mmci.c revision ae7b0061f61e7c96884f4080b4e28544a0cedd76
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43#include <asm/sizes.h>
44
45#include "mmci.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 *	      is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 *		  is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @sdio: variant supports SDIO
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 *		     register
69 * @pwrreg_powerup: power up value for MMCIPOWER register
70 * @signal_direction: input/out direction of bus signals can be indicated
71 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
72 * @busy_detect: true if busy detection on dat0 is supported
73 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
74 */
75struct variant_data {
76	unsigned int		clkreg;
77	unsigned int		clkreg_enable;
78	unsigned int		clkreg_8bit_bus_enable;
79	unsigned int		clkreg_neg_edge_enable;
80	unsigned int		datalength_bits;
81	unsigned int		fifosize;
82	unsigned int		fifohalfsize;
83	unsigned int		data_cmd_enable;
84	unsigned int		datactrl_mask_ddrmode;
85	bool			sdio;
86	bool			st_clkdiv;
87	bool			blksz_datactrl16;
88	bool			blksz_datactrl4;
89	u32			pwrreg_powerup;
90	bool			signal_direction;
91	bool			pwrreg_clkgate;
92	bool			busy_detect;
93	bool			pwrreg_nopower;
94};
95
96static struct variant_data variant_arm = {
97	.fifosize		= 16 * 4,
98	.fifohalfsize		= 8 * 4,
99	.datalength_bits	= 16,
100	.pwrreg_powerup		= MCI_PWR_UP,
101};
102
103static struct variant_data variant_arm_extended_fifo = {
104	.fifosize		= 128 * 4,
105	.fifohalfsize		= 64 * 4,
106	.datalength_bits	= 16,
107	.pwrreg_powerup		= MCI_PWR_UP,
108};
109
110static struct variant_data variant_arm_extended_fifo_hwfc = {
111	.fifosize		= 128 * 4,
112	.fifohalfsize		= 64 * 4,
113	.clkreg_enable		= MCI_ARM_HWFCEN,
114	.datalength_bits	= 16,
115	.pwrreg_powerup		= MCI_PWR_UP,
116};
117
118static struct variant_data variant_u300 = {
119	.fifosize		= 16 * 4,
120	.fifohalfsize		= 8 * 4,
121	.clkreg_enable		= MCI_ST_U300_HWFCEN,
122	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
123	.datalength_bits	= 16,
124	.sdio			= true,
125	.pwrreg_powerup		= MCI_PWR_ON,
126	.signal_direction	= true,
127	.pwrreg_clkgate		= true,
128	.pwrreg_nopower		= true,
129};
130
131static struct variant_data variant_nomadik = {
132	.fifosize		= 16 * 4,
133	.fifohalfsize		= 8 * 4,
134	.clkreg			= MCI_CLK_ENABLE,
135	.datalength_bits	= 24,
136	.sdio			= true,
137	.st_clkdiv		= true,
138	.pwrreg_powerup		= MCI_PWR_ON,
139	.signal_direction	= true,
140	.pwrreg_clkgate		= true,
141	.pwrreg_nopower		= true,
142};
143
144static struct variant_data variant_ux500 = {
145	.fifosize		= 30 * 4,
146	.fifohalfsize		= 8 * 4,
147	.clkreg			= MCI_CLK_ENABLE,
148	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
149	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
150	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
151	.datalength_bits	= 24,
152	.sdio			= true,
153	.st_clkdiv		= true,
154	.pwrreg_powerup		= MCI_PWR_ON,
155	.signal_direction	= true,
156	.pwrreg_clkgate		= true,
157	.busy_detect		= true,
158	.pwrreg_nopower		= true,
159};
160
161static struct variant_data variant_ux500v2 = {
162	.fifosize		= 30 * 4,
163	.fifohalfsize		= 8 * 4,
164	.clkreg			= MCI_CLK_ENABLE,
165	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
166	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
168	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
169	.datalength_bits	= 24,
170	.sdio			= true,
171	.st_clkdiv		= true,
172	.blksz_datactrl16	= true,
173	.pwrreg_powerup		= MCI_PWR_ON,
174	.signal_direction	= true,
175	.pwrreg_clkgate		= true,
176	.busy_detect		= true,
177	.pwrreg_nopower		= true,
178};
179
180static int mmci_card_busy(struct mmc_host *mmc)
181{
182	struct mmci_host *host = mmc_priv(mmc);
183	unsigned long flags;
184	int busy = 0;
185
186	pm_runtime_get_sync(mmc_dev(mmc));
187
188	spin_lock_irqsave(&host->lock, flags);
189	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
190		busy = 1;
191	spin_unlock_irqrestore(&host->lock, flags);
192
193	pm_runtime_mark_last_busy(mmc_dev(mmc));
194	pm_runtime_put_autosuspend(mmc_dev(mmc));
195
196	return busy;
197}
198
199/*
200 * Validate mmc prerequisites
201 */
202static int mmci_validate_data(struct mmci_host *host,
203			      struct mmc_data *data)
204{
205	if (!data)
206		return 0;
207
208	if (!is_power_of_2(data->blksz)) {
209		dev_err(mmc_dev(host->mmc),
210			"unsupported block size (%d bytes)\n", data->blksz);
211		return -EINVAL;
212	}
213
214	return 0;
215}
216
217static void mmci_reg_delay(struct mmci_host *host)
218{
219	/*
220	 * According to the spec, at least three feedback clock cycles
221	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
222	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
223	 * Worst delay time during card init is at 100 kHz => 30 us.
224	 * Worst delay time when up and running is at 25 MHz => 120 ns.
