mmci.c revision c0a120a4bc68f5dc5f5238e76013cc18bac0ffed
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/amba/bus.h>
26#include <linux/clk.h>
27#include <linux/scatterlist.h>
28#include <linux/gpio.h>
29#include <linux/of_gpio.h>
30#include <linux/regulator/consumer.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/amba/mmci.h>
34#include <linux/pm_runtime.h>
35#include <linux/types.h>
36
37#include <asm/div64.h>
38#include <asm/io.h>
39#include <asm/sizes.h>
40
41#include "mmci.h"
42
43#define DRIVER_NAME "mmci-pl18x"
44
45static unsigned int fmax = 515633;
46
47/**
48 * struct variant_data - MMCI variant-specific quirks
49 * @clkreg: default value for MCICLOCK register
50 * @clkreg_enable: enable value for MMCICLOCK register
51 * @datalength_bits: number of bits in the MMCIDATALENGTH register
52 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
53 *	      is asserted (likewise for RX)
54 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
55 *		  is asserted (likewise for RX)
56 * @sdio: variant supports SDIO
57 * @st_clkdiv: true if using a ST-specific clock divider algorithm
58 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
59 * @pwrreg_powerup: power up value for MMCIPOWER register
60 * @signal_direction: input/out direction of bus signals can be indicated
61 */
62struct variant_data {
63	unsigned int		clkreg;
64	unsigned int		clkreg_enable;
65	unsigned int		datalength_bits;
66	unsigned int		fifosize;
67	unsigned int		fifohalfsize;
68	bool			sdio;
69	bool			st_clkdiv;
70	bool			blksz_datactrl16;
71	u32			pwrreg_powerup;
72	bool			signal_direction;
73};
74
75static struct variant_data variant_arm = {
76	.fifosize		= 16 * 4,
77	.fifohalfsize		= 8 * 4,
78	.datalength_bits	= 16,
79	.pwrreg_powerup		= MCI_PWR_UP,
80};
81
82static struct variant_data variant_arm_extended_fifo = {
83	.fifosize		= 128 * 4,
84	.fifohalfsize		= 64 * 4,
85	.datalength_bits	= 16,
86	.pwrreg_powerup		= MCI_PWR_UP,
87};
88
89static struct variant_data variant_u300 = {
90	.fifosize		= 16 * 4,
91	.fifohalfsize		= 8 * 4,
92	.clkreg_enable		= MCI_ST_U300_HWFCEN,
93	.datalength_bits	= 16,
94	.sdio			= true,
95	.pwrreg_powerup		= MCI_PWR_ON,
96	.signal_direction	= true,
97};
98
99static struct variant_data variant_ux500 = {
100	.fifosize		= 30 * 4,
101	.fifohalfsize		= 8 * 4,
102	.clkreg			= MCI_CLK_ENABLE,
103	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
104	.datalength_bits	= 24,
105	.sdio			= true,
106	.st_clkdiv		= true,
107	.pwrreg_powerup		= MCI_PWR_ON,
108	.signal_direction	= true,
109};
110
111static struct variant_data variant_ux500v2 = {
112	.fifosize		= 30 * 4,
113	.fifohalfsize		= 8 * 4,
114	.clkreg			= MCI_CLK_ENABLE,
115	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
116	.datalength_bits	= 24,
117	.sdio			= true,
118	.st_clkdiv		= true,
119	.blksz_datactrl16	= true,
120	.pwrreg_powerup		= MCI_PWR_ON,
121	.signal_direction	= true,
122};
123
124/*
125 * This must be called with host->lock held
126 */
127static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
128{
129	if (host->clk_reg != clk) {
130		host->clk_reg = clk;
131		writel(clk, host->base + MMCICLOCK);
132	}
133}
134
135/*
136 * This must be called with host->lock held
137 */
138static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
139{
140	if (host->pwr_reg != pwr) {
141		host->pwr_reg = pwr;
142		writel(pwr, host->base + MMCIPOWER);
143	}
144}
145
146/*
147 * This must be called with host->lock held
148 */
149static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
150{
151	struct variant_data *variant = host->variant;
152	u32 clk = variant->clkreg;
153
154	if (desired) {
155		if (desired >= host->mclk) {
156			clk = MCI_CLK_BYPASS;
157			if (variant->st_clkdiv)
158				clk |= MCI_ST_UX500_NEG_EDGE;
159			host->cclk = host->mclk;
160		} else if (variant->st_clkdiv) {
161			/*
162			 * DB8500 TRM says f = mclk / (clkdiv + 2)
163			 * => clkdiv = (mclk / f) - 2
164			 * Round the divider up so we don't exceed the max
165			 * frequency
166			 */
167			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
168			if (clk >= 256)
169				clk = 255;
170			host->cclk = host->mclk / (clk + 2);
171		} else {
172			/*
173			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
174			 * => clkdiv = mclk / (2 * f) - 1
175			 */
176			clk = host->mclk / (2 * desired) - 1;
177			if (clk >= 256)
178				clk = 255;
179			host->cclk = host->mclk / (2 * (clk + 1));
180		}
181
182		clk |= variant->clkreg_enable;
183		clk |= MCI_CLK_ENABLE;
184		/* This hasn't proven to be worthwhile */
185		/* clk |= MCI_CLK_PWRSAVE; */
186	}
187
188	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
189		clk |= MCI_4BIT_BUS;
190	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
191		clk |= MCI_ST_8BIT_BUS;
192
193	mmci_write_clkreg(host, clk);
194}
195
196static void
197mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
198{
199	writel(0, host->base + MMCICOMMAND);
200
201	BUG_ON(host->data);
202
203	host->mrq = NULL;
204	host->cmd = NULL;
205
206	mmc_request_done(host->mmc, mrq);
207
208	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
209	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
210}
211
212static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
213{
214	void __iomem *base = host->base;
215
216	if (host->singleirq) {
217		unsigned int mask0 = readl(base + MMCIMASK0);
218
219		mask0 &= ~MCI_IRQ1MASK;
220		mask0 |= mask;
221
222		writel(mask0, base + MMCIMASK0);
223	}
224
225	writel(mask, base + MMCIMASK1);
226}
227
228static void mmci_stop_data(struct mmci_host *host)
229{
230	writel(0, host->base + MMCIDATACTRL);
231	mmci_set_mask1(host, 0);
232	host->data = NULL;
233}
234
235static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
236{
237	unsigned int flags = SG_MITER_ATOMIC;
238
239	if (data->flags & MMC_DATA_READ)
240		flags |= SG_MITER_TO_SG;
241	else
242		flags |= SG_MITER_FROM_SG;
243
244	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
245}
246
247/*
248 * All the DMA operation mode stuff goes inside this ifdef.
