mmci.c revision bc521818e28042bb6018d91c353d24fb01ccb162
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32#include <linux/pm_runtime.h>
33
34#include <asm/div64.h>
35#include <asm/io.h>
36#include <asm/sizes.h>
37
38#include "mmci.h"
39
40#define DRIVER_NAME "mmci-pl18x"
41
42static unsigned int fmax = 515633;
43
44/**
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 *	      is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 *		  is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 * @pwrreg_powerup: power up value for MMCIPOWER register
57 * @signal_direction: input/out direction of bus signals can be indicated
58 */
59struct variant_data {
60	unsigned int		clkreg;
61	unsigned int		clkreg_enable;
62	unsigned int		datalength_bits;
63	unsigned int		fifosize;
64	unsigned int		fifohalfsize;
65	bool			sdio;
66	bool			st_clkdiv;
67	bool			blksz_datactrl16;
68	u32			pwrreg_powerup;
69	bool			signal_direction;
70};
71
72static struct variant_data variant_arm = {
73	.fifosize		= 16 * 4,
74	.fifohalfsize		= 8 * 4,
75	.datalength_bits	= 16,
76	.pwrreg_powerup		= MCI_PWR_UP,
77};
78
79static struct variant_data variant_arm_extended_fifo = {
80	.fifosize		= 128 * 4,
81	.fifohalfsize		= 64 * 4,
82	.datalength_bits	= 16,
83	.pwrreg_powerup		= MCI_PWR_UP,
84};
85
86static struct variant_data variant_u300 = {
87	.fifosize		= 16 * 4,
88	.fifohalfsize		= 8 * 4,
89	.clkreg_enable		= MCI_ST_U300_HWFCEN,
90	.datalength_bits	= 16,
91	.sdio			= true,
92	.pwrreg_powerup		= MCI_PWR_ON,
93	.signal_direction	= true,
94};
95
96static struct variant_data variant_ux500 = {
97	.fifosize		= 30 * 4,
98	.fifohalfsize		= 8 * 4,
99	.clkreg			= MCI_CLK_ENABLE,
100	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
101	.datalength_bits	= 24,
102	.sdio			= true,
103	.st_clkdiv		= true,
104	.pwrreg_powerup		= MCI_PWR_ON,
105	.signal_direction	= true,
106};
107
108static struct variant_data variant_ux500v2 = {
109	.fifosize		= 30 * 4,
110	.fifohalfsize		= 8 * 4,
111	.clkreg			= MCI_CLK_ENABLE,
112	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
113	.datalength_bits	= 24,
114	.sdio			= true,
115	.st_clkdiv		= true,
116	.blksz_datactrl16	= true,
117	.pwrreg_powerup		= MCI_PWR_ON,
118	.signal_direction	= true,
119};
120
121/*
122 * This must be called with host->lock held
123 */
124static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
125{
126	struct variant_data *variant = host->variant;
127	u32 clk = variant->clkreg;
128
129	if (desired) {
130		if (desired >= host->mclk) {
131			clk = MCI_CLK_BYPASS;
132			if (variant->st_clkdiv)
133				clk |= MCI_ST_UX500_NEG_EDGE;
134			host->cclk = host->mclk;
135		} else if (variant->st_clkdiv) {
136			/*
137			 * DB8500 TRM says f = mclk / (clkdiv + 2)
138			 * => clkdiv = (mclk / f) - 2
139			 * Round the divider up so we don't exceed the max
140			 * frequency
141			 */
142			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
143			if (clk >= 256)
144				clk = 255;
145			host->cclk = host->mclk / (clk + 2);
146		} else {
147			/*
148			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
149			 * => clkdiv = mclk / (2 * f) - 1
150			 */
151			clk = host->mclk / (2 * desired) - 1;
152			if (clk >= 256)
153				clk = 255;
154			host->cclk = host->mclk / (2 * (clk + 1));
155		}
156
157		clk |= variant->clkreg_enable;
158		clk |= MCI_CLK_ENABLE;
159		/* This hasn't proven to be worthwhile */
160		/* clk |= MCI_CLK_PWRSAVE; */
161	}
162
163	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
164		clk |= MCI_4BIT_BUS;
165	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
166		clk |= MCI_ST_8BIT_BUS;
167
168	writel(clk, host->base + MMCICLOCK);
169}
170
171static void
172mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
173{
174	writel(0, host->base + MMCICOMMAND);
175
176	BUG_ON(host->data);
177
178	host->mrq = NULL;
179	host->cmd = NULL;
180
181	pm_runtime_put(mmc_dev(host->mmc));
182	mmc_request_done(host->mmc, mrq);
183}
184
185static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
186{
187	void __iomem *base = host->base;
188
189	if (host->singleirq) {
190		unsigned int mask0 = readl(base + MMCIMASK0);
191
192		mask0 &= ~MCI_IRQ1MASK;
193		mask0 |= mask;
194
195		writel(mask0, base + MMCIMASK0);
196	}
197
198	writel(mask, base + MMCIMASK1);
199}
200
201static void mmci_stop_data(struct mmci_host *host)
202{
203	writel(0, host->base + MMCIDATACTRL);
204	mmci_set_mask1(host, 0);
205	host->data = NULL;
206}
207
208static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
209{
210	unsigned int flags = SG_MITER_ATOMIC;
211
212	if (data->flags & MMC_DATA_READ)
213		flags |= SG_MITER_TO_SG;
214	else
215		flags |= SG_MITER_FROM_SG;
216
217	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
218}
219
220/*
221 * All the DMA operation mode stuff goes inside this ifdef.