225	 */
226	if (host->cclk < 25000000)
227		udelay(30);
228	else
229		ndelay(120);
230}
231
232/*
233 * This must be called with host->lock held
234 */
235static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
236{
237	if (host->clk_reg != clk) {
238		host->clk_reg = clk;
239		writel(clk, host->base + MMCICLOCK);
240	}
241}
242
243/*
244 * This must be called with host->lock held
245 */
246static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
247{
248	if (host->pwr_reg != pwr) {
249		host->pwr_reg = pwr;
250		writel(pwr, host->base + MMCIPOWER);
251	}
252}
253
254/*
255 * This must be called with host->lock held
256 */
257static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
258{
259	/* Keep ST Micro busy mode if enabled */
260	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
261
262	if (host->datactrl_reg != datactrl) {
263		host->datactrl_reg = datactrl;
264		writel(datactrl, host->base + MMCIDATACTRL);
265	}
266}
267
268/*
269 * This must be called with host->lock held
270 */
271static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
272{
273	struct variant_data *variant = host->variant;
274	u32 clk = variant->clkreg;
275
276	/* Make sure cclk reflects the current calculated clock */
277	host->cclk = 0;
278
279	if (desired) {
280		if (desired >= host->mclk) {
281			clk = MCI_CLK_BYPASS;
282			if (variant->st_clkdiv)
283				clk |= MCI_ST_UX500_NEG_EDGE;
284			host->cclk = host->mclk;
285		} else if (variant->st_clkdiv) {
286			/*
287			 * DB8500 TRM says f = mclk / (clkdiv + 2)
288			 * => clkdiv = (mclk / f) - 2
289			 * Round the divider up so we don't exceed the max
290			 * frequency
291			 */
292			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
293			if (clk >= 256)
294				clk = 255;
295			host->cclk = host->mclk / (clk + 2);
296		} else {
297			/*
298			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
299			 * => clkdiv = mclk / (2 * f) - 1
300			 */
301			clk = host->mclk / (2 * desired) - 1;
302			if (clk >= 256)
303				clk = 255;
304			host->cclk = host->mclk / (2 * (clk + 1));
305		}
306
307		clk |= variant->clkreg_enable;
308		clk |= MCI_CLK_ENABLE;
309		/* This hasn't proven to be worthwhile */
310		/* clk |= MCI_CLK_PWRSAVE; */
311	}
312
313	/* Set actual clock for debug */
314	host->mmc->actual_clock = host->cclk;
315
316	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
317		clk |= MCI_4BIT_BUS;
318	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
319		clk |= variant->clkreg_8bit_bus_enable;
320
321	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
322	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
323		clk |= variant->clkreg_neg_edge_enable;
324
325	mmci_write_clkreg(host, clk);
326}
327
328static void
329mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
330{
331	writel(0, host->base + MMCICOMMAND);
332
333	BUG_ON(host->data);
334
335	host->mrq = NULL;
336	host->cmd = NULL;
337
338	mmc_request_done(host->mmc, mrq);
339
340	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
341	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
342}
343
344static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
345{
346	void __iomem *base = host->base;
347
348	if (host->singleirq) {
349		unsigned int mask0 = readl(base + MMCIMASK0);
350
351		mask0 &= ~MCI_IRQ1MASK;
352		mask0 |= mask;
353
354		writel(mask0, base + MMCIMASK0);
355	}
356
357	writel(mask, base + MMCIMASK1);
358}
359
360static void mmci_stop_data(struct mmci_host *host)
361{
362	mmci_write_datactrlreg(host, 0);
363	mmci_set_mask1(host, 0);
364	host->data = NULL;
365}
366
367static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
368{
369	unsigned int flags = SG_MITER_ATOMIC;
370
371	if (data->flags & MMC_DATA_READ)
372		flags |= SG_MITER_TO_SG;
373	else
374		flags |= SG_MITER_FROM_SG;
375
376	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
377}
378
379/*
380 * All the DMA operation mode stuff goes inside this ifdef.
381 * This assumes that you have a generic DMA device interface,
382 * no custom DMA interfaces are supported.
383 */
384#ifdef CONFIG_DMA_ENGINE
385static void mmci_dma_setup(struct mmci_host *host)
386{
387	const char *rxname, *txname;
388	dma_cap_mask_t mask;
389
390	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
391	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
392
393	/* initialize pre request cookie */
394	host->next_data.cookie = 1;
395
396	/* Try to acquire a generic DMA engine slave channel */
397	dma_cap_zero(mask);
398	dma_cap_set(DMA_SLAVE, mask);
399
400	/*
401	 * If only an RX channel is specified, the driver will
402	 * attempt to use it bidirectionally, however if it is
403	 * is specified but cannot be located, DMA will be disabled.
404	 */
405	if (host->dma_rx_channel && !host->dma_tx_channel)
406		host->dma_tx_channel = host->dma_rx_channel;
407
408	if (host->dma_rx_channel)
409		rxname = dma_chan_name(host->dma_rx_channel);
410	else
411		rxname = "none";
412
413	if (host->dma_tx_channel)
414		txname = dma_chan_name(host->dma_tx_channel);
415	else
416		txname = "none";
417
418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419		 rxname, txname);
420
421	/*
422	 * Limit the maximum segment size in any SG entry according to
423	 * the parameters of the DMA engine device.
424	 */
425	if (host->dma_tx_channel) {
426		struct device *dev = host->dma_tx_channel->device->dev;
427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429		if (max_seg_size < host->mmc->max_seg_size)
430			host->mmc->max_seg_size = max_seg_size;
431	}
432	if (host->dma_rx_channel) {
433		struct device *dev = host->dma_rx_channel->device->dev;
434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436		if (max_seg_size < host->mmc->max_seg_size)
437			host->mmc->max_seg_size = max_seg_size;
438	}
439}
440
441/*
442 * This is used in or so inline it
443 * so it can be discarded.
444 */
445static inline void mmci_dma_release(struct mmci_host *host)
446{
447	if (host->dma_rx_channel)
448		dma_release_channel(host->dma_rx_channel);
449	if (host->dma_tx_channel)
450		dma_release_channel(host->dma_tx_channel);
451	host->dma_rx_channel = host->dma_tx_channel = NULL;
452}
453
454static void mmci_dma_data_error(struct mmci_host *host)
455{
456	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
457	dmaengine_terminate_all(host->dma_current);
458	host->dma_current = NULL;
459	host->dma_desc_current = NULL;
460	host->data->host_cookie = 0;
461}
462
463static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
464{
465	struct dma_chan *chan;
466	enum dma_data_direction dir;
467
468	if (data->flags & MMC_DATA_READ) {
469		dir = DMA_FROM_DEVICE;
470		chan = host->dma_rx_channel;
471	} else {
472		dir = DMA_TO_DEVICE;
473		chan = host->dma_tx_channel;
474	}
475
476	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
477}
478
479static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
480{
481	u32 status;
482	int i;
483
484	/* Wait up to 1ms for the DMA to complete */
485	for (i = 0; ; i++) {
486		status = readl(host->base + MMCISTATUS);
487		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
488			break;
489		udelay(10);
490	}
491
492	/*
493	 * Check to see whether we still have some data left in the FIFO -
494	 * this catches DMA controllers which are unable to monitor the
495	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
496	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
497	 */
498	if (status & MCI_RXDATAAVLBLMASK) {
499		mmci_dma_data_error(host);
500		if (!data->error)
501			data->error = -EIO;
502	}
503
504	if (!data->host_cookie)
505		mmci_dma_unmap(host, data);
506
507	/*
508	 * Use of DMA with scatter-gather is impossible.