249 * This assumes that you have a generic DMA device interface,
250 * no custom DMA interfaces are supported.
251 */
252#ifdef CONFIG_DMA_ENGINE
253static void __devinit mmci_dma_setup(struct mmci_host *host)
254{
255	struct mmci_platform_data *plat = host->plat;
256	const char *rxname, *txname;
257	dma_cap_mask_t mask;
258
259	if (!plat || !plat->dma_filter) {
260		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
261		return;
262	}
263
264	/* initialize pre request cookie */
265	host->next_data.cookie = 1;
266
267	/* Try to acquire a generic DMA engine slave channel */
268	dma_cap_zero(mask);
269	dma_cap_set(DMA_SLAVE, mask);
270
271	/*
272	 * If only an RX channel is specified, the driver will
273	 * attempt to use it bidirectionally, however if it is
274	 * is specified but cannot be located, DMA will be disabled.
275	 */
276	if (plat->dma_rx_param) {
277		host->dma_rx_channel = dma_request_channel(mask,
278							   plat->dma_filter,
279							   plat->dma_rx_param);
280		/* E.g if no DMA hardware is present */
281		if (!host->dma_rx_channel)
282			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
283	}
284
285	if (plat->dma_tx_param) {
286		host->dma_tx_channel = dma_request_channel(mask,
287							   plat->dma_filter,
288							   plat->dma_tx_param);
289		if (!host->dma_tx_channel)
290			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
291	} else {
292		host->dma_tx_channel = host->dma_rx_channel;
293	}
294
295	if (host->dma_rx_channel)
296		rxname = dma_chan_name(host->dma_rx_channel);
297	else
298		rxname = "none";
299
300	if (host->dma_tx_channel)
301		txname = dma_chan_name(host->dma_tx_channel);
302	else
303		txname = "none";
304
305	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
306		 rxname, txname);
307
308	/*
309	 * Limit the maximum segment size in any SG entry according to
310	 * the parameters of the DMA engine device.
311	 */
312	if (host->dma_tx_channel) {
313		struct device *dev = host->dma_tx_channel->device->dev;
314		unsigned int max_seg_size = dma_get_max_seg_size(dev);
315
316		if (max_seg_size < host->mmc->max_seg_size)
317			host->mmc->max_seg_size = max_seg_size;
318	}
319	if (host->dma_rx_channel) {
320		struct device *dev = host->dma_rx_channel->device->dev;
321		unsigned int max_seg_size = dma_get_max_seg_size(dev);
322
323		if (max_seg_size < host->mmc->max_seg_size)
324			host->mmc->max_seg_size = max_seg_size;
325	}
326}
327
328/*
329 * This is used in __devinit or __devexit so inline it
330 * so it can be discarded.
331 */
332static inline void mmci_dma_release(struct mmci_host *host)
333{
334	struct mmci_platform_data *plat = host->plat;
335
336	if (host->dma_rx_channel)
337		dma_release_channel(host->dma_rx_channel);
338	if (host->dma_tx_channel && plat->dma_tx_param)
339		dma_release_channel(host->dma_tx_channel);
340	host->dma_rx_channel = host->dma_tx_channel = NULL;
341}
342
343static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
344{
345	struct dma_chan *chan = host->dma_current;
346	enum dma_data_direction dir;
347	u32 status;
348	int i;
349
350	/* Wait up to 1ms for the DMA to complete */
351	for (i = 0; ; i++) {
352		status = readl(host->base + MMCISTATUS);
353		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
354			break;
355		udelay(10);
356	}
357
358	/*
359	 * Check to see whether we still have some data left in the FIFO -
360	 * this catches DMA controllers which are unable to monitor the
361	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
362	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
363	 */
364	if (status & MCI_RXDATAAVLBLMASK) {
365		dmaengine_terminate_all(chan);
366		if (!data->error)
367			data->error = -EIO;
368	}
369
370	if (data->flags & MMC_DATA_WRITE) {
371		dir = DMA_TO_DEVICE;
372	} else {
373		dir = DMA_FROM_DEVICE;
374	}
375
376	if (!data->host_cookie)
377		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
378
379	/*
380	 * Use of DMA with scatter-gather is impossible.
381	 * Give up with DMA and switch back to PIO mode.
