220static void mmci_dt_populate_generic_pdata(struct device_node *np,
1221					struct mmci_platform_data *pdata)
1222{
1223	int bus_width = 0;
1224
1225	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1226	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1227
1228	if (of_get_property(np, "cd-inverted", NULL))
1229		pdata->cd_invert = true;
1230	else
1231		pdata->cd_invert = false;
1232
1233	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1234	if (!pdata->f_max)
1235		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1236
1237	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1238		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1239	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1240		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1241
1242	of_property_read_u32(np, "bus-width", &bus_width);
1243	switch (bus_width) {
1244	case 0 :
1245		/* No bus-width supplied. */
1246		break;
1247	case 4 :
1248		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1249		break;
1250	case 8 :
1251		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1252		break;
1253	default :
1254		pr_warn("%s: Unsupported bus width\n", np->full_name);
1255	}
1256}
1257#else
1258static void mmci_dt_populate_generic_pdata(struct device_node *np,
1259					struct mmci_platform_data *pdata)
1260{
1261	return;
1262}
1263#endif
1264
1265static int __devinit mmci_probe(struct amba_device *dev,
1266	const struct amba_id *id)
1267{
1268	struct mmci_platform_data *plat = dev->dev.platform_data;
1269	struct device_node *np = dev->dev.of_node;
1270	struct variant_data *variant = id->data;
1271	struct mmci_host *host;
1272	struct mmc_host *mmc;
1273	int ret;
1274
1275	/* Must have platform data or Device Tree. */
1276	if (!plat && !np) {
1277		dev_err(&dev->dev, "No plat data or DT found\n");
1278		return -EINVAL;
1279	}
1280
1281	if (!plat) {
1282		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1283		if (!plat)
1284			return -ENOMEM;
1285	}
1286
1287	if (np)
1288		mmci_dt_populate_generic_pdata(np, plat);
1289
1290	ret = amba_request_regions(dev, DRIVER_NAME);
1291	if (ret)
1292		goto out;
1293
1294	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1295	if (!mmc) {
1296		ret = -ENOMEM;
1297		goto rel_regions;
1298	}
1299
1300	host = mmc_priv(mmc);
1301	host->mmc = mmc;
1302
1303	host->gpio_wp = -ENOSYS;
1304	host->gpio_cd = -ENOSYS;
1305	host->gpio_cd_irq = -1;
1306
1307	host->hw_designer = amba_manf(dev);
1308	host->hw_revision = amba_rev(dev);
1309	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1310	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1311
1312	host->clk = clk_get(&dev->dev, NULL);
1313	if (IS_ERR(host->clk)) {
1314		ret = PTR_ERR(host->clk);
1315		host->clk = NULL;
1316		goto host_free;
1317	}
1318
1319	ret = clk_prepare_enable(host->clk);
1320	if (ret)
1321		goto clk_free;
1322
1323	host->plat = plat;
1324	host->variant = variant;
1325	host->mclk = clk_get_rate(host->clk);
1326	/*
1327	 * According to the spec, mclk is max 100 MHz,
1328	 * so we try to adjust the clock down to this,
1329	 * (if possible).
1330	 */
1331	if (host->mclk > 100000000) {
1332		ret = clk_set_rate(host->clk, 100000000);
1333		if (ret < 0)
1334			goto clk_disable;
1335		host->mclk = clk_get_rate(host->clk);
1336		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1337			host->mclk);
1338	}
1339	host->phybase = dev->res.start;
1340	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1341	if (!host->base) {
1342		ret = -ENOMEM;
1343		goto clk_disable;
1344	}
1345
1346	mmc->ops = &mmci_ops;
1347	/*
1348	 * The ARM and ST versions of the block have slightly different
1349	 * clock divider equations which means that the minimum divider
1350	 * differs too.
1351	 */
1352	if (variant->st_clkdiv)
1353		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1354	else
1355		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1356	/*
1357	 * If the platform data supplies a maximum operating
1358	 * frequency, this takes precedence. Else, we fall back
1359	 * to using the module parameter, which has a (low)
1360	 * default value in case it is not specified. Either
1361	 * value must not exceed the clock rate into the block,
1362	 * of course.