509	 * Give up with DMA and switch back to PIO mode.
510	 */
511	if (status & MCI_RXDATAAVLBLMASK) {
512		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
513		mmci_dma_release(host);
514	}
515
516	host->dma_current = NULL;
517	host->dma_desc_current = NULL;
518}
519
520/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
521static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
522				struct dma_chan **dma_chan,
523				struct dma_async_tx_descriptor **dma_desc)
524{
525	struct variant_data *variant = host->variant;
526	struct dma_slave_config conf = {
527		.src_addr = host->phybase + MMCIFIFO,
528		.dst_addr = host->phybase + MMCIFIFO,
529		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
530		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
531		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
532		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
533		.device_fc = false,
534	};
535	struct dma_chan *chan;
536	struct dma_device *device;
537	struct dma_async_tx_descriptor *desc;
538	enum dma_data_direction buffer_dirn;
539	int nr_sg;
540
541	if (data->flags & MMC_DATA_READ) {
542		conf.direction = DMA_DEV_TO_MEM;
543		buffer_dirn = DMA_FROM_DEVICE;
544		chan = host->dma_rx_channel;
545	} else {
546		conf.direction = DMA_MEM_TO_DEV;
547		buffer_dirn = DMA_TO_DEVICE;
548		chan = host->dma_tx_channel;
549	}
550
551	/* If there's no DMA channel, fall back to PIO */
552	if (!chan)
553		return -EINVAL;
554
555	/* If less than or equal to the fifo size, don't bother with DMA */
556	if (data->blksz * data->blocks <= variant->fifosize)
557		return -EINVAL;
558
559	device = chan->device;
560	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
561	if (nr_sg == 0)
562		return -EINVAL;
563
564	dmaengine_slave_config(chan, &conf);
565	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
566					    conf.direction, DMA_CTRL_ACK);
567	if (!desc)
568		goto unmap_exit;
569
570	*dma_chan = chan;
571	*dma_desc = desc;
572
573	return 0;
574
575 unmap_exit:
576	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
577	return -ENOMEM;
578}
579
580static inline int mmci_dma_prep_data(struct mmci_host *host,
581				     struct mmc_data *data)
582{
583	/* Check if next job is already prepared. */
584	if (host->dma_current && host->dma_desc_current)
585		return 0;
586
587	/* No job were prepared thus do it now. */
588	return __mmci_dma_prep_data(host, data, &host->dma_current,
589				    &host->dma_desc_current);
590}
591
592static inline int mmci_dma_prep_next(struct mmci_host *host,
593				     struct mmc_data *data)
594{
595	struct mmci_host_next *nd = &host->next_data;
596	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
597}
598
599static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
600{
601	int ret;
602	struct mmc_data *data = host->data;
603
604	ret = mmci_dma_prep_data(host, host->data);
605	if (ret)
606		return ret;
607
608	/* Okay, go for it. */
609	dev_vdbg(mmc_dev(host->mmc),
610		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
611		 data->sg_len, data->blksz, data->blocks, data->flags);
612	dmaengine_submit(host->dma_desc_current);
613	dma_async_issue_pending(host->dma_current);
614
615	datactrl |= MCI_DPSM_DMAENABLE;
616
617	/* Trigger the DMA transfer */
618	mmci_write_datactrlreg(host, datactrl);
619
620	/*
621	 * Let the MMCI say when the data is ended and it's time
622	 * to fire next DMA request. When that happens, MMCI will
623	 * call mmci_data_end()
624	 */
625	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
626	       host->base + MMCIMASK0);
627	return 0;
628}
629
630static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
631{
632	struct mmci_host_next *next = &host->next_data;
633
634	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
635	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
636
637	host->dma_desc_current = next->dma_desc;
638	host->dma_current = next->dma_chan;
639	next->dma_desc = NULL;
640	next->dma_chan = NULL;
641}
642
643static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
644			     bool is_first_req)
645{
646	struct mmci_host *host = mmc_priv(mmc);
647	struct mmc_data *data = mrq->data;
648	struct mmci_host_next *nd = &host->next_data;
649
650	if (!data)
651		return;
652
653	BUG_ON(data->host_cookie);
654
655	if (mmci_validate_data(host, data))
656		return;
657
658	if (!mmci_dma_prep_next(host, data))
659		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
660}
661
662static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
663			      int err)
664{
665	struct mmci_host *host = mmc_priv(mmc);
666	struct mmc_data *data = mrq->data;
667
668	if (!data || !data->host_cookie)
669		return;
670
671	mmci_dma_unmap(host, data);
672
673	if (err) {
674		struct mmci_host_next *next = &host->next_data;
675		struct dma_chan *chan;
676		if (data->flags & MMC_DATA_READ)
677			chan = host->dma_rx_channel;
678		else
679			chan = host->dma_tx_channel;
680		dmaengine_terminate_all(chan);
681
682		next->dma_desc = NULL;
683		next->dma_chan = NULL;
684	}
685}
686
687#else
688/* Blank functions if the DMA engine is not available */
689static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
690{
691}
692static inline void mmci_dma_setup(struct mmci_host *host)
693{
694}
695
696static inline void mmci_dma_release(struct mmci_host *host)
697{
698}
699
700static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
701{
702}
703
704static inline void mmci_dma_finalize(struct mmci_host *host,
705				     struct mmc_data *data)
706{
707}
708
709static inline void mmci_dma_data_error(struct mmci_host *host)
710{
711}
712
713static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
714{
715	return -ENOSYS;
716}
717
718#define mmci_pre_request NULL
719#define mmci_post_request NULL
720
721#endif
722
723static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
724{
725	struct variant_data *variant = host->variant;
726	unsigned int datactrl, timeout, irqmask;
727	unsigned long long clks;
728	void __iomem *base;
729	int blksz_bits;
730
731	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
732		data->blksz, data->blocks, data->flags);
733
734	host->data = data;
735	host->size = data->blksz * data->blocks;
736	data->bytes_xfered = 0;
737
738	clks = (unsigned long long)data->timeout_ns * host->cclk;
739	do_div(clks, NSEC_PER_SEC);
740
741	timeout = data->timeout_clks + (unsigned int)clks;
742
743	base = host->base;
744	writel(timeout, base + MMCIDATATIMER);
745	writel(host->size, base + MMCIDATALENGTH);
746
747	blksz_bits = ffs(data->blksz) - 1;
748	BUG_ON(1 << blksz_bits != data->blksz);
749
750	if (variant->blksz_datactrl16)
751		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
752	else if (variant->blksz_datactrl4)
753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
754	else
755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756
757	if (data->flags & MMC_DATA_READ)
758		datactrl |= MCI_DPSM_DIRECTION;
759
760	/* The ST Micro variants has a special bit to enable SDIO */
761	if (variant->sdio && host->mmc->card)
762		if (mmc_card_sdio(host->mmc->card)) {
763			/*
764			 * The ST Micro variants has a special bit
765			 * to enable SDIO.