222 * This assumes that you have a generic DMA device interface,
223 * no custom DMA interfaces are supported.
224 */
225#ifdef CONFIG_DMA_ENGINE
226static void __devinit mmci_dma_setup(struct mmci_host *host)
227{
228	struct mmci_platform_data *plat = host->plat;
229	const char *rxname, *txname;
230	dma_cap_mask_t mask;
231
232	if (!plat || !plat->dma_filter) {
233		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
234		return;
235	}
236
237	/* initialize pre request cookie */
238	host->next_data.cookie = 1;
239
240	/* Try to acquire a generic DMA engine slave channel */
241	dma_cap_zero(mask);
242	dma_cap_set(DMA_SLAVE, mask);
243
244	/*
245	 * If only an RX channel is specified, the driver will
246	 * attempt to use it bidirectionally, however if it is
247	 * is specified but cannot be located, DMA will be disabled.
248	 */
249	if (plat->dma_rx_param) {
250		host->dma_rx_channel = dma_request_channel(mask,
251							   plat->dma_filter,
252							   plat->dma_rx_param);
253		/* E.g if no DMA hardware is present */
254		if (!host->dma_rx_channel)
255			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
256	}
257
258	if (plat->dma_tx_param) {
259		host->dma_tx_channel = dma_request_channel(mask,
260							   plat->dma_filter,
261							   plat->dma_tx_param);
262		if (!host->dma_tx_channel)
263			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
264	} else {
265		host->dma_tx_channel = host->dma_rx_channel;
266	}
267
268	if (host->dma_rx_channel)
269		rxname = dma_chan_name(host->dma_rx_channel);
270	else
271		rxname = "none";
272
273	if (host->dma_tx_channel)
274		txname = dma_chan_name(host->dma_tx_channel);
275	else
276		txname = "none";
277
278	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
279		 rxname, txname);
280
281	/*
282	 * Limit the maximum segment size in any SG entry according to
283	 * the parameters of the DMA engine device.
284	 */
285	if (host->dma_tx_channel) {
286		struct device *dev = host->dma_tx_channel->device->dev;
287		unsigned int max_seg_size = dma_get_max_seg_size(dev);
288
289		if (max_seg_size < host->mmc->max_seg_size)
290			host->mmc->max_seg_size = max_seg_size;
291	}
292	if (host->dma_rx_channel) {
293		struct device *dev = host->dma_rx_channel->device->dev;
294		unsigned int max_seg_size = dma_get_max_seg_size(dev);
295
296		if (max_seg_size < host->mmc->max_seg_size)
297			host->mmc->max_seg_size = max_seg_size;
298	}
299}
300
301/*
302 * This is used in __devinit or __devexit so inline it
303 * so it can be discarded.
304 */
305static inline void mmci_dma_release(struct mmci_host *host)
306{
307	struct mmci_platform_data *plat = host->plat;
308
309	if (host->dma_rx_channel)
310		dma_release_channel(host->dma_rx_channel);
311	if (host->dma_tx_channel && plat->dma_tx_param)
312		dma_release_channel(host->dma_tx_channel);
313	host->dma_rx_channel = host->dma_tx_channel = NULL;
314}
315
316static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
317{
318	struct dma_chan *chan = host->dma_current;
319	enum dma_data_direction dir;
320	u32 status;
321	int i;
322
323	/* Wait up to 1ms for the DMA to complete */
324	for (i = 0; ; i++) {
325		status = readl(host->base + MMCISTATUS);
326		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
327			break;
328		udelay(10);
329	}
330
331	/*
332	 * Check to see whether we still have some data left in the FIFO -
333	 * this catches DMA controllers which are unable to monitor the
334	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
335	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
336	 */
337	if (status & MCI_RXDATAAVLBLMASK) {
338		dmaengine_terminate_all(chan);
339		if (!data->error)
340			data->error = -EIO;
341	}
342
343	if (data->flags & MMC_DATA_WRITE) {
344		dir = DMA_TO_DEVICE;
345	} else {
346		dir = DMA_FROM_DEVICE;
347	}
348
349	if (!data->host_cookie)
350		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
351
352	/*
353	 * Use of DMA with scatter-gather is impossible.
354	 * Give up with DMA and switch back to PIO mode.