382	 */
383	if (status & MCI_RXDATAAVLBLMASK) {
384		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
385		mmci_dma_release(host);
386	}
387}
388
389static void mmci_dma_data_error(struct mmci_host *host)
390{
391	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
392	dmaengine_terminate_all(host->dma_current);
393}
394
395static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
396			      struct mmci_host_next *next)
397{
398	struct variant_data *variant = host->variant;
399	struct dma_slave_config conf = {
400		.src_addr = host->phybase + MMCIFIFO,
401		.dst_addr = host->phybase + MMCIFIFO,
402		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
403		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
404		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
405		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
406		.device_fc = false,
407	};
408	struct dma_chan *chan;
409	struct dma_device *device;
410	struct dma_async_tx_descriptor *desc;
411	enum dma_data_direction buffer_dirn;
412	int nr_sg;
413
414	/* Check if next job is already prepared */
415	if (data->host_cookie && !next &&
416	    host->dma_current && host->dma_desc_current)
417		return 0;
418
419	if (!next) {
420		host->dma_current = NULL;
421		host->dma_desc_current = NULL;
422	}
423
424	if (data->flags & MMC_DATA_READ) {
425		conf.direction = DMA_DEV_TO_MEM;
426		buffer_dirn = DMA_FROM_DEVICE;
427		chan = host->dma_rx_channel;
428	} else {
429		conf.direction = DMA_MEM_TO_DEV;
430		buffer_dirn = DMA_TO_DEVICE;
431		chan = host->dma_tx_channel;
432	}
433
434	/* If there's no DMA channel, fall back to PIO */
435	if (!chan)
436		return -EINVAL;
437
438	/* If less than or equal to the fifo size, don't bother with DMA */
439	if (data->blksz * data->blocks <= variant->fifosize)
440		return -EINVAL;
441
442	device = chan->device;
443	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
444	if (nr_sg == 0)
445		return -EINVAL;
446
447	dmaengine_slave_config(chan, &conf);
448	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
449					    conf.direction, DMA_CTRL_ACK);
450	if (!desc)
451		goto unmap_exit;
452
453	if (next) {
454		next->dma_chan = chan;
455		next->dma_desc = desc;
456	} else {
457		host->dma_current = chan;
458		host->dma_desc_current = desc;
459	}
460
461	return 0;
462
463 unmap_exit:
464	if (!next)
465		dmaengine_terminate_all(chan);
466	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
467	return -ENOMEM;
468}
469
470static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
471{
472	int ret;
473	struct mmc_data *data = host->data;
474
475	ret = mmci_dma_prep_data(host, host->data, NULL);
476	if (ret)
477		return ret;
478
479	/* Okay, go for it. */
480	dev_vdbg(mmc_dev(host->mmc),
481		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
482		 data->sg_len, data->blksz, data->blocks, data->flags);
483	dmaengine_submit(host->dma_desc_current);
484	dma_async_issue_pending(host->dma_current);
485
486	datactrl |= MCI_DPSM_DMAENABLE;
487
488	/* Trigger the DMA transfer */
489	writel(datactrl, host->base + MMCIDATACTRL);
490
491	/*
492	 * Let the MMCI say when the data is ended and it's time
493	 * to fire next DMA request. When that happens, MMCI will
494	 * call mmci_data_end()
495	 */
496	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
497	       host->base + MMCIMASK0);
498	return 0;
499}
500
501static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
502{
503	struct mmci_host_next *next = &host->next_data;
504
505	if (data->host_cookie && data->host_cookie != next->cookie) {
506		pr_warning("[%s] invalid cookie: data->host_cookie %d"
507		       " host->next_data.cookie %d\n",
508		       __func__, data->host_cookie, host->next_data.cookie);
509		data->host_cookie = 0;
510	}
511
512	if (!data->host_cookie)
513		return;
514
515	host->dma_desc_current = next->dma_desc;
516	host->dma_current = next->dma_chan;
517
518	next->dma_desc = NULL;
519	next->dma_chan = NULL;
520}
521
522static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
523			     bool is_first_req)
524{
525	struct mmci_host *host = mmc_priv(mmc);
526	struct mmc_data *data = mrq->data;
527	struct mmci_host_next *nd = &host->next_data;
528
529	if (!data)
530		return;
531
532	if (data->host_cookie) {
533		data->host_cookie = 0;
534		return;
535	}
536
537	/* if config for dma */
538	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
539	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
540		if (mmci_dma_prep_data(host, data, nd))
541			data->host_cookie = 0;
542		else
543			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
544	}
545}
546
547static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
548			      int err)
549{
550	struct mmci_host *host = mmc_priv(mmc);
551	struct mmc_data *data = mrq->data;
552	struct dma_chan *chan;
553	enum dma_data_direction dir;
554
555	if (!data)
556		return;
557
558	if (data->flags & MMC_DATA_READ) {
559		dir = DMA_FROM_DEVICE;
560		chan = host->dma_rx_channel;
561	} else {
562		dir = DMA_TO_DEVICE;
563		chan = host->dma_tx_channel;
564	}
565
566
567	/* if config for dma */
568	if (chan) {
569		if (err)
570			dmaengine_terminate_all(chan);
571		if (data->host_cookie)
572			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
573				     data->sg_len, dir);
574		mrq->data->host_cookie = 0;
575	}
576}
577
578#else
579/* Blank functions if the DMA engine is not available */
580static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
581{
582}
583static inline void mmci_dma_setup(struct mmci_host *host)
584{
585}
586
587static inline void mmci_dma_release(struct mmci_host *host)
588{
589}
590
591static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
592{
593}
594
595static inline void mmci_dma_data_error(struct mmci_host *host)
596{
597}
598
599static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
600{
601	return -ENOSYS;
602}
603
604#define mmci_pre_request NULL
605#define mmci_post_request NULL
606
607#endif
608
609static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
610{
611	struct variant_data *variant = host->variant;
612	unsigned int datactrl, timeout, irqmask;
613	unsigned long long clks;
614	void __iomem *base;
615	int blksz_bits;
616
617	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
618		data->blksz, data->blocks, data->flags);
619
620	host->data = data;
621	host->size = data->blksz * data->blocks;
622	data->bytes_xfered = 0;
623
624	clks = (unsigned long long)data->timeout_ns * host->cclk;
625	do_div(clks, 1000000000UL);
626
627	timeout = data->timeout_clks + (unsigned int)clks;
628
629	base = host->base;
630	writel(timeout, base + MMCIDATATIMER);
631	writel(host->size, base + MMCIDATALENGTH);
632
633	blksz_bits = ffs(data->blksz) - 1;
634	BUG_ON(1 << blksz_bits != data->blksz);
635
636	if (variant->blksz_datactrl16)
637		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
638	else
639		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
640
641	if (data->flags & MMC_DATA_READ)
642		datactrl |= MCI_DPSM_DIRECTION;
643
644	/* The ST Micro variants has a special bit to enable SDIO */
645	if (variant->sdio && host->mmc->card)
646		if (mmc_card_sdio(host->mmc->card))
647			datactrl |= MCI_ST_DPSM_SDIOEN;
648
649	/*
650	 * Attempt to use DMA operation mode, if this
651	 * should fail, fall back to PIO mode
652	 */
653	if (!mmci_dma_start_data(host, datactrl))
654		return;
655
656	/* IRQ mode, map the SG list for CPU reading/writing */
657	mmci_init_sg(host, data);
658
659	if (data->flags & MMC_DATA_READ) {
660		irqmask = MCI_RXFIFOHALFFULLMASK;
661
662		/*
663		 * If we have less than the fifo 'half-full' threshold to
664		 * transfer, trigger a PIO interrupt as soon as any data
665		 * is available.