766			 */
767			u32 clk;
768
769			datactrl |= MCI_ST_DPSM_SDIOEN;
770
771			/*
772			 * The ST Micro variant for SDIO small write transfers
773			 * needs to have clock H/W flow control disabled,
774			 * otherwise the transfer will not start. The threshold
775			 * depends on the rate of MCLK.
776			 */
777			if (data->flags & MMC_DATA_WRITE &&
778			    (host->size < 8 ||
779			     (host->size <= 8 && host->mclk > 50000000)))
780				clk = host->clk_reg & ~variant->clkreg_enable;
781			else
782				clk = host->clk_reg | variant->clkreg_enable;
783
784			mmci_write_clkreg(host, clk);
785		}
786
787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
788	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
789		datactrl |= variant->datactrl_mask_ddrmode;
790
791	/*
792	 * Attempt to use DMA operation mode, if this
793	 * should fail, fall back to PIO mode
794	 */
795	if (!mmci_dma_start_data(host, datactrl))
796		return;
797
798	/* IRQ mode, map the SG list for CPU reading/writing */
799	mmci_init_sg(host, data);
800
801	if (data->flags & MMC_DATA_READ) {
802		irqmask = MCI_RXFIFOHALFFULLMASK;
803
804		/*
805		 * If we have less than the fifo 'half-full' threshold to
806		 * transfer, trigger a PIO interrupt as soon as any data
807		 * is available.
808		 */
809		if (host->size < variant->fifohalfsize)
810			irqmask |= MCI_RXDATAAVLBLMASK;
811	} else {
812		/*
813		 * We don't actually need to include "FIFO empty" here
814		 * since its implicit in "FIFO half empty".
815		 */
816		irqmask = MCI_TXFIFOHALFEMPTYMASK;
817	}
818
819	mmci_write_datactrlreg(host, datactrl);
820	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
821	mmci_set_mask1(host, irqmask);
822}
823
824static void
825mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
826{
827	void __iomem *base = host->base;
828
829	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
830	    cmd->opcode, cmd->arg, cmd->flags);
831
832	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
833		writel(0, base + MMCICOMMAND);
834		mmci_reg_delay(host);
835	}
836
837	c |= cmd->opcode | MCI_CPSM_ENABLE;
838	if (cmd->flags & MMC_RSP_PRESENT) {
839		if (cmd->flags & MMC_RSP_136)
840			c |= MCI_CPSM_LONGRSP;
841		c |= MCI_CPSM_RESPONSE;
842	}
843	if (/*interrupt*/0)
844		c |= MCI_CPSM_INTERRUPT;
845
846	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
847		c |= host->variant->data_cmd_enable;
848
849	host->cmd = cmd;
850
851	writel(cmd->arg, base + MMCIARGUMENT);
852	writel(c, base + MMCICOMMAND);
853}
854
855static void
856mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
857	      unsigned int status)
858{
859	/* First check for errors */
860	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
861		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
862		u32 remain, success;
863
864		/* Terminate the DMA transfer */
865		if (dma_inprogress(host)) {
866			mmci_dma_data_error(host);
867			mmci_dma_unmap(host, data);
868		}
869
870		/*
871		 * Calculate how far we are into the transfer.  Note that
872		 * the data counter gives the number of bytes transferred
873		 * on the MMC bus, not on the host side.  On reads, this
874		 * can be as much as a FIFO-worth of data ahead.  This
875		 * matters for FIFO overruns only.