1363	 */
1364	if (plat->f_max)
1365		mmc->f_max = min(host->mclk, plat->f_max);
1366	else
1367		mmc->f_max = min(host->mclk, fmax);
1368	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1369
1370	host->pinctrl = devm_pinctrl_get(&dev->dev);
1371	if (IS_ERR(host->pinctrl)) {
1372		ret = PTR_ERR(host->pinctrl);
1373		goto clk_disable;
1374	}
1375
1376	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1377			PINCTRL_STATE_DEFAULT);
1378
1379	/* enable pins to be muxed in and configured */
1380	if (!IS_ERR(host->pins_default)) {
1381		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1382		if (ret)
1383			dev_warn(&dev->dev, "could not set default pins\n");
1384	} else
1385		dev_warn(&dev->dev, "could not get default pinstate\n");
1386
1387#ifdef CONFIG_REGULATOR
1388	/* If we're using the regulator framework, try to fetch a regulator */
1389	host->vcc = regulator_get(&dev->dev, "vmmc");
1390	if (IS_ERR(host->vcc))
1391		host->vcc = NULL;
1392	else {
1393		int mask = mmc_regulator_get_ocrmask(host->vcc);
1394
1395		if (mask < 0)
1396			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1397				mask);
1398		else {
1399			host->mmc->ocr_avail = (u32) mask;
1400			if (plat->ocr_mask)
1401				dev_warn(&dev->dev,
1402				 "Provided ocr_mask/setpower will not be used "
1403				 "(using regulator instead)\n");
1404		}
1405	}
1406#endif
1407	/* Fall back to platform data if no regulator is found */
1408	if (host->vcc == NULL)
1409		mmc->ocr_avail = plat->ocr_mask;
1410	mmc->caps = plat->capabilities;
1411	mmc->caps2 = plat->capabilities2;
1412
1413	/*
1414	 * We can do SGIO
1415	 */
1416	mmc->max_segs = NR_SG;
1417
1418	/*
1419	 * Since only a certain number of bits are valid in the data length
1420	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1421	 * single request.
1422	 */
1423	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1424
1425	/*
1426	 * Set the maximum segment size.  Since we aren't doing DMA
1427	 * (yet) we are only limited by the data length register.
1428	 */
1429	mmc->max_seg_size = mmc->max_req_size;
1430
1431	/*
1432	 * Block size can be up to 2048 bytes, but must be a power of two.
1433	 */
1434	mmc->max_blk_size = 1 << 11;
1435
1436	/*
1437	 * Limit the number of blocks transferred so that we don't overflow
1438	 * the maximum request size.
1439	 */
1440	mmc->max_blk_count = mmc->max_req_size >> 11;
1441
1442	spin_lock_init(&host->lock);
1443
1444	writel(0, host->base + MMCIMASK0);
1445	writel(0, host->base + MMCIMASK1);
1446	writel(0xfff, host->base + MMCICLEAR);
1447
1448	if (plat->gpio_cd == -EPROBE_DEFER) {
1449		ret = -EPROBE_DEFER;
1450		goto err_gpio_cd;
1451	}
1452	if (gpio_is_valid(plat->gpio_cd)) {
1453		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1454		if (ret == 0)
1455			ret = gpio_direction_input(plat->gpio_cd);
1456		if (ret == 0)
1457			host->gpio_cd = plat->gpio_cd;
1458		else if (ret != -ENOSYS)
1459			goto err_gpio_cd;
1460
1461		/*
1462		 * A gpio pin that will detect cards when inserted and removed
1463		 * will most likely want to trigger on the edges if it is
1464		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1465		 * for the inverted case) so we request triggers on both
1466		 * edges.
1467		 */
1468		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1469				mmci_cd_irq,
1470				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1471				DRIVER_NAME " (cd)", host);
1472		if (ret >= 0)
1473			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1474	}
1475	if (plat->gpio_wp == -EPROBE_DEFER) {
1476		ret = -EPROBE_DEFER;
1477		goto err_gpio_wp;
1478	}
1479	if (gpio_is_valid(plat->gpio_wp)) {
1480		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1481		if (ret == 0)
1482			ret = gpio_direction_input(plat->gpio_wp);
1483		if (ret == 0)
1484			host->gpio_wp = plat->gpio_wp;
1485		else if (ret != -ENOSYS)
1486			goto err_gpio_wp;
1487	}
1488
1489	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1490	    && host->gpio_cd_irq < 0)
1491		mmc->caps |= MMC_CAP_NEEDS_POLL;
1492
1493	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1494	if (ret)
1495		goto unmap;
1496
1497	if (!dev->irq[1])
1498		host->singleirq = true;
1499	else {
1500		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1501				  DRIVER_NAME " (pio)", host);
1502		if (ret)
1503			goto irq0_free;
1504	}
1505
1506	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1507
1508	amba_set_drvdata(dev, mmc);
1509
1510	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1511		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1512		 amba_rev(dev), (unsigned long long)dev->res.start,
1513		 dev->irq[0], dev->irq[1]);
1514
1515	mmci_dma_setup(host);
1516
1517	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1518	pm_runtime_use_autosuspend(&dev->dev);
1519	pm_runtime_put(&dev->dev);
1520
1521	mmc_add_host(mmc);
1522
1523	return 0;
1524
1525 irq0_free:
1526	free_irq(dev->irq[0], host);
1527 unmap:
1528	if (host->gpio_wp != -ENOSYS)
1529		gpio_free(host->gpio_wp);
1530 err_gpio_wp:
1531	if (host->gpio_cd_irq >= 0)
1532		free_irq(host->gpio_cd_irq, host);
1533	if (host->gpio_cd != -ENOSYS)
1534		gpio_free(host->gpio_cd);
1535 err_gpio_cd:
1536	iounmap(host->base);
1537 clk_disable:
1538	clk_disable_unprepare(host->clk);
1539 clk_free:
1540	clk_put(host->clk);
1541 host_free:
1542	mmc_free_host(mmc);
1543 rel_regions:
1544	amba_release_regions(dev);
1545 out:
1546	return ret;
1547}
1548
1549static int __devexit mmci_remove(struct amba_device *dev)
1550{
1551	struct mmc_host *mmc = amba_get_drvdata(dev);
1552
1553	amba_set_drvdata(dev, NULL);
1554
1555	if (mmc) {
1556		struct mmci_host *host = mmc_priv(mmc);
1557
1558		/*
1559		 * Undo pm_runtime_put() in probe.  We use the _sync
1560		 * version here so that we can access the primecell.