666		 */
667		if (host->size < variant->fifohalfsize)
668			irqmask |= MCI_RXDATAAVLBLMASK;
669	} else {
670		/*
671		 * We don't actually need to include "FIFO empty" here
672		 * since its implicit in "FIFO half empty".
673		 */
674		irqmask = MCI_TXFIFOHALFEMPTYMASK;
675	}
676
677	writel(datactrl, base + MMCIDATACTRL);
678	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
679	mmci_set_mask1(host, irqmask);
680}
681
682static void
683mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
684{
685	void __iomem *base = host->base;
686
687	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
688	    cmd->opcode, cmd->arg, cmd->flags);
689
690	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
691		writel(0, base + MMCICOMMAND);
692		udelay(1);
693	}
694
695	c |= cmd->opcode | MCI_CPSM_ENABLE;
696	if (cmd->flags & MMC_RSP_PRESENT) {
697		if (cmd->flags & MMC_RSP_136)
698			c |= MCI_CPSM_LONGRSP;
699		c |= MCI_CPSM_RESPONSE;
700	}
701	if (/*interrupt*/0)
702		c |= MCI_CPSM_INTERRUPT;
703
704	host->cmd = cmd;
705
706	writel(cmd->arg, base + MMCIARGUMENT);
707	writel(c, base + MMCICOMMAND);
708}
709
710static void
711mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
712	      unsigned int status)
713{
714	/* First check for errors */
715	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
716		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
717		u32 remain, success;
718
719		/* Terminate the DMA transfer */
720		if (dma_inprogress(host))
721			mmci_dma_data_error(host);
722
723		/*
724		 * Calculate how far we are into the transfer.  Note that
725		 * the data counter gives the number of bytes transferred
726		 * on the MMC bus, not on the host side.  On reads, this
727		 * can be as much as a FIFO-worth of data ahead.  This
728		 * matters for FIFO overruns only.
729		 */
730		remain = readl(host->base + MMCIDATACNT);
731		success = data->blksz * data->blocks - remain;
732
733		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
734			status, success);
735		if (status & MCI_DATACRCFAIL) {
736			/* Last block was not successful */
737			success -= 1;
738			data->error = -EILSEQ;
739		} else if (status & MCI_DATATIMEOUT) {
740			data->error = -ETIMEDOUT;
741		} else if (status & MCI_STARTBITERR) {
742			data->error = -ECOMM;
743		} else if (status & MCI_TXUNDERRUN) {
744			data->error = -EIO;
745		} else if (status & MCI_RXOVERRUN) {
746			if (success > host->variant->fifosize)
747				success -= host->variant->fifosize;
748			else
749				success = 0;
750			data->error = -EIO;
751		}
752		data->bytes_xfered = round_down(success, data->blksz);
753	}
754
755	if (status & MCI_DATABLOCKEND)
756		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
757
758	if (status & MCI_DATAEND || data->error) {
759		if (dma_inprogress(host))
760			mmci_dma_unmap(host, data);
761		mmci_stop_data(host);
762
763		if (!data->error)
764			/* The error clause is handled above, success! */
765			data->bytes_xfered = data->blksz * data->blocks;
766
767		if (!data->stop) {
768			mmci_request_end(host, data->mrq);
769		} else {
770			mmci_start_command(host, data->stop, 0);
771		}
772	}
773}
774
775static void
776mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
777	     unsigned int status)
778{
779	void __iomem *base = host->base;
780
781	host->cmd = NULL;
782
783	if (status & MCI_CMDTIMEOUT) {
784		cmd->error = -ETIMEDOUT;
785	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
786		cmd->error = -EILSEQ;
787	} else {
788		cmd->resp[0] = readl(base + MMCIRESPONSE0);
789		cmd->resp[1] = readl(base + MMCIRESPONSE1);
790		cmd->resp[2] = readl(base + MMCIRESPONSE2);
791		cmd->resp[3] = readl(base + MMCIRESPONSE3);
792	}
793
794	if (!cmd->data || cmd->error) {
795		if (host->data) {
796			/* Terminate the DMA transfer */
797			if (dma_inprogress(host))
798				mmci_dma_data_error(host);
799			mmci_stop_data(host);
800		}
801		mmci_request_end(host, cmd->mrq);
802	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
803		mmci_start_data(host, cmd->data);
804	}
805}
806
807static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
808{
809	void __iomem *base = host->base;
810	char *ptr = buffer;
811	u32 status;
812	int host_remain = host->size;
813
814	do {
815		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
816
817		if (count > remain)
818			count = remain;
819
820		if (count <= 0)
821			break;
822
823		/*
824		 * SDIO especially may want to send something that is
825		 * not divisible by 4 (as opposed to card sectors
826		 * etc). Therefore make sure to always read the last bytes
827		 * while only doing full 32-bit reads towards the FIFO.
828		 */
829		if (unlikely(count & 0x3)) {
830			if (count < 4) {
831				unsigned char buf[4];
832				readsl(base + MMCIFIFO, buf, 1);
833				memcpy(ptr, buf, count);
834			} else {
835				readsl(base + MMCIFIFO, ptr, count >> 2);
836				count &= ~0x3;
837			}
838		} else {
839			readsl(base + MMCIFIFO, ptr, count >> 2);
840		}
841
842		ptr += count;
843		remain -= count;
844		host_remain -= count;
845
846		if (remain == 0)
847			break;
848
849		status = readl(base + MMCISTATUS);
850	} while (status & MCI_RXDATAAVLBL);
851
852	return ptr - buffer;
853}
854
855static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
856{
857	struct variant_data *variant = host->variant;
858	void __iomem *base = host->base;
859	char *ptr = buffer;
860
861	do {
862		unsigned int count, maxcnt;
863
864		maxcnt = status & MCI_TXFIFOEMPTY ?