876		 */
877		remain = readl(host->base + MMCIDATACNT);
878		success = data->blksz * data->blocks - remain;
879
880		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
881			status, success);
882		if (status & MCI_DATACRCFAIL) {
883			/* Last block was not successful */
884			success -= 1;
885			data->error = -EILSEQ;
886		} else if (status & MCI_DATATIMEOUT) {
887			data->error = -ETIMEDOUT;
888		} else if (status & MCI_STARTBITERR) {
889			data->error = -ECOMM;
890		} else if (status & MCI_TXUNDERRUN) {
891			data->error = -EIO;
892		} else if (status & MCI_RXOVERRUN) {
893			if (success > host->variant->fifosize)
894				success -= host->variant->fifosize;
895			else
896				success = 0;
897			data->error = -EIO;
898		}
899		data->bytes_xfered = round_down(success, data->blksz);
900	}
901
902	if (status & MCI_DATABLOCKEND)
903		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
904
905	if (status & MCI_DATAEND || data->error) {
906		if (dma_inprogress(host))
907			mmci_dma_finalize(host, data);
908		mmci_stop_data(host);
909
910		if (!data->error)
911			/* The error clause is handled above, success! */
912			data->bytes_xfered = data->blksz * data->blocks;
913
914		if (!data->stop || host->mrq->sbc) {
915			mmci_request_end(host, data->mrq);
916		} else {
917			mmci_start_command(host, data->stop, 0);
918		}
919	}
920}
921
922static void
923mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
924	     unsigned int status)
925{
926	void __iomem *base = host->base;
927	bool sbc = (cmd == host->mrq->sbc);
928	bool busy_resp = host->variant->busy_detect &&
929			(cmd->flags & MMC_RSP_BUSY);
930
931	/* Check if we need to wait for busy completion. */
932	if (host->busy_status && (status & MCI_ST_CARDBUSY))
933		return;
934
935	/* Enable busy completion if needed and supported. */
936	if (!host->busy_status && busy_resp &&
937		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
938		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
939		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
940			base + MMCIMASK0);
941		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
942		return;
943	}
944
945	/* At busy completion, mask the IRQ and complete the request. */
946	if (host->busy_status) {
947		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
948			base + MMCIMASK0);
949		host->busy_status = 0;
950	}
951
952	host->cmd = NULL;
953
954	if (status & MCI_CMDTIMEOUT) {
955		cmd->error = -ETIMEDOUT;
956	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
957		cmd->error = -EILSEQ;
958	} else {
959		cmd->resp[0] = readl(base + MMCIRESPONSE0);
960		cmd->resp[1] = readl(base + MMCIRESPONSE1);
961		cmd->resp[2] = readl(base + MMCIRESPONSE2);
962		cmd->resp[3] = readl(base + MMCIRESPONSE3);
963	}
964
965	if ((!sbc && !cmd->data) || cmd->error) {
966		if (host->data) {
967			/* Terminate the DMA transfer */
968			if (dma_inprogress(host)) {
969				mmci_dma_data_error(host);
970				mmci_dma_unmap(host, host->data);
971			}
972			mmci_stop_data(host);
973		}
974		mmci_request_end(host, host->mrq);
975	} else if (sbc) {
976		mmci_start_command(host, host->mrq->cmd, 0);
977	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
978		mmci_start_data(host, cmd->data);
979	}
980}
981
982static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
983{
984	void __iomem *base = host->base;
985	char *ptr = buffer;
986	u32 status;
987	int host_remain = host->size;
988
989	do {
990		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
991
992		if (count > remain)
993			count = remain;
994
995		if (count <= 0)
996			break;
997
998		/*
999		 * SDIO especially may want to send something that is
1000		 * not divisible by 4 (as opposed to card sectors
1001		 * etc). Therefore make sure to always read the last bytes
1002		 * while only doing full 32-bit reads towards the FIFO.
1003		 */
1004		if (unlikely(count & 0x3)) {
1005			if (count < 4) {
1006				unsigned char buf[4];
1007				ioread32_rep(base + MMCIFIFO, buf, 1);
1008				memcpy(ptr, buf, count);
1009			} else {
1010				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011				count &= ~0x3;
1012			}
1013		} else {
1014			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1015		}
1016
1017		ptr += count;
1018		remain -= count;
1019		host_remain -= count;
1020
1021		if (remain == 0)
1022			break;
1023
1024		status = readl(base + MMCISTATUS);
1025	} while (status & MCI_RXDATAAVLBL);
1026
1027	return ptr - buffer;
1028}
1029
1030static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1031{
1032	struct variant_data *variant = host->variant;
1033	void __iomem *base = host->base;
1034	char *ptr = buffer;
1035
1036	do {
1037		unsigned int count, maxcnt;
1038
1039		maxcnt = status & MCI_TXFIFOEMPTY ?
1040			 variant->fifosize : variant->fifohalfsize;
1041		count = min(remain, maxcnt);
1042
1043		/*
1044		 * SDIO especially may want to send something that is
1045		 * not divisible by 4 (as opposed to card sectors
1046		 * etc), and the FIFO only accept full 32-bit writes.
1047		 * So compensate by adding +3 on the count, a single
1048		 * byte become a 32bit write, 7 bytes will be two
1049		 * 32bit writes etc.
1050		 */
1051		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1052
1053		ptr += count;
1054		remain -= count;
1055
1056		if (remain == 0)
1057			break;
1058
1059		status = readl(base + MMCISTATUS);
1060	} while (status & MCI_TXFIFOHALFEMPTY);
1061
1062	return ptr - buffer;
1063}
1064
1065/*
1066 * PIO data transfer IRQ handler.
1067 */
1068static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1069{
1070	struct mmci_host *host = dev_id;
1071	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1072	struct variant_data *variant = host->variant;
1073	void __iomem *base = host->base;
1074	unsigned long flags;
1075	u32 status;
1076
1077	status = readl(base + MMCISTATUS);
1078
1079	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1080
1081	local_irq_save(flags);
1082
1083	do {
1084		unsigned int remain, len;
1085		char *buffer;
1086
1087		/*
1088		 * For write, we only need to test the half-empty flag
1089		 * here - if the FIFO is completely empty, then by
1090		 * definition it is more than half empty.
1091		 *
1092		 * For read, check for data available.
1093		 */
1094		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1095			break;
1096
1097		if (!sg_miter_next(sg_miter))
1098			break;
1099
1100		buffer = sg_miter->addr;
1101		remain = sg_miter->length;
1102
1103		len = 0;
1104		if (status & MCI_RXACTIVE)
1105			len = mmci_pio_read(host, buffer, remain);
1106		if (status & MCI_TXACTIVE)
1107			len = mmci_pio_write(host, buffer, remain, status);
1108
1109		sg_miter->consumed = len;
1110
1111		host->size -= len;
1112		remain -= len;
1113
1114		if (remain)
1115			break;
1116
1117		status = readl(base + MMCISTATUS);
1118	} while (1);
1119
1120	sg_miter_stop(sg_miter);
1121
1122	local_irq_restore(flags);
1123
1124	/*
1125	 * If we have less than the fifo 'half-full' threshold to transfer,
1126	 * trigger a PIO interrupt as soon as any data is available.
1127	 */
1128	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1129		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1130
1131	/*
1132	 * If we run out of data, disable the data IRQs; this
1133	 * prevents a race where the FIFO becomes empty before
1134	 * the chip itself has disabled the data path, and
1135	 * stops us racing with our data end IRQ.
1136	 */
1137	if (host->size == 0) {
1138		mmci_set_mask1(host, 0);
1139		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1140	}
1141
1142	return IRQ_HANDLED;
1143}
1144
1145/*
1146 * Handle completion of command and data transfers.
1147 */
1148static irqreturn_t mmci_irq(int irq, void *dev_id)
1149{
1150	struct mmci_host *host = dev_id;
1151	u32 status;
1152	int ret = 0;
1153
1154	spin_lock(&host->lock);
1155
1156	do {
1157		struct mmc_command *cmd;
1158		struct mmc_data *data;
1159
1160		status = readl(host->base + MMCISTATUS);
1161
1162		if (host->singleirq) {
1163			if (status & readl(host->base + MMCIMASK1))
1164				mmci_pio_irq(irq, dev_id);
1165
1166			status &= ~MCI_IRQ1MASK;
1167		}
1168
1169		/*
1170		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1171		 * enabled) since the HW seems to be triggering the IRQ on both
1172		 * edges while monitoring DAT0 for busy completion.