355	 */
356	if (status & MCI_RXDATAAVLBLMASK) {
357		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
358		mmci_dma_release(host);
359	}
360}
361
362static void mmci_dma_data_error(struct mmci_host *host)
363{
364	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
365	dmaengine_terminate_all(host->dma_current);
366}
367
368static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
369			      struct mmci_host_next *next)
370{
371	struct variant_data *variant = host->variant;
372	struct dma_slave_config conf = {
373		.src_addr = host->phybase + MMCIFIFO,
374		.dst_addr = host->phybase + MMCIFIFO,
375		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
376		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
377		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
378		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
379	};
380	struct dma_chan *chan;
381	struct dma_device *device;
382	struct dma_async_tx_descriptor *desc;
383	enum dma_data_direction buffer_dirn;
384	int nr_sg;
385
386	/* Check if next job is already prepared */
387	if (data->host_cookie && !next &&
388	    host->dma_current && host->dma_desc_current)
389		return 0;
390
391	if (!next) {
392		host->dma_current = NULL;
393		host->dma_desc_current = NULL;
394	}
395
396	if (data->flags & MMC_DATA_READ) {
397		conf.direction = DMA_DEV_TO_MEM;
398		buffer_dirn = DMA_FROM_DEVICE;
399		chan = host->dma_rx_channel;
400	} else {
401		conf.direction = DMA_MEM_TO_DEV;
402		buffer_dirn = DMA_TO_DEVICE;
403		chan = host->dma_tx_channel;
404	}
405
406	/* If there's no DMA channel, fall back to PIO */
407	if (!chan)
408		return -EINVAL;
409
410	/* If less than or equal to the fifo size, don't bother with DMA */
411	if (data->blksz * data->blocks <= variant->fifosize)
412		return -EINVAL;
413
414	device = chan->device;
415	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
416	if (nr_sg == 0)
417		return -EINVAL;
418
419	dmaengine_slave_config(chan, &conf);
420	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
421					    conf.direction, DMA_CTRL_ACK);
422	if (!desc)
423		goto unmap_exit;
424
425	if (next) {
426		next->dma_chan = chan;
427		next->dma_desc = desc;
428	} else {
429		host->dma_current = chan;
430		host->dma_desc_current = desc;
431	}
432
433	return 0;
434
435 unmap_exit:
436	if (!next)
437		dmaengine_terminate_all(chan);
438	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
439	return -ENOMEM;
440}
441
442static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
443{
444	int ret;
445	struct mmc_data *data = host->data;
446
447	ret = mmci_dma_prep_data(host, host->data, NULL);
448	if (ret)
449		return ret;
450
451	/* Okay, go for it. */
452	dev_vdbg(mmc_dev(host->mmc),
453		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
454		 data->sg_len, data->blksz, data->blocks, data->flags);
455	dmaengine_submit(host->dma_desc_current);
456	dma_async_issue_pending(host->dma_current);
457
458	datactrl |= MCI_DPSM_DMAENABLE;
459
460	/* Trigger the DMA transfer */
461	writel(datactrl, host->base + MMCIDATACTRL);
462
463	/*
464	 * Let the MMCI say when the data is ended and it's time
465	 * to fire next DMA request. When that happens, MMCI will
466	 * call mmci_data_end()
467	 */
468	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
469	       host->base + MMCIMASK0);
470	return 0;
471}
472
473static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
474{
475	struct mmci_host_next *next = &host->next_data;
476
477	if (data->host_cookie && data->host_cookie != next->cookie) {
478		pr_warning("[%s] invalid cookie: data->host_cookie %d"
479		       " host->next_data.cookie %d\n",
480		       __func__, data->host_cookie, host->next_data.cookie);
481		data->host_cookie = 0;
482	}
483
484	if (!data->host_cookie)
485		return;
486
487	host->dma_desc_current = next->dma_desc;
488	host->dma_current = next->dma_chan;
489
490	next->dma_desc = NULL;
491	next->dma_chan = NULL;
492}
493
494static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
495			     bool is_first_req)
496{
497	struct mmci_host *host = mmc_priv(mmc);
498	struct mmc_data *data = mrq->data;
499	struct mmci_host_next *nd = &host->next_data;
500
501	if (!data)
502		return;
503
504	if (data->host_cookie) {
505		data->host_cookie = 0;
506		return;
507	}
508
509	/* if config for dma */
510	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
511	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
512		if (mmci_dma_prep_data(host, data, nd))
513			data->host_cookie = 0;
514		else
515			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
516	}
517}
518
519static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
520			      int err)
521{
522	struct mmci_host *host = mmc_priv(mmc);
523	struct mmc_data *data = mrq->data;
524	struct dma_chan *chan;
525	enum dma_data_direction dir;
526
527	if (!data)
528		return;
529
530	if (data->flags & MMC_DATA_READ) {
531		dir = DMA_FROM_DEVICE;
532		chan = host->dma_rx_channel;
533	} else {
534		dir = DMA_TO_DEVICE;
535		chan = host->dma_tx_channel;
536	}
537
538
539	/* if config for dma */
540	if (chan) {
541		if (err)
542			dmaengine_terminate_all(chan);
543		if (data->host_cookie)
544			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
545				     data->sg_len, dir);
546		mrq->data->host_cookie = 0;
547	}
548}
549
550#else
551/* Blank functions if the DMA engine is not available */
552static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
553{
554}
555static inline void mmci_dma_setup(struct mmci_host *host)
556{
557}
558
559static inline void mmci_dma_release(struct mmci_host *host)
560{
561}
562
563static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
564{
565}
566
567static inline void mmci_dma_data_error(struct mmci_host *host)
568{
569}
570
571static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
572{
573	return -ENOSYS;
574}
575
576#define mmci_pre_request NULL
577#define mmci_post_request NULL
578
579#endif
580
581static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
582{
583	struct variant_data *variant = host->variant;
584	unsigned int datactrl, timeout, irqmask;
585	unsigned long long clks;
586	void __iomem *base;
587	int blksz_bits;
588
589	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
590		data->blksz, data->blocks, data->flags);
591
592	host->data = data;
593	host->size = data->blksz * data->blocks;
594	data->bytes_xfered = 0;
595
596	clks = (unsigned long long)data->timeout_ns * host->cclk;
597	do_div(clks, 1000000000UL);
598
599	timeout = data->timeout_clks + (unsigned int)clks;
600
601	base = host->base;
602	writel(timeout, base + MMCIDATATIMER);
603	writel(host->size, base + MMCIDATALENGTH);
604
605	blksz_bits = ffs(data->blksz) - 1;
606	BUG_ON(1 << blksz_bits != data->blksz);
607
608	if (variant->blksz_datactrl16)
609		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
610	else
611		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
612
613	if (data->flags & MMC_DATA_READ)
614		datactrl |= MCI_DPSM_DIRECTION;
615
616	/*
617	 * Attempt to use DMA operation mode, if this
618	 * should fail, fall back to PIO mode
619	 */
620	if (!mmci_dma_start_data(host, datactrl))
621		return;
622
623	/* IRQ mode, map the SG list for CPU reading/writing */
624	mmci_init_sg(host, data);
625
626	if (data->flags & MMC_DATA_READ) {
627		irqmask = MCI_RXFIFOHALFFULLMASK;
628
629		/*
630		 * If we have less than the fifo 'half-full' threshold to
631		 * transfer, trigger a PIO interrupt as soon as any data
632		 * is available.