865			 variant->fifosize : variant->fifohalfsize;
866		count = min(remain, maxcnt);
867
868		/*
869		 * The ST Micro variant for SDIO transfer sizes
870		 * less then 8 bytes should have clock H/W flow
871		 * control disabled.
872		 */
873		if (variant->sdio &&
874		    mmc_card_sdio(host->mmc->card)) {
875			u32 clk;
876			if (count < 8)
877				clk = host->clk_reg & ~variant->clkreg_enable;
878			else
879				clk = host->clk_reg | variant->clkreg_enable;
880
881			mmci_write_clkreg(host, clk);
882		}
883
884		/*
885		 * SDIO especially may want to send something that is
886		 * not divisible by 4 (as opposed to card sectors
887		 * etc), and the FIFO only accept full 32-bit writes.
888		 * So compensate by adding +3 on the count, a single
889		 * byte become a 32bit write, 7 bytes will be two
890		 * 32bit writes etc.
891		 */
892		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
893
894		ptr += count;
895		remain -= count;
896
897		if (remain == 0)
898			break;
899
900		status = readl(base + MMCISTATUS);
901	} while (status & MCI_TXFIFOHALFEMPTY);
902
903	return ptr - buffer;
904}
905
906/*
907 * PIO data transfer IRQ handler.
908 */
909static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
910{
911	struct mmci_host *host = dev_id;
912	struct sg_mapping_iter *sg_miter = &host->sg_miter;
913	struct variant_data *variant = host->variant;
914	void __iomem *base = host->base;
915	unsigned long flags;
916	u32 status;
917
918	status = readl(base + MMCISTATUS);
919
920	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
921
922	local_irq_save(flags);
923
924	do {
925		unsigned int remain, len;
926		char *buffer;
927
928		/*
929		 * For write, we only need to test the half-empty flag
930		 * here - if the FIFO is completely empty, then by
931		 * definition it is more than half empty.
932		 *
933		 * For read, check for data available.
934		 */
935		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
936			break;
937
938		if (!sg_miter_next(sg_miter))
939			break;
940
941		buffer = sg_miter->addr;
942		remain = sg_miter->length;
943
944		len = 0;
945		if (status & MCI_RXACTIVE)
946			len = mmci_pio_read(host, buffer, remain);
947		if (status & MCI_TXACTIVE)
948			len = mmci_pio_write(host, buffer, remain, status);
949
950		sg_miter->consumed = len;
951
952		host->size -= len;
953		remain -= len;
954
955		if (remain)
956			break;
957
958		status = readl(base + MMCISTATUS);
959	} while (1);
960
961	sg_miter_stop(sg_miter);
962
963	local_irq_restore(flags);
964
965	/*
966	 * If we have less than the fifo 'half-full' threshold to transfer,
967	 * trigger a PIO interrupt as soon as any data is available.
968	 */
969	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
970		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
971
972	/*
973	 * If we run out of data, disable the data IRQs; this
974	 * prevents a race where the FIFO becomes empty before
975	 * the chip itself has disabled the data path, and
976	 * stops us racing with our data end IRQ.
977	 */
978	if (host->size == 0) {
979		mmci_set_mask1(host, 0);
980		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
981	}
982
983	return IRQ_HANDLED;
984}
985
986/*
987 * Handle completion of command and data transfers.
988 */
989static irqreturn_t mmci_irq(int irq, void *dev_id)
990{
991	struct mmci_host *host = dev_id;
992	u32 status;
993	int ret = 0;
994
995	spin_lock(&host->lock);
996
997	do {
998		struct mmc_command *cmd;
999		struct mmc_data *data;
1000
1001		status = readl(host->base + MMCISTATUS);
1002
1003		if (host->singleirq) {
1004			if (status & readl(host->base + MMCIMASK1))
1005				mmci_pio_irq(irq, dev_id);
1006
1007			status &= ~MCI_IRQ1MASK;
1008		}
1009
1010		status &= readl(host->base + MMCIMASK0);
1011		writel(status, host->base + MMCICLEAR);
1012
1013		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1014
1015		data = host->data;
1016		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1017			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1018			      MCI_DATABLOCKEND) && data)
1019			mmci_data_irq(host, data, status);
1020
1021		cmd = host->cmd;
1022		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1023			mmci_cmd_irq(host, cmd, status);
1024
1025		ret = 1;
1026	} while (status);
1027
1028	spin_unlock(&host->lock);
1029
1030	return IRQ_RETVAL(ret);
1031}
1032
1033static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034{
1035	struct mmci_host *host = mmc_priv(mmc);
1036	unsigned long flags;
1037
1038	WARN_ON(host->mrq != NULL);
1039
1040	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1041		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1042			mrq->data->blksz);
1043		mrq->cmd->error = -EINVAL;
1044		mmc_request_done(mmc, mrq);
1045		return;
1046	}
1047
1048	pm_runtime_get_sync(mmc_dev(mmc));
1049
1050	spin_lock_irqsave(&host->lock, flags);
1051
1052	host->mrq = mrq;
1053
1054	if (mrq->data)
1055		mmci_get_next_data(host, mrq->data);
1056
1057	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1058		mmci_start_data(host, mrq->data);
1059
1060	mmci_start_command(host, mrq->cmd, 0);
1061
1062	spin_unlock_irqrestore(&host->lock, flags);
1063}
1064
1065static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1066{
1067	struct mmci_host *host = mmc_priv(mmc);
1068	struct variant_data *variant = host->variant;
1069	u32 pwr = 0;
1070	unsigned long flags;
1071	int ret;
1072
1073	pm_runtime_get_sync(mmc_dev(mmc));
1074
1075	if (host->plat->ios_handler &&
1076		host->plat->ios_handler(mmc_dev(mmc), ios))
1077			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1078
1079	switch (ios->power_mode) {
1080	case MMC_POWER_OFF:
1081		if (host->vcc)
1082			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1083		break;
1084	case MMC_POWER_UP:
1085		if (host->vcc) {
1086			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1087			if (ret) {
1088				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1089				/*
1090				 * The .set_ios() function in the mmc_host_ops
1091				 * struct return void, and failing to set the
1092				 * power should be rare so we print an error
1093				 * and return here.