1173		 */
1174		status &= readl(host->base + MMCIMASK0);
1175		writel(status, host->base + MMCICLEAR);
1176
1177		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1178
1179		cmd = host->cmd;
1180		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1181			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1182			mmci_cmd_irq(host, cmd, status);
1183
1184		data = host->data;
1185		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1186			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1187			      MCI_DATABLOCKEND) && data)
1188			mmci_data_irq(host, data, status);
1189
1190		/* Don't poll for busy completion in irq context. */
1191		if (host->busy_status)
1192			status &= ~MCI_ST_CARDBUSY;
1193
1194		ret = 1;
1195	} while (status);
1196
1197	spin_unlock(&host->lock);
1198
1199	return IRQ_RETVAL(ret);
1200}
1201
1202static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1203{
1204	struct mmci_host *host = mmc_priv(mmc);
1205	unsigned long flags;
1206
1207	WARN_ON(host->mrq != NULL);
1208
1209	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1210	if (mrq->cmd->error) {
1211		mmc_request_done(mmc, mrq);
1212		return;
1213	}
1214
1215	pm_runtime_get_sync(mmc_dev(mmc));
1216
1217	spin_lock_irqsave(&host->lock, flags);
1218
1219	host->mrq = mrq;
1220
1221	if (mrq->data)
1222		mmci_get_next_data(host, mrq->data);
1223
1224	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1225		mmci_start_data(host, mrq->data);
1226
1227	if (mrq->sbc)
1228		mmci_start_command(host, mrq->sbc, 0);
1229	else
1230		mmci_start_command(host, mrq->cmd, 0);
1231
1232	spin_unlock_irqrestore(&host->lock, flags);
1233}
1234
1235static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1236{
1237	struct mmci_host *host = mmc_priv(mmc);
1238	struct variant_data *variant = host->variant;
1239	u32 pwr = 0;
1240	unsigned long flags;
1241	int ret;
1242
1243	pm_runtime_get_sync(mmc_dev(mmc));
1244
1245	if (host->plat->ios_handler &&
1246		host->plat->ios_handler(mmc_dev(mmc), ios))
1247			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1248
1249	switch (ios->power_mode) {
1250	case MMC_POWER_OFF:
1251		if (!IS_ERR(mmc->supply.vmmc))
1252			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1253
1254		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1255			regulator_disable(mmc->supply.vqmmc);
1256			host->vqmmc_enabled = false;
1257		}
1258
1259		break;
1260	case MMC_POWER_UP:
1261		if (!IS_ERR(mmc->supply.vmmc))
1262			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1263
1264		/*
1265		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1266		 * and instead uses MCI_PWR_ON so apply whatever value is
1267		 * configured in the variant data.
1268		 */
1269		pwr |= variant->pwrreg_powerup;
1270
1271		break;
1272	case MMC_POWER_ON:
1273		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1274			ret = regulator_enable(mmc->supply.vqmmc);
1275			if (ret < 0)
1276				dev_err(mmc_dev(mmc),
1277					"failed to enable vqmmc regulator\n");
1278			else
1279				host->vqmmc_enabled = true;
1280		}
1281
1282		pwr |= MCI_PWR_ON;
1283		break;
1284	}
1285
1286	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1287		/*
1288		 * The ST Micro variant has some additional bits
1289		 * indicating signal direction for the signals in
1290		 * the SD/MMC bus and feedback-clock usage.
1291		 */
1292		pwr |= host->pwr_reg_add;
1293
1294		if (ios->bus_width == MMC_BUS_WIDTH_4)
1295			pwr &= ~MCI_ST_DATA74DIREN;
1296		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1297			pwr &= (~MCI_ST_DATA74DIREN &
1298				~MCI_ST_DATA31DIREN &
1299				~MCI_ST_DATA2DIREN);
1300	}
1301
1302	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1303		if (host->hw_designer != AMBA_VENDOR_ST)
1304			pwr |= MCI_ROD;
1305		else {
1306			/*
1307			 * The ST Micro variant use the ROD bit for something
1308			 * else and only has OD (Open Drain).
1309			 */
1310			pwr |= MCI_OD;
1311		}
1312	}
1313
1314	/*
1315	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1316	 * gating the clock, the MCI_PWR_ON bit is cleared.