633		 */
634		if (host->size < variant->fifohalfsize)
635			irqmask |= MCI_RXDATAAVLBLMASK;
636	} else {
637		/*
638		 * We don't actually need to include "FIFO empty" here
639		 * since its implicit in "FIFO half empty".
640		 */
641		irqmask = MCI_TXFIFOHALFEMPTYMASK;
642	}
643
644	/* The ST Micro variants has a special bit to enable SDIO */
645	if (variant->sdio && host->mmc->card)
646		if (mmc_card_sdio(host->mmc->card))
647			datactrl |= MCI_ST_DPSM_SDIOEN;
648
649	writel(datactrl, base + MMCIDATACTRL);
650	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
651	mmci_set_mask1(host, irqmask);
652}
653
654static void
655mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
656{
657	void __iomem *base = host->base;
658
659	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
660	    cmd->opcode, cmd->arg, cmd->flags);
661
662	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
663		writel(0, base + MMCICOMMAND);
664		udelay(1);
665	}
666
667	c |= cmd->opcode | MCI_CPSM_ENABLE;
668	if (cmd->flags & MMC_RSP_PRESENT) {
669		if (cmd->flags & MMC_RSP_136)
670			c |= MCI_CPSM_LONGRSP;
671		c |= MCI_CPSM_RESPONSE;
672	}
673	if (/*interrupt*/0)
674		c |= MCI_CPSM_INTERRUPT;
675
676	host->cmd = cmd;
677
678	writel(cmd->arg, base + MMCIARGUMENT);
679	writel(c, base + MMCICOMMAND);
680}
681
682static void
683mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
684	      unsigned int status)
685{
686	/* First check for errors */
687	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
688		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
689		u32 remain, success;
690
691		/* Terminate the DMA transfer */
692		if (dma_inprogress(host))
693			mmci_dma_data_error(host);
694
695		/*
696		 * Calculate how far we are into the transfer.  Note that
697		 * the data counter gives the number of bytes transferred
698		 * on the MMC bus, not on the host side.  On reads, this
699		 * can be as much as a FIFO-worth of data ahead.  This
700		 * matters for FIFO overruns only.
701		 */
702		remain = readl(host->base + MMCIDATACNT);
703		success = data->blksz * data->blocks - remain;
704
705		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
706			status, success);
707		if (status & MCI_DATACRCFAIL) {
708			/* Last block was not successful */
709			success -= 1;
710			data->error = -EILSEQ;
711		} else if (status & MCI_DATATIMEOUT) {
712			data->error = -ETIMEDOUT;
713		} else if (status & MCI_STARTBITERR) {
714			data->error = -ECOMM;
715		} else if (status & MCI_TXUNDERRUN) {
716			data->error = -EIO;
717		} else if (status & MCI_RXOVERRUN) {
718			if (success > host->variant->fifosize)
719				success -= host->variant->fifosize;
720			else
721				success = 0;
722			data->error = -EIO;
723		}
724		data->bytes_xfered = round_down(success, data->blksz);
725	}
726
727	if (status & MCI_DATABLOCKEND)
728		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
729
730	if (status & MCI_DATAEND || data->error) {
731		if (dma_inprogress(host))
732			mmci_dma_unmap(host, data);
733		mmci_stop_data(host);
734
735		if (!data->error)
736			/* The error clause is handled above, success! */
737			data->bytes_xfered = data->blksz * data->blocks;
738
739		if (!data->stop) {
740			mmci_request_end(host, data->mrq);
741		} else {
742			mmci_start_command(host, data->stop, 0);
743		}
744	}
745}
746
747static void
748mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
749	     unsigned int status)
750{
751	void __iomem *base = host->base;
752
753	host->cmd = NULL;
754
755	if (status & MCI_CMDTIMEOUT) {
756		cmd->error = -ETIMEDOUT;
757	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
758		cmd->error = -EILSEQ;
759	} else {
760		cmd->resp[0] = readl(base + MMCIRESPONSE0);
761		cmd->resp[1] = readl(base + MMCIRESPONSE1);
762		cmd->resp[2] = readl(base + MMCIRESPONSE2);
763		cmd->resp[3] = readl(base + MMCIRESPONSE3);
764	}
765
766	if (!cmd->data || cmd->error) {
767		if (host->data) {
768			/* Terminate the DMA transfer */
769			if (dma_inprogress(host))
770				mmci_dma_data_error(host);
771			mmci_stop_data(host);
772		}
773		mmci_request_end(host, cmd->mrq);
774	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
775		mmci_start_data(host, cmd->data);
776	}
777}
778
779static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
780{
781	void __iomem *base = host->base;
782	char *ptr = buffer;
783	u32 status;
784	int host_remain = host->size;
785
786	do {
787		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
788
789		if (count > remain)
790			count = remain;
791
792		if (count <= 0)
793			break;
794
795		readsl(base + MMCIFIFO, ptr, count >> 2);
796
797		ptr += count;
798		remain -= count;
799		host_remain -= count;
800
801		if (remain == 0)
802			break;
803
804		status = readl(base + MMCISTATUS);
805	} while (status & MCI_RXDATAAVLBL);
806
807	return ptr - buffer;
808}
809
810static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
811{
812	struct variant_data *variant = host->variant;
813	void __iomem *base = host->base;
814	char *ptr = buffer;
815
816	do {
817		unsigned int count, maxcnt;
818
819		maxcnt = status & MCI_TXFIFOEMPTY ?