1094				 */
1095				goto out;
1096			}
1097		}
1098		/*
1099		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1100		 * and instead uses MCI_PWR_ON so apply whatever value is
1101		 * configured in the variant data.
1102		 */
1103		pwr |= variant->pwrreg_powerup;
1104
1105		break;
1106	case MMC_POWER_ON:
1107		pwr |= MCI_PWR_ON;
1108		break;
1109	}
1110
1111	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1112		/*
1113		 * The ST Micro variant has some additional bits
1114		 * indicating signal direction for the signals in
1115		 * the SD/MMC bus and feedback-clock usage.
1116		 */
1117		pwr |= host->plat->sigdir;
1118
1119		if (ios->bus_width == MMC_BUS_WIDTH_4)
1120			pwr &= ~MCI_ST_DATA74DIREN;
1121		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1122			pwr &= (~MCI_ST_DATA74DIREN &
1123				~MCI_ST_DATA31DIREN &
1124				~MCI_ST_DATA2DIREN);
1125	}
1126
1127	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1128		if (host->hw_designer != AMBA_VENDOR_ST)
1129			pwr |= MCI_ROD;
1130		else {
1131			/*
1132			 * The ST Micro variant use the ROD bit for something
1133			 * else and only has OD (Open Drain).
1134			 */
1135			pwr |= MCI_OD;
1136		}
1137	}
1138
1139	spin_lock_irqsave(&host->lock, flags);
1140
1141	mmci_set_clkreg(host, ios->clock);
1142	mmci_write_pwrreg(host, pwr);
1143
1144	spin_unlock_irqrestore(&host->lock, flags);
1145
1146 out:
1147	pm_runtime_mark_last_busy(mmc_dev(mmc));
1148	pm_runtime_put_autosuspend(mmc_dev(mmc));
1149}
1150
1151static int mmci_get_ro(struct mmc_host *mmc)
1152{
1153	struct mmci_host *host = mmc_priv(mmc);
1154
1155	if (host->gpio_wp == -ENOSYS)
1156		return -ENOSYS;
1157
1158	return gpio_get_value_cansleep(host->gpio_wp);
1159}
1160
1161static int mmci_get_cd(struct mmc_host *mmc)
1162{
1163	struct mmci_host *host = mmc_priv(mmc);
1164	struct mmci_platform_data *plat = host->plat;
1165	unsigned int status;
1166
1167	if (host->gpio_cd == -ENOSYS) {
1168		if (!plat->status)
1169			return 1; /* Assume always present */
1170
1171		status = plat->status(mmc_dev(host->mmc));
1172	} else
1173		status = !!gpio_get_value_cansleep(host->gpio_cd)
1174			^ plat->cd_invert;
1175
1176	/*
1177	 * Use positive logic throughout - status is zero for no card,
1178	 * non-zero for card inserted.
1179	 */
1180	return status;
1181}
1182
1183static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1184{
1185	struct mmci_host *host = dev_id;
1186
1187	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1188
1189	return IRQ_HANDLED;
1190}
1191
1192static const struct mmc_host_ops mmci_ops = {
1193	.request	= mmci_request,
1194	.pre_req	= mmci_pre_request,
1195	.post_req	= mmci_post_request,
1196	.set_ios	= mmci_set_ios,
1197	.get_ro		= mmci_get_ro,
1198	.get_cd		= mmci_get_cd,
1199};
1200
1201#ifdef CONFIG_OF
1202static void mmci_dt_populate_generic_pdata(struct device_node *np,
1203					struct mmci_platform_data *pdata)
1204{
1205	int bus_width = 0;
1206
1207	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1208	if (!pdata->gpio_wp)
1209		pdata->gpio_wp = -1;
1210
1211	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1212	if (!pdata->gpio_cd)
1213		pdata->gpio_cd = -1;
1214
1215	if (of_get_property(np, "cd-inverted", NULL))
1216		pdata->cd_invert = true;
1217	else
1218		pdata->cd_invert = false;
1219
1220	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1221	if (!pdata->f_max)
1222		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1223
1224	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1225		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1226	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1227		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1228
1229	of_property_read_u32(np, "bus-width", &bus_width);
1230	switch (bus_width) {
1231	case 0 :
1232		/* No bus-width supplied. */
1233		break;
1234	case 4 :
1235		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1236		break;
1237	case 8 :
1238		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1239		break;
1240	default :
1241		pr_warn("%s: Unsupported bus width\n", np->full_name);
1242	}
1243}
1244#else
1245static void mmci_dt_populate_generic_pdata(struct device_node *np,
1246					struct mmci_platform_data *pdata)
1247{
1248	return;
1249}
1250#endif
1251
1252static int __devinit mmci_probe(struct amba_device *dev,
1253	const struct amba_id *id)
1254{
1255	struct mmci_platform_data *plat = dev->dev.platform_data;
1256	struct device_node *np = dev->dev.of_node;
1257	struct variant_data *variant = id->data;
1258	struct mmci_host *host;
1259	struct mmc_host *mmc;
1260	int ret;
1261
1262	/* Must have platform data or Device Tree. */
1263	if (!plat && !np) {
1264		dev_err(&dev->dev, "No plat data or DT found\n");
1265		return -EINVAL;
1266	}
1267
1268	if (np)
1269		mmci_dt_populate_generic_pdata(np, plat);
1270
1271	ret = amba_request_regions(dev, DRIVER_NAME);
1272	if (ret)
1273		goto out;
1274
1275	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1276	if (!mmc) {
1277		ret = -ENOMEM;
1278		goto rel_regions;
1279	}
1280
1281	host = mmc_priv(mmc);
1282	host->mmc = mmc;
1283
1284	host->gpio_wp = -ENOSYS;
1285	host->gpio_cd = -ENOSYS;
1286	host->gpio_cd_irq = -1;
1287
1288	host->hw_designer = amba_manf(dev);
1289	host->hw_revision = amba_rev(dev);
1290	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1291	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1292
1293	host->clk = clk_get(&dev->dev, NULL);
1294	if (IS_ERR(host->clk)) {
1295		ret = PTR_ERR(host->clk);
1296		host->clk = NULL;
1297		goto host_free;
1298	}
1299
1300	ret = clk_prepare(host->clk);
1301	if (ret)
1302		goto clk_free;
1303
1304	ret = clk_enable(host->clk);
1305	if (ret)
1306		goto clk_unprep;
1307
1308	host->plat = plat;
1309	host->variant = variant;
1310	host->mclk = clk_get_rate(host->clk);
1311	/*
1312	 * According to the spec, mclk is max 100 MHz,
1313	 * so we try to adjust the clock down to this,
1314	 * (if possible).