1317	 */
1318	if (!ios->clock && variant->pwrreg_clkgate)
1319		pwr &= ~MCI_PWR_ON;
1320
1321	spin_lock_irqsave(&host->lock, flags);
1322
1323	mmci_set_clkreg(host, ios->clock);
1324	mmci_write_pwrreg(host, pwr);
1325	mmci_reg_delay(host);
1326
1327	spin_unlock_irqrestore(&host->lock, flags);
1328
1329	pm_runtime_mark_last_busy(mmc_dev(mmc));
1330	pm_runtime_put_autosuspend(mmc_dev(mmc));
1331}
1332
1333static int mmci_get_cd(struct mmc_host *mmc)
1334{
1335	struct mmci_host *host = mmc_priv(mmc);
1336	struct mmci_platform_data *plat = host->plat;
1337	unsigned int status = mmc_gpio_get_cd(mmc);
1338
1339	if (status == -ENOSYS) {
1340		if (!plat->status)
1341			return 1; /* Assume always present */
1342
1343		status = plat->status(mmc_dev(host->mmc));
1344	}
1345	return status;
1346}
1347
1348static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1349{
1350	int ret = 0;
1351
1352	if (!IS_ERR(mmc->supply.vqmmc)) {
1353
1354		pm_runtime_get_sync(mmc_dev(mmc));
1355
1356		switch (ios->signal_voltage) {
1357		case MMC_SIGNAL_VOLTAGE_330:
1358			ret = regulator_set_voltage(mmc->supply.vqmmc,
1359						2700000, 3600000);
1360			break;
1361		case MMC_SIGNAL_VOLTAGE_180:
1362			ret = regulator_set_voltage(mmc->supply.vqmmc,
1363						1700000, 1950000);
1364			break;
1365		case MMC_SIGNAL_VOLTAGE_120:
1366			ret = regulator_set_voltage(mmc->supply.vqmmc,
1367						1100000, 1300000);
1368			break;
1369		}
1370
1371		if (ret)
1372			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1373
1374		pm_runtime_mark_last_busy(mmc_dev(mmc));
1375		pm_runtime_put_autosuspend(mmc_dev(mmc));
1376	}
1377
1378	return ret;
1379}
1380
1381static struct mmc_host_ops mmci_ops = {
1382	.request	= mmci_request,
1383	.pre_req	= mmci_pre_request,
1384	.post_req	= mmci_post_request,
1385	.set_ios	= mmci_set_ios,
1386	.get_ro		= mmc_gpio_get_ro,
1387	.get_cd		= mmci_get_cd,
1388	.start_signal_voltage_switch = mmci_sig_volt_switch,
1389};
1390
1391static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1392{
1393	struct mmci_host *host = mmc_priv(mmc);
1394	int ret = mmc_of_parse(mmc);
1395
1396	if (ret)
1397		return ret;
1398
1399	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1400		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1401	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1402		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1403	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1404		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1405	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1406		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1407	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1408		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1409	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1410		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1411
1412	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1413		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1414	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1415		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1416
1417	return 0;
1418}
1419
1420static int mmci_probe(struct amba_device *dev,
1421	const struct amba_id *id)
1422{
1423	struct mmci_platform_data *plat = dev->dev.platform_data;
1424	struct device_node *np = dev->dev.of_node;
1425	struct variant_data *variant = id->data;
1426	struct mmci_host *host;
1427	struct mmc_host *mmc;
1428	int ret;
1429
1430	/* Must have platform data or Device Tree. */
1431	if (!plat && !np) {
1432		dev_err(&dev->dev, "No plat data or DT found\n");
1433		return -EINVAL;
1434	}
1435
1436	if (!plat) {
1437		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1438		if (!plat)
1439			return -ENOMEM;
1440	}
1441
1442	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1443	if (!mmc)
1444		return -ENOMEM;
1445
1446	ret = mmci_of_parse(np, mmc);
1447	if (ret)
1448		goto host_free;
1449
1450	host = mmc_priv(mmc);
1451	host->mmc = mmc;
1452
1453	host->hw_designer = amba_manf(dev);
1454	host->hw_revision = amba_rev(dev);
1455	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1456	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1457
1458	host->clk = devm_clk_get(&dev->dev, NULL);
1459	if (IS_ERR(host->clk)) {
1460		ret = PTR_ERR(host->clk);
1461		goto host_free;
1462	}
1463
1464	ret = clk_prepare_enable(host->clk);
1465	if (ret)
1466		goto host_free;
1467
1468	host->plat = plat;
1469	host->variant = variant;
1470	host->mclk = clk_get_rate(host->clk);
1471	/*
1472	 * According to the spec, mclk is max 100 MHz,
1473	 * so we try to adjust the clock down to this,
1474	 * (if possible).
1475	 */
1476	if (host->mclk > 100000000) {
1477		ret = clk_set_rate(host->clk, 100000000);
1478		if (ret < 0)
1479			goto clk_disable;
1480		host->mclk = clk_get_rate(host->clk);
1481		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1482			host->mclk);
1483	}
1484
1485	host->phybase = dev->res.start;
1486	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1487	if (IS_ERR(host->base)) {
1488		ret = PTR_ERR(host->base);
1489		goto clk_disable;
1490	}
1491
1492	/*
1493	 * The ARM and ST versions of the block have slightly different
1494	 * clock divider equations which means that the minimum divider
1495	 * differs too.
1496	 */
1497	if (variant->st_clkdiv)
1498		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1499	else
1500		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1501	/*
1502	 * If no maximum operating frequency is supplied, fall back to use
1503	 * the module parameter, which has a (low) default value in case it
1504	 * is not specified. Either value must not exceed the clock rate into
1505	 * the block, of course.
1506	 */
1507	if (mmc->f_max)
1508		mmc->f_max = min(host->mclk, mmc->f_max);
1509	else
1510		mmc->f_max = min(host->mclk, fmax);
1511	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1512
1513	/* Get regulators and the supported OCR mask */
1514	mmc_regulator_get_supply(mmc);
1515	if (!mmc->ocr_avail)
1516		mmc->ocr_avail = plat->ocr_mask;
1517	else if (plat->ocr_mask)
1518		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1519
1520	/* DT takes precedence over platform data. */
1521	if (!np) {
1522		if (!plat->cd_invert)
1523			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1524		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1525	}
1526
1527	/* We support these capabilities. */
1528	mmc->caps |= MMC_CAP_CMD23;
1529
1530	if (variant->busy_detect) {
1531		mmci_ops.card_busy = mmci_card_busy;
1532		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1533		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1534		mmc->max_busy_timeout = 0;
1535	}
1536
1537	mmc->ops = &mmci_ops;
1538
1539	/* We support these PM capabilities. */
1540	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1541
1542	/*
1543	 * We can do SGIO
1544	 */
1545	mmc->max_segs = NR_SG;
1546
1547	/*
1548	 * Since only a certain number of bits are valid in the data length
1549	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1550	 * single request.
1551	 */
1552	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1553
1554	/*
1555	 * Set the maximum segment size.  Since we aren't doing DMA
1556	 * (yet) we are only limited by the data length register.
1557	 */
1558	mmc->max_seg_size = mmc->max_req_size;
1559
1560	/*
1561	 * Block size can be up to 2048 bytes, but must be a power of two.
1562	 */
1563	mmc->max_blk_size = 1 << 11;
1564
1565	/*
1566	 * Limit the number of blocks transferred so that we don't overflow
1567	 * the maximum request size.