820			 variant->fifosize : variant->fifohalfsize;
821		count = min(remain, maxcnt);
822
823		/*
824		 * The ST Micro variant for SDIO transfer sizes
825		 * less then 8 bytes should have clock H/W flow
826		 * control disabled.
827		 */
828		if (variant->sdio &&
829		    mmc_card_sdio(host->mmc->card)) {
830			if (count < 8)
831				writel(readl(host->base + MMCICLOCK) &
832					~variant->clkreg_enable,
833					host->base + MMCICLOCK);
834			else
835				writel(readl(host->base + MMCICLOCK) |
836					variant->clkreg_enable,
837					host->base + MMCICLOCK);
838		}
839
840		/*
841		 * SDIO especially may want to send something that is
842		 * not divisible by 4 (as opposed to card sectors
843		 * etc), and the FIFO only accept full 32-bit writes.
844		 * So compensate by adding +3 on the count, a single
845		 * byte become a 32bit write, 7 bytes will be two
846		 * 32bit writes etc.
847		 */
848		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
849
850		ptr += count;
851		remain -= count;
852
853		if (remain == 0)
854			break;
855
856		status = readl(base + MMCISTATUS);
857	} while (status & MCI_TXFIFOHALFEMPTY);
858
859	return ptr - buffer;
860}
861
862/*
863 * PIO data transfer IRQ handler.
864 */
865static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
866{
867	struct mmci_host *host = dev_id;
868	struct sg_mapping_iter *sg_miter = &host->sg_miter;
869	struct variant_data *variant = host->variant;
870	void __iomem *base = host->base;
871	unsigned long flags;
872	u32 status;
873
874	status = readl(base + MMCISTATUS);
875
876	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
877
878	local_irq_save(flags);
879
880	do {
881		unsigned int remain, len;
882		char *buffer;
883
884		/*
885		 * For write, we only need to test the half-empty flag
886		 * here - if the FIFO is completely empty, then by
887		 * definition it is more than half empty.
888		 *
889		 * For read, check for data available.
890		 */
891		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
892			break;
893
894		if (!sg_miter_next(sg_miter))
895			break;
896
897		buffer = sg_miter->addr;
898		remain = sg_miter->length;
899
900		len = 0;
901		if (status & MCI_RXACTIVE)
902			len = mmci_pio_read(host, buffer, remain);
903		if (status & MCI_TXACTIVE)
904			len = mmci_pio_write(host, buffer, remain, status);
905
906		sg_miter->consumed = len;
907
908		host->size -= len;
909		remain -= len;
910
911		if (remain)
912			break;
913
914		status = readl(base + MMCISTATUS);
915	} while (1);
916
917	sg_miter_stop(sg_miter);
918
919	local_irq_restore(flags);
920
921	/*
922	 * If we have less than the fifo 'half-full' threshold to transfer,
923	 * trigger a PIO interrupt as soon as any data is available.
924	 */
925	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
926		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
927
928	/*
929	 * If we run out of data, disable the data IRQs; this
930	 * prevents a race where the FIFO becomes empty before
931	 * the chip itself has disabled the data path, and
932	 * stops us racing with our data end IRQ.
933	 */
934	if (host->size == 0) {
935		mmci_set_mask1(host, 0);
936		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
937	}
938
939	return IRQ_HANDLED;
940}
941
942/*
943 * Handle completion of command and data transfers.
944 */
945static irqreturn_t mmci_irq(int irq, void *dev_id)
946{
947	struct mmci_host *host = dev_id;
948	u32 status;
949	int ret = 0;
950
951	spin_lock(&host->lock);
952
953	do {
954		struct mmc_command *cmd;
955		struct mmc_data *data;
956
957		status = readl(host->base + MMCISTATUS);
958
959		if (host->singleirq) {
960			if (status & readl(host->base + MMCIMASK1))
961				mmci_pio_irq(irq, dev_id);
962
963			status &= ~MCI_IRQ1MASK;
964		}
965
966		status &= readl(host->base + MMCIMASK0);
967		writel(status, host->base + MMCICLEAR);
968
969		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
970
971		data = host->data;
972		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
973			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
974			      MCI_DATABLOCKEND) && data)
975			mmci_data_irq(host, data, status);
976
977		cmd = host->cmd;
978		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
979			mmci_cmd_irq(host, cmd, status);
980
981		ret = 1;
982	} while (status);
983
984	spin_unlock(&host->lock);
985
986	return IRQ_RETVAL(ret);
987}
988
989static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
990{
991	struct mmci_host *host = mmc_priv(mmc);
992	unsigned long flags;
993
994	WARN_ON(host->mrq != NULL);
995
996	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
997		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
998			mrq->data->blksz);
999		mrq->cmd->error = -EINVAL;
1000		mmc_request_done(mmc, mrq);
1001		return;
1002	}
1003
1004	pm_runtime_get_sync(mmc_dev(mmc));
1005
1006	spin_lock_irqsave(&host->lock, flags);
1007
1008	host->mrq = mrq;
1009
1010	if (mrq->data)
1011		mmci_get_next_data(host, mrq->data);
1012
1013	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1014		mmci_start_data(host, mrq->data);
1015
1016	mmci_start_command(host, mrq->cmd, 0);
1017
1018	spin_unlock_irqrestore(&host->lock, flags);
1019}
1020
1021static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022{
1023	struct mmci_host *host = mmc_priv(mmc);
1024	struct variant_data *variant = host->variant;
1025	u32 pwr = 0;
1026	unsigned long flags;
1027	int ret;
1028
1029	if (host->plat->ios_handler &&
1030		host->plat->ios_handler(mmc_dev(mmc), ios))
1031			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1032
1033	switch (ios->power_mode) {
1034	case MMC_POWER_OFF:
1035		if (host->vcc)
1036			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1037		break;
1038	case MMC_POWER_UP:
1039		if (host->vcc) {
1040			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1041			if (ret) {
1042				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1043				/*
1044				 * The .set_ios() function in the mmc_host_ops
1045				 * struct return void, and failing to set the
1046				 * power should be rare so we print an error
1047				 * and return here.