1561		 */
1562		pm_runtime_get_sync(&dev->dev);
1563
1564		mmc_remove_host(mmc);
1565
1566		writel(0, host->base + MMCIMASK0);
1567		writel(0, host->base + MMCIMASK1);
1568
1569		writel(0, host->base + MMCICOMMAND);
1570		writel(0, host->base + MMCIDATACTRL);
1571
1572		mmci_dma_release(host);
1573		free_irq(dev->irq[0], host);
1574		if (!host->singleirq)
1575			free_irq(dev->irq[1], host);
1576
1577		if (host->gpio_wp != -ENOSYS)
1578			gpio_free(host->gpio_wp);
1579		if (host->gpio_cd_irq >= 0)
1580			free_irq(host->gpio_cd_irq, host);
1581		if (host->gpio_cd != -ENOSYS)
1582			gpio_free(host->gpio_cd);
1583
1584		iounmap(host->base);
1585		clk_disable_unprepare(host->clk);
1586		clk_put(host->clk);
1587
1588		if (host->vcc)
1589			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1590		regulator_put(host->vcc);
1591
1592		mmc_free_host(mmc);
1593
1594		amba_release_regions(dev);
1595	}
1596
1597	return 0;
1598}
1599
1600#ifdef CONFIG_SUSPEND
1601static int mmci_suspend(struct device *dev)
1602{
1603	struct amba_device *adev = to_amba_device(dev);
1604	struct mmc_host *mmc = amba_get_drvdata(adev);
1605	int ret = 0;
1606
1607	if (mmc) {
1608		struct mmci_host *host = mmc_priv(mmc);
1609
1610		ret = mmc_suspend_host(mmc);
1611		if (ret == 0) {
1612			pm_runtime_get_sync(dev);
1613			writel(0, host->base + MMCIMASK0);
1614		}
1615	}
1616
1617	return ret;
1618}
1619
1620static int mmci_resume(struct device *dev)
1621{
1622	struct amba_device *adev = to_amba_device(dev);
1623	struct mmc_host *mmc = amba_get_drvdata(adev);
1624	int ret = 0;
1625
1626	if (mmc) {
1627		struct mmci_host *host = mmc_priv(mmc);
1628
1629		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1630		pm_runtime_put(dev);
1631
1632		ret = mmc_resume_host(mmc);
1633	}
1634
1635	return ret;
1636}
1637#endif
1638
1639static const struct dev_pm_ops mmci_dev_pm_ops = {
1640	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1641};
1642
1643static struct amba_id mmci_ids[] = {
1644	{
1645		.id	= 0x00041180,
1646		.mask	= 0xff0fffff,
1647		.data	= &variant_arm,
1648	},
1649	{
1650		.id	= 0x01041180,
1651		.mask	= 0xff0fffff,
1652		.data	= &variant_arm_extended_fifo,
1653	},
1654	{
1655		.id	= 0x00041181,
1656		.mask	= 0x000fffff,
1657		.data	= &variant_arm,
1658	},
1659	/* ST Micro variants */
1660	{
1661		.id     = 0x00180180,
1662		.mask   = 0x00ffffff,
1663		.data	= &variant_u300,
1664	},
1665	{
1666		.id     = 0x10180180,
1667		.mask   = 0xf0ffffff,
1668		.data	= &variant_nomadik,
1669	},
1670	{
1671		.id     = 0x00280180,
1672		.mask   = 0x00ffffff,
1673		.data	= &variant_u300,
1674	},
1675	{
1676		.id     = 0x00480180,
1677		.mask   = 0xf0ffffff,
1678		.data	= &variant_ux500,
1679	},
1680	{
1681		.id     = 0x10480180,
1682		.mask   = 0xf0ffffff,
1683		.data	= &variant_ux500v2,
1684	},
1685	{ 0, 0 },
1686};
1687
1688MODULE_DEVICE_TABLE(amba, mmci_ids);
1689
1690static struct amba_driver mmci_driver = {
1691	.drv		= {
1692		.name	= DRIVER_NAME,
1693		.pm	= &mmci_dev_pm_ops,
1694	},
1695	.probe		= mmci_probe,
1696	.remove		= __devexit_p(mmci_remove),
1697	.id_table	= mmci_ids,
1698};
1699
1700module_amba_driver(mmci_driver);
1701
1702module_param(fmax, uint, 0444);
1703
1704MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1705MODULE_LICENSE("GPL");
1706