1315	 */
1316	if (host->mclk > 100000000) {
1317		ret = clk_set_rate(host->clk, 100000000);
1318		if (ret < 0)
1319			goto clk_disable;
1320		host->mclk = clk_get_rate(host->clk);
1321		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1322			host->mclk);
1323	}
1324	host->phybase = dev->res.start;
1325	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1326	if (!host->base) {
1327		ret = -ENOMEM;
1328		goto clk_disable;
1329	}
1330
1331	mmc->ops = &mmci_ops;
1332	/*
1333	 * The ARM and ST versions of the block have slightly different
1334	 * clock divider equations which means that the minimum divider
1335	 * differs too.
1336	 */
1337	if (variant->st_clkdiv)
1338		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1339	else
1340		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1341	/*
1342	 * If the platform data supplies a maximum operating
1343	 * frequency, this takes precedence. Else, we fall back
1344	 * to using the module parameter, which has a (low)
1345	 * default value in case it is not specified. Either
1346	 * value must not exceed the clock rate into the block,
1347	 * of course.
1348	 */
1349	if (plat->f_max)
1350		mmc->f_max = min(host->mclk, plat->f_max);
1351	else
1352		mmc->f_max = min(host->mclk, fmax);
1353	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1354
1355#ifdef CONFIG_REGULATOR
1356	/* If we're using the regulator framework, try to fetch a regulator */
1357	host->vcc = regulator_get(&dev->dev, "vmmc");
1358	if (IS_ERR(host->vcc))
1359		host->vcc = NULL;
1360	else {
1361		int mask = mmc_regulator_get_ocrmask(host->vcc);
1362
1363		if (mask < 0)
1364			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1365				mask);
1366		else {
1367			host->mmc->ocr_avail = (u32) mask;
1368			if (plat->ocr_mask)
1369				dev_warn(&dev->dev,
1370				 "Provided ocr_mask/setpower will not be used "
1371				 "(using regulator instead)\n");
1372		}
1373	}
1374#endif
1375	/* Fall back to platform data if no regulator is found */
1376	if (host->vcc == NULL)
1377		mmc->ocr_avail = plat->ocr_mask;
1378	mmc->caps = plat->capabilities;
1379	mmc->caps2 = plat->capabilities2;
1380
1381	/*
1382	 * We can do SGIO
1383	 */
1384	mmc->max_segs = NR_SG;
1385
1386	/*
1387	 * Since only a certain number of bits are valid in the data length
1388	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1389	 * single request.
1390	 */
1391	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1392
1393	/*
1394	 * Set the maximum segment size.  Since we aren't doing DMA
1395	 * (yet) we are only limited by the data length register.
1396	 */
1397	mmc->max_seg_size = mmc->max_req_size;
1398
1399	/*
1400	 * Block size can be up to 2048 bytes, but must be a power of two.
1401	 */
1402	mmc->max_blk_size = 1 << 11;
1403
1404	/*
1405	 * Limit the number of blocks transferred so that we don't overflow
1406	 * the maximum request size.
1407	 */
1408	mmc->max_blk_count = mmc->max_req_size >> 11;
1409
1410	spin_lock_init(&host->lock);
1411
1412	writel(0, host->base + MMCIMASK0);
1413	writel(0, host->base + MMCIMASK1);
1414	writel(0xfff, host->base + MMCICLEAR);
1415
1416	if (gpio_is_valid(plat->gpio_cd)) {
1417		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1418		if (ret == 0)
1419			ret = gpio_direction_input(plat->gpio_cd);
1420		if (ret == 0)
1421			host->gpio_cd = plat->gpio_cd;
1422		else if (ret != -ENOSYS)
1423			goto err_gpio_cd;
1424
1425		/*
1426		 * A gpio pin that will detect cards when inserted and removed
1427		 * will most likely want to trigger on the edges if it is
1428		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1429		 * for the inverted case) so we request triggers on both
1430		 * edges.