1048				 */
1049				return;
1050			}
1051		}
1052		/*
1053		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1054		 * and instead uses MCI_PWR_ON so apply whatever value is
1055		 * configured in the variant data.
1056		 */
1057		pwr |= variant->pwrreg_powerup;
1058
1059		break;
1060	case MMC_POWER_ON:
1061		pwr |= MCI_PWR_ON;
1062		break;
1063	}
1064
1065	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1066		/*
1067		 * The ST Micro variant has some additional bits
1068		 * indicating signal direction for the signals in
1069		 * the SD/MMC bus and feedback-clock usage.
1070		 */
1071		pwr |= host->plat->sigdir;
1072
1073		if (ios->bus_width == MMC_BUS_WIDTH_4)
1074			pwr &= ~MCI_ST_DATA74DIREN;
1075		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1076			pwr &= (~MCI_ST_DATA74DIREN &
1077				~MCI_ST_DATA31DIREN &
1078				~MCI_ST_DATA2DIREN);
1079	}
1080
1081	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1082		if (host->hw_designer != AMBA_VENDOR_ST)
1083			pwr |= MCI_ROD;
1084		else {
1085			/*
1086			 * The ST Micro variant use the ROD bit for something
1087			 * else and only has OD (Open Drain).
1088			 */
1089			pwr |= MCI_OD;
1090		}
1091	}
1092
1093	spin_lock_irqsave(&host->lock, flags);
1094
1095	mmci_set_clkreg(host, ios->clock);
1096
1097	if (host->pwr != pwr) {
1098		host->pwr = pwr;
1099		writel(pwr, host->base + MMCIPOWER);
1100	}
1101
1102	spin_unlock_irqrestore(&host->lock, flags);
1103}
1104
1105static int mmci_get_ro(struct mmc_host *mmc)
1106{
1107	struct mmci_host *host = mmc_priv(mmc);
1108
1109	if (host->gpio_wp == -ENOSYS)
1110		return -ENOSYS;
1111
1112	return gpio_get_value_cansleep(host->gpio_wp);
1113}
1114
1115static int mmci_get_cd(struct mmc_host *mmc)
1116{
1117	struct mmci_host *host = mmc_priv(mmc);
1118	struct mmci_platform_data *plat = host->plat;
1119	unsigned int status;
1120
1121	if (host->gpio_cd == -ENOSYS) {
1122		if (!plat->status)
1123			return 1; /* Assume always present */
1124
1125		status = plat->status(mmc_dev(host->mmc));
1126	} else
1127		status = !!gpio_get_value_cansleep(host->gpio_cd)
1128			^ plat->cd_invert;
1129
1130	/*
1131	 * Use positive logic throughout - status is zero for no card,
1132	 * non-zero for card inserted.
1133	 */
1134	return status;
1135}
1136
1137static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1138{
1139	struct mmci_host *host = dev_id;
1140
1141	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1142
1143	return IRQ_HANDLED;
1144}
1145
1146static const struct mmc_host_ops mmci_ops = {
1147	.request	= mmci_request,
1148	.pre_req	= mmci_pre_request,
1149	.post_req	= mmci_post_request,
1150	.set_ios	= mmci_set_ios,
1151	.get_ro		= mmci_get_ro,
1152	.get_cd		= mmci_get_cd,
1153};
1154
1155static int __devinit mmci_probe(struct amba_device *dev,
1156	const struct amba_id *id)
1157{
1158	struct mmci_platform_data *plat = dev->dev.platform_data;
1159	struct variant_data *variant = id->data;
1160	struct mmci_host *host;
1161	struct mmc_host *mmc;
1162	int ret;
1163
1164	/* must have platform data */
1165	if (!plat) {
1166		ret = -EINVAL;
1167		goto out;
1168	}
1169
1170	ret = amba_request_regions(dev, DRIVER_NAME);
1171	if (ret)
1172		goto out;
1173
1174	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1175	if (!mmc) {
1176		ret = -ENOMEM;
1177		goto rel_regions;
1178	}
1179
1180	host = mmc_priv(mmc);
1181	host->mmc = mmc;
1182
1183	host->gpio_wp = -ENOSYS;
1184	host->gpio_cd = -ENOSYS;
1185	host->gpio_cd_irq = -1;
1186
1187	host->hw_designer = amba_manf(dev);
1188	host->hw_revision = amba_rev(dev);
1189	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1190	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1191
1192	host->clk = clk_get(&dev->dev, NULL);
1193	if (IS_ERR(host->clk)) {
1194		ret = PTR_ERR(host->clk);
1195		host->clk = NULL;
1196		goto host_free;
1197	}
1198
1199	ret = clk_prepare(host->clk);
1200	if (ret)
1201		goto clk_free;
1202
1203	ret = clk_enable(host->clk);
1204	if (ret)
1205		goto clk_unprep;
1206
1207	host->plat = plat;
1208	host->variant = variant;
1209	host->mclk = clk_get_rate(host->clk);
1210	/*
1211	 * According to the spec, mclk is max 100 MHz,
1212	 * so we try to adjust the clock down to this,
1213	 * (if possible).