1568	 */
1569	mmc->max_blk_count = mmc->max_req_size >> 11;
1570
1571	spin_lock_init(&host->lock);
1572
1573	writel(0, host->base + MMCIMASK0);
1574	writel(0, host->base + MMCIMASK1);
1575	writel(0xfff, host->base + MMCICLEAR);
1576
1577	/* If DT, cd/wp gpios must be supplied through it. */
1578	if (!np && gpio_is_valid(plat->gpio_cd)) {
1579		ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1580		if (ret)
1581			goto clk_disable;
1582	}
1583	if (!np && gpio_is_valid(plat->gpio_wp)) {
1584		ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1585		if (ret)
1586			goto clk_disable;
1587	}
1588
1589	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1590			DRIVER_NAME " (cmd)", host);
1591	if (ret)
1592		goto clk_disable;
1593
1594	if (!dev->irq[1])
1595		host->singleirq = true;
1596	else {
1597		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1598				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1599		if (ret)
1600			goto clk_disable;
1601	}
1602
1603	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1604
1605	amba_set_drvdata(dev, mmc);
1606
1607	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1608		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1609		 amba_rev(dev), (unsigned long long)dev->res.start,
1610		 dev->irq[0], dev->irq[1]);
1611
1612	mmci_dma_setup(host);
1613
1614	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1615	pm_runtime_use_autosuspend(&dev->dev);
1616	pm_runtime_put(&dev->dev);
1617
1618	mmc_add_host(mmc);
1619
1620	return 0;
1621
1622 clk_disable:
1623	clk_disable_unprepare(host->clk);
1624 host_free:
1625	mmc_free_host(mmc);
1626	return ret;
1627}
1628
1629static int mmci_remove(struct amba_device *dev)
1630{
1631	struct mmc_host *mmc = amba_get_drvdata(dev);
1632
1633	if (mmc) {
1634		struct mmci_host *host = mmc_priv(mmc);
1635
1636		/*
1637		 * Undo pm_runtime_put() in probe.  We use the _sync
1638		 * version here so that we can access the primecell.
1639		 */
1640		pm_runtime_get_sync(&dev->dev);
1641
1642		mmc_remove_host(mmc);
1643
1644		writel(0, host->base + MMCIMASK0);
1645		writel(0, host->base + MMCIMASK1);
1646
1647		writel(0, host->base + MMCICOMMAND);
1648		writel(0, host->base + MMCIDATACTRL);
1649
1650		mmci_dma_release(host);
1651		clk_disable_unprepare(host->clk);
1652		mmc_free_host(mmc);
1653	}
1654
1655	return 0;
1656}
1657
1658#ifdef CONFIG_PM
1659static void mmci_save(struct mmci_host *host)
1660{
1661	unsigned long flags;
1662
1663	spin_lock_irqsave(&host->lock, flags);
1664
1665	writel(0, host->base + MMCIMASK0);
1666	if (host->variant->pwrreg_nopower) {
1667		writel(0, host->base + MMCIDATACTRL);
1668		writel(0, host->base + MMCIPOWER);
1669		writel(0, host->base + MMCICLOCK);
1670	}
1671	mmci_reg_delay(host);
1672
1673	spin_unlock_irqrestore(&host->lock, flags);
1674}
1675
1676static void mmci_restore(struct mmci_host *host)
1677{
1678	unsigned long flags;
1679
1680	spin_lock_irqsave(&host->lock, flags);
1681
1682	if (host->variant->pwrreg_nopower) {
1683		writel(host->clk_reg, host->base + MMCICLOCK);
1684		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1685		writel(host->pwr_reg, host->base + MMCIPOWER);
1686	}
1687	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1688	mmci_reg_delay(host);
1689
1690	spin_unlock_irqrestore(&host->lock, flags);
1691}
1692
1693static int mmci_runtime_suspend(struct device *dev)
1694{
1695	struct amba_device *adev = to_amba_device(dev);
1696	struct mmc_host *mmc = amba_get_drvdata(adev);
1697
1698	if (mmc) {
1699		struct mmci_host *host = mmc_priv(mmc);
1700		pinctrl_pm_select_sleep_state(dev);
1701		mmci_save(host);
1702		clk_disable_unprepare(host->clk);
1703	}
1704
1705	return 0;
1706}
1707
1708static int mmci_runtime_resume(struct device *dev)
1709{
1710	struct amba_device *adev = to_amba_device(dev);
1711	struct mmc_host *mmc = amba_get_drvdata(adev);
1712
1713	if (mmc) {
1714		struct mmci_host *host = mmc_priv(mmc);
1715		clk_prepare_enable(host->clk);
1716		mmci_restore(host);
1717		pinctrl_pm_select_default_state(dev);
1718	}
1719
1720	return 0;
1721}
1722#endif
1723
1724static const struct dev_pm_ops mmci_dev_pm_ops = {
1725	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1726				pm_runtime_force_resume)
1727	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1728};
1729
1730static struct amba_id mmci_ids[] = {
1731	{
1732		.id	= 0x00041180,
1733		.mask	= 0xff0fffff,
1734		.data	= &variant_arm,
1735	},
1736	{
1737		.id	= 0x01041180,
1738		.mask	= 0xff0fffff,
1739		.data	= &variant_arm_extended_fifo,
1740	},
1741	{
1742		.id	= 0x02041180,
1743		.mask	= 0xff0fffff,
1744		.data	= &variant_arm_extended_fifo_hwfc,
1745	},
1746	{
1747		.id	= 0x00041181,
1748		.mask	= 0x000fffff,
1749		.data	= &variant_arm,
1750	},
1751	/* ST Micro variants */
1752	{
1753		.id     = 0x00180180,
1754		.mask   = 0x00ffffff,
1755		.data	= &variant_u300,
1756	},
1757	{
1758		.id     = 0x10180180,
1759		.mask   = 0xf0ffffff,
1760		.data	= &variant_nomadik,
1761	},
1762	{
1763		.id     = 0x00280180,
1764		.mask   = 0x00ffffff,
1765		.data	= &variant_u300,
1766	},
1767	{
1768		.id     = 0x00480180,
1769		.mask   = 0xf0ffffff,
1770		.data	= &variant_ux500,
1771	},
1772	{
1773		.id     = 0x10480180,
1774		.mask   = 0xf0ffffff,
1775		.data	= &variant_ux500v2,
1776	},
1777	{ 0, 0 },
1778};
1779
1780MODULE_DEVICE_TABLE(amba, mmci_ids);
1781
1782static struct amba_driver mmci_driver = {
1783	.drv		= {
1784		.name	= DRIVER_NAME,
1785		.pm	= &mmci_dev_pm_ops,
1786	},
1787	.probe		= mmci_probe,
1788	.remove		= mmci_remove,
1789	.id_table	= mmci_ids,
1790};
1791
1792module_amba_driver(mmci_driver);
1793
1794module_param(fmax, uint, 0444);
1795
1796MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1797MODULE_LICENSE("GPL");
1798