1431		 */
1432		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1433				mmci_cd_irq,
1434				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1435				DRIVER_NAME " (cd)", host);
1436		if (ret >= 0)
1437			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1438	}
1439	if (gpio_is_valid(plat->gpio_wp)) {
1440		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1441		if (ret == 0)
1442			ret = gpio_direction_input(plat->gpio_wp);
1443		if (ret == 0)
1444			host->gpio_wp = plat->gpio_wp;
1445		else if (ret != -ENOSYS)
1446			goto err_gpio_wp;
1447	}
1448
1449	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1450	    && host->gpio_cd_irq < 0)
1451		mmc->caps |= MMC_CAP_NEEDS_POLL;
1452
1453	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1454	if (ret)
1455		goto unmap;
1456
1457	if (dev->irq[1] == NO_IRQ || !dev->irq[1])
1458		host->singleirq = true;
1459	else {
1460		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1461				  DRIVER_NAME " (pio)", host);
1462		if (ret)
1463			goto irq0_free;
1464	}
1465
1466	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1467
1468	amba_set_drvdata(dev, mmc);
1469
1470	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1471		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1472		 amba_rev(dev), (unsigned long long)dev->res.start,
1473		 dev->irq[0], dev->irq[1]);
1474
1475	mmci_dma_setup(host);
1476
1477	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1478	pm_runtime_use_autosuspend(&dev->dev);
1479	pm_runtime_put(&dev->dev);
1480
1481	mmc_add_host(mmc);
1482
1483	return 0;
1484
1485 irq0_free:
1486	free_irq(dev->irq[0], host);
1487 unmap:
1488	if (host->gpio_wp != -ENOSYS)
1489		gpio_free(host->gpio_wp);
1490 err_gpio_wp:
1491	if (host->gpio_cd_irq >= 0)
1492		free_irq(host->gpio_cd_irq, host);
1493	if (host->gpio_cd != -ENOSYS)
1494		gpio_free(host->gpio_cd);
1495 err_gpio_cd:
1496	iounmap(host->base);
1497 clk_disable:
1498	clk_disable(host->clk);
1499 clk_unprep:
1500	clk_unprepare(host->clk);
1501 clk_free:
1502	clk_put(host->clk);
1503 host_free:
1504	mmc_free_host(mmc);
1505 rel_regions:
1506	amba_release_regions(dev);
1507 out:
1508	return ret;
1509}
1510
1511static int __devexit mmci_remove(struct amba_device *dev)
1512{
1513	struct mmc_host *mmc = amba_get_drvdata(dev);
1514
1515	amba_set_drvdata(dev, NULL);
1516
1517	if (mmc) {
1518		struct mmci_host *host = mmc_priv(mmc);
1519
1520		/*
1521		 * Undo pm_runtime_put() in probe.  We use the _sync
1522		 * version here so that we can access the primecell.
1523		 */
1524		pm_runtime_get_sync(&dev->dev);
1525
1526		mmc_remove_host(mmc);
1527
1528		writel(0, host->base + MMCIMASK0);
1529		writel(0, host->base + MMCIMASK1);
1530
1531		writel(0, host->base + MMCICOMMAND);
1532		writel(0, host->base + MMCIDATACTRL);
1533
1534		mmci_dma_release(host);
1535		free_irq(dev->irq[0], host);
1536		if (!host->singleirq)
1537			free_irq(dev->irq[1], host);
1538
1539		if (host->gpio_wp != -ENOSYS)
1540			gpio_free(host->gpio_wp);
1541		if (host->gpio_cd_irq >= 0)
1542			free_irq(host->gpio_cd_irq, host);
1543		if (host->gpio_cd != -ENOSYS)
1544			gpio_free(host->gpio_cd);
1545
1546		iounmap(host->base);
1547		clk_disable(host->clk);
1548		clk_unprepare(host->clk);
1549		clk_put(host->clk);
1550
1551		if (host->vcc)
1552			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1553		regulator_put(host->vcc);
1554
1555		mmc_free_host(mmc);
1556
1557		amba_release_regions(dev);
1558	}
1559
1560	return 0;
1561}
1562
1563#ifdef CONFIG_SUSPEND
1564static int mmci_suspend(struct device *dev)
1565{
1566	struct amba_device *adev = to_amba_device(dev);
1567	struct mmc_host *mmc = amba_get_drvdata(adev);
1568	int ret = 0;
1569
1570	if (mmc) {
1571		struct mmci_host *host = mmc_priv(mmc);
1572
1573		ret = mmc_suspend_host(mmc);
1574		if (ret == 0) {
1575			pm_runtime_get_sync(dev);
1576			writel(0, host->base + MMCIMASK0);
1577		}
1578	}
1579
1580	return ret;
1581}
1582
1583static int mmci_resume(struct device *dev)
1584{
1585	struct amba_device *adev = to_amba_device(dev);
1586	struct mmc_host *mmc = amba_get_drvdata(adev);
1587	int ret = 0;
1588
1589	if (mmc) {
1590		struct mmci_host *host = mmc_priv(mmc);
1591
1592		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1593		pm_runtime_put(dev);
1594
1595		ret = mmc_resume_host(mmc);
1596	}
1597
1598	return ret;
1599}
1600#endif
1601
1602static const struct dev_pm_ops mmci_dev_pm_ops = {
1603	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1604};
1605
1606static struct amba_id mmci_ids[] = {
1607	{
1608		.id	= 0x00041180,
1609		.mask	= 0xff0fffff,
1610		.data	= &variant_arm,
1611	},
1612	{
1613		.id	= 0x01041180,
1614		.mask	= 0xff0fffff,
1615		.data	= &variant_arm_extended_fifo,
1616	},
1617	{
1618		.id	= 0x00041181,
1619		.mask	= 0x000fffff,
1620		.data	= &variant_arm,
1621	},
1622	/* ST Micro variants */
1623	{
1624		.id     = 0x00180180,
1625		.mask   = 0x00ffffff,
1626		.data	= &variant_u300,
1627	},
1628	{
1629		.id     = 0x00280180,
1630		.mask   = 0x00ffffff,
1631		.data	= &variant_u300,
1632	},
1633	{
1634		.id     = 0x00480180,
1635		.mask   = 0xf0ffffff,
1636		.data	= &variant_ux500,
1637	},
1638	{
1639		.id     = 0x10480180,
1640		.mask   = 0xf0ffffff,
1641		.data	= &variant_ux500v2,
1642	},
1643	{ 0, 0 },
1644};
1645
1646MODULE_DEVICE_TABLE(amba, mmci_ids);
1647
1648static struct amba_driver mmci_driver = {
1649	.drv		= {
1650		.name	= DRIVER_NAME,
1651		.pm	= &mmci_dev_pm_ops,
1652	},
1653	.probe		= mmci_probe,
1654	.remove		= __devexit_p(mmci_remove),
1655	.id_table	= mmci_ids,
1656};
1657
1658module_amba_driver(mmci_driver);
1659
1660module_param(fmax, uint, 0444);
1661
1662MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1663MODULE_LICENSE("GPL");
1664