1214	 */
1215	if (host->mclk > 100000000) {
1216		ret = clk_set_rate(host->clk, 100000000);
1217		if (ret < 0)
1218			goto clk_disable;
1219		host->mclk = clk_get_rate(host->clk);
1220		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1221			host->mclk);
1222	}
1223	host->phybase = dev->res.start;
1224	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1225	if (!host->base) {
1226		ret = -ENOMEM;
1227		goto clk_disable;
1228	}
1229
1230	mmc->ops = &mmci_ops;
1231	/*
1232	 * The ARM and ST versions of the block have slightly different
1233	 * clock divider equations which means that the minimum divider
1234	 * differs too.
1235	 */
1236	if (variant->st_clkdiv)
1237		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1238	else
1239		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1240	/*
1241	 * If the platform data supplies a maximum operating
1242	 * frequency, this takes precedence. Else, we fall back
1243	 * to using the module parameter, which has a (low)
1244	 * default value in case it is not specified. Either
1245	 * value must not exceed the clock rate into the block,
1246	 * of course.
1247	 */
1248	if (plat->f_max)
1249		mmc->f_max = min(host->mclk, plat->f_max);
1250	else
1251		mmc->f_max = min(host->mclk, fmax);
1252	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1253
1254#ifdef CONFIG_REGULATOR
1255	/* If we're using the regulator framework, try to fetch a regulator */
1256	host->vcc = regulator_get(&dev->dev, "vmmc");
1257	if (IS_ERR(host->vcc))
1258		host->vcc = NULL;
1259	else {
1260		int mask = mmc_regulator_get_ocrmask(host->vcc);
1261
1262		if (mask < 0)
1263			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1264				mask);
1265		else {
1266			host->mmc->ocr_avail = (u32) mask;
1267			if (plat->ocr_mask)
1268				dev_warn(&dev->dev,
1269				 "Provided ocr_mask/setpower will not be used "
1270				 "(using regulator instead)\n");
1271		}
1272	}
1273#endif
1274	/* Fall back to platform data if no regulator is found */
1275	if (host->vcc == NULL)
1276		mmc->ocr_avail = plat->ocr_mask;
1277	mmc->caps = plat->capabilities;
1278	mmc->caps2 = plat->capabilities2;
1279
1280	/*
1281	 * We can do SGIO
1282	 */
1283	mmc->max_segs = NR_SG;
1284
1285	/*
1286	 * Since only a certain number of bits are valid in the data length
1287	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1288	 * single request.
1289	 */
1290	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1291
1292	/*
1293	 * Set the maximum segment size.  Since we aren't doing DMA
1294	 * (yet) we are only limited by the data length register.
1295	 */
1296	mmc->max_seg_size = mmc->max_req_size;
1297
1298	/*
1299	 * Block size can be up to 2048 bytes, but must be a power of two.
1300	 */
1301	mmc->max_blk_size = 2048;
1302
1303	/*
1304	 * No limit on the number of blocks transferred.
1305	 */
1306	mmc->max_blk_count = mmc->max_req_size;
1307
1308	spin_lock_init(&host->lock);
1309
1310	writel(0, host->base + MMCIMASK0);
1311	writel(0, host->base + MMCIMASK1);
1312	writel(0xfff, host->base + MMCICLEAR);
1313
1314	if (gpio_is_valid(plat->gpio_cd)) {
1315		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1316		if (ret == 0)
1317			ret = gpio_direction_input(plat->gpio_cd);
1318		if (ret == 0)
1319			host->gpio_cd = plat->gpio_cd;
1320		else if (ret != -ENOSYS)
1321			goto err_gpio_cd;
1322
1323		/*
1324		 * A gpio pin that will detect cards when inserted and removed
1325		 * will most likely want to trigger on the edges if it is
1326		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1327		 * for the inverted case) so we request triggers on both
1328		 * edges.
1329		 */
1330		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1331				mmci_cd_irq,
1332				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1333				DRIVER_NAME " (cd)", host);
1334		if (ret >= 0)
1335			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1336	}
1337	if (gpio_is_valid(plat->gpio_wp)) {
1338		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1339		if (ret == 0)
1340			ret = gpio_direction_input(plat->gpio_wp);
1341		if (ret == 0)
1342			host->gpio_wp = plat->gpio_wp;
1343		else if (ret != -ENOSYS)
1344			goto err_gpio_wp;
1345	}
1346
1347	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1348	    && host->gpio_cd_irq < 0)
1349		mmc->caps |= MMC_CAP_NEEDS_POLL;
1350
1351	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1352	if (ret)
1353		goto unmap;
1354
1355	if (dev->irq[1] == NO_IRQ)
1356		host->singleirq = true;
1357	else {
1358		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1359				  DRIVER_NAME " (pio)", host);
1360		if (ret)
1361			goto irq0_free;
1362	}
1363
1364	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1365
1366	amba_set_drvdata(dev, mmc);
1367
1368	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1369		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1370		 amba_rev(dev), (unsigned long long)dev->res.start,
1371		 dev->irq[0], dev->irq[1]);
1372
1373	mmci_dma_setup(host);
1374
1375	pm_runtime_put(&dev->dev);
1376
1377	mmc_add_host(mmc);
1378
1379	return 0;
1380
1381 irq0_free:
1382	free_irq(dev->irq[0], host);
1383 unmap:
1384	if (host->gpio_wp != -ENOSYS)
1385		gpio_free(host->gpio_wp);
1386 err_gpio_wp:
1387	if (host->gpio_cd_irq >= 0)
1388		free_irq(host->gpio_cd_irq, host);
1389	if (host->gpio_cd != -ENOSYS)
1390		gpio_free(host->gpio_cd);
1391 err_gpio_cd:
1392	iounmap(host->base);
1393 clk_disable:
1394	clk_disable(host->clk);
1395 clk_unprep:
1396	clk_unprepare(host->clk);
1397 clk_free:
1398	clk_put(host->clk);
1399 host_free:
1400	mmc_free_host(mmc);
1401 rel_regions:
1402	amba_release_regions(dev);
1403 out:
1404	return ret;
1405}
1406
1407static int __devexit mmci_remove(struct amba_device *dev)
1408{
1409	struct mmc_host *mmc = amba_get_drvdata(dev);
1410
1411	amba_set_drvdata(dev, NULL);
1412
1413	if (mmc) {
1414		struct mmci_host *host = mmc_priv(mmc);
1415
1416		/*
1417		 * Undo pm_runtime_put() in probe.  We use the _sync
1418		 * version here so that we can access the primecell.
1419		 */
1420		pm_runtime_get_sync(&dev->dev);
1421
1422		mmc_remove_host(mmc);
1423
1424		writel(0, host->base + MMCIMASK0);
1425		writel(0, host->base + MMCIMASK1);
1426
1427		writel(0, host->base + MMCICOMMAND);
1428		writel(0, host->base + MMCIDATACTRL);
1429
1430		mmci_dma_release(host);
1431		free_irq(dev->irq[0], host);
1432		if (!host->singleirq)
1433			free_irq(dev->irq[1], host);
1434
1435		if (host->gpio_wp != -ENOSYS)
1436			gpio_free(host->gpio_wp);
1437		if (host->gpio_cd_irq >= 0)
1438			free_irq(host->gpio_cd_irq, host);
1439		if (host->gpio_cd != -ENOSYS)
1440			gpio_free(host->gpio_cd);
1441
1442		iounmap(host->base);
1443		clk_disable(host->clk);
1444		clk_unprepare(host->clk);
1445		clk_put(host->clk);
1446
1447		if (host->vcc)
1448			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1449		regulator_put(host->vcc);
1450
1451		mmc_free_host(mmc);
1452
1453		amba_release_regions(dev);
1454	}
1455
1456	return 0;
1457}
1458
1459#ifdef CONFIG_PM
1460static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1461{
1462	struct mmc_host *mmc = amba_get_drvdata(dev);
1463	int ret = 0;
1464
1465	if (mmc) {
1466		struct mmci_host *host = mmc_priv(mmc);
1467
1468		ret = mmc_suspend_host(mmc);
1469		if (ret == 0)
1470			writel(0, host->base + MMCIMASK0);
1471	}
1472
1473	return ret;
1474}
1475
1476static int mmci_resume(struct amba_device *dev)
1477{
1478	struct mmc_host *mmc = amba_get_drvdata(dev);
1479	int ret = 0;
1480
1481	if (mmc) {
1482		struct mmci_host *host = mmc_priv(mmc);
1483
1484		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1485
1486		ret = mmc_resume_host(mmc);
1487	}
1488
1489	return ret;
1490}
1491#else
1492#define mmci_suspend	NULL
1493#define mmci_resume	NULL
1494#endif
1495
1496static struct amba_id mmci_ids[] = {
1497	{
1498		.id	= 0x00041180,
1499		.mask	= 0xff0fffff,
1500		.data	= &variant_arm,
1501	},
1502	{
1503		.id	= 0x01041180,
1504		.mask	= 0xff0fffff,
1505		.data	= &variant_arm_extended_fifo,
1506	},
1507	{
1508		.id	= 0x00041181,
1509		.mask	= 0x000fffff,
1510		.data	= &variant_arm,
1511	},
1512	/* ST Micro variants */
1513	{
1514		.id     = 0x00180180,
1515		.mask   = 0x00ffffff,
1516		.data	= &variant_u300,
1517	},
1518	{
1519		.id     = 0x00280180,
1520		.mask   = 0x00ffffff,
1521		.data	= &variant_u300,
1522	},
1523	{
1524		.id     = 0x00480180,
1525		.mask   = 0xf0ffffff,
1526		.data	= &variant_ux500,
1527	},
1528	{
1529		.id     = 0x10480180,
1530		.mask   = 0xf0ffffff,
1531		.data	= &variant_ux500v2,
1532	},
1533	{ 0, 0 },
1534};
1535
1536MODULE_DEVICE_TABLE(amba, mmci_ids);
1537
1538static struct amba_driver mmci_driver = {
1539	.drv		= {
1540		.name	= DRIVER_NAME,
1541	},
1542	.probe		= mmci_probe,
1543	.remove		= __devexit_p(mmci_remove),
1544	.suspend	= mmci_suspend,
1545	.resume		= mmci_resume,
1546	.id_table	= mmci_ids,
1547};
1548
1549static int __init mmci_init(void)
1550{
1551	return amba_driver_register(&mmci_driver);
1552}
1553
1554static void __exit mmci_exit(void)
1555{
1556	amba_driver_unregister(&mmci_driver);
1557}
1558
1559module_init(mmci_init);
1560module_exit(mmci_exit);
1561module_param(fmax, uint, 0444);
1562
1563MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1564MODULE_LICENSE("GPL");
1565