mmci.c revision c73541336389f9fd72f592601c40a2e70320cf31
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43#include <asm/sizes.h>
44
45#include "mmci.h"
46#include "mmci_qcom_dml.h"
47
48#define DRIVER_NAME "mmci-pl18x"
49
50static unsigned int fmax = 515633;
51
52/**
53 * struct variant_data - MMCI variant-specific quirks
54 * @clkreg: default value for MCICLOCK register
55 * @clkreg_enable: enable value for MMCICLOCK register
56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58 * @datalength_bits: number of bits in the MMCIDATALENGTH register
59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60 *	      is asserted (likewise for RX)
61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62 *		  is asserted (likewise for RX)
63 * @data_cmd_enable: enable value for data commands.
64 * @st_sdio: enable ST specific SDIO logic
65 * @st_clkdiv: true if using a ST-specific clock divider algorithm
66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 *		     register
70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71 * @pwrreg_powerup: power up value for MMCIPOWER register
72 * @f_max: maximum clk frequency supported by the controller.
73 * @signal_direction: input/out direction of bus signals can be indicated
74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75 * @busy_detect: true if busy detection on dat0 is supported
76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77 * @explicit_mclk_control: enable explicit mclk control in driver.
78 * @qcom_fifo: enables qcom specific fifo pio read logic.
79 * @qcom_dml: enables qcom specific dma glue for dma transfers.
80 * @reversed_irq_handling: handle data irq before cmd irq.
81 */
82struct variant_data {
83	unsigned int		clkreg;
84	unsigned int		clkreg_enable;
85	unsigned int		clkreg_8bit_bus_enable;
86	unsigned int		clkreg_neg_edge_enable;
87	unsigned int		datalength_bits;
88	unsigned int		fifosize;
89	unsigned int		fifohalfsize;
90	unsigned int		data_cmd_enable;
91	unsigned int		datactrl_mask_ddrmode;
92	unsigned int		datactrl_mask_sdio;
93	bool			st_sdio;
94	bool			st_clkdiv;
95	bool			blksz_datactrl16;
96	bool			blksz_datactrl4;
97	u32			pwrreg_powerup;
98	u32			f_max;
99	bool			signal_direction;
100	bool			pwrreg_clkgate;
101	bool			busy_detect;
102	bool			pwrreg_nopower;
103	bool			explicit_mclk_control;
104	bool			qcom_fifo;
105	bool			qcom_dml;
106	bool			reversed_irq_handling;
107};
108
109static struct variant_data variant_arm = {
110	.fifosize		= 16 * 4,
111	.fifohalfsize		= 8 * 4,
112	.datalength_bits	= 16,
113	.pwrreg_powerup		= MCI_PWR_UP,
114	.f_max			= 100000000,
115	.reversed_irq_handling	= true,
116};
117
118static struct variant_data variant_arm_extended_fifo = {
119	.fifosize		= 128 * 4,
120	.fifohalfsize		= 64 * 4,
121	.datalength_bits	= 16,
122	.pwrreg_powerup		= MCI_PWR_UP,
123	.f_max			= 100000000,
124};
125
126static struct variant_data variant_arm_extended_fifo_hwfc = {
127	.fifosize		= 128 * 4,
128	.fifohalfsize		= 64 * 4,
129	.clkreg_enable		= MCI_ARM_HWFCEN,
130	.datalength_bits	= 16,
131	.pwrreg_powerup		= MCI_PWR_UP,
132	.f_max			= 100000000,
133};
134
135static struct variant_data variant_u300 = {
136	.fifosize		= 16 * 4,
137	.fifohalfsize		= 8 * 4,
138	.clkreg_enable		= MCI_ST_U300_HWFCEN,
139	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140	.datalength_bits	= 16,
141	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
142	.st_sdio			= true,
143	.pwrreg_powerup		= MCI_PWR_ON,
144	.f_max			= 100000000,
145	.signal_direction	= true,
146	.pwrreg_clkgate		= true,
147	.pwrreg_nopower		= true,
148};
149
150static struct variant_data variant_nomadik = {
151	.fifosize		= 16 * 4,
152	.fifohalfsize		= 8 * 4,
153	.clkreg			= MCI_CLK_ENABLE,
154	.datalength_bits	= 24,
155	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
156	.st_sdio		= true,
157	.st_clkdiv		= true,
158	.pwrreg_powerup		= MCI_PWR_ON,
159	.f_max			= 100000000,
160	.signal_direction	= true,
161	.pwrreg_clkgate		= true,
162	.pwrreg_nopower		= true,
163};
164
165static struct variant_data variant_ux500 = {
166	.fifosize		= 30 * 4,
167	.fifohalfsize		= 8 * 4,
168	.clkreg			= MCI_CLK_ENABLE,
169	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
170	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
172	.datalength_bits	= 24,
173	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
174	.st_sdio		= true,
175	.st_clkdiv		= true,
176	.pwrreg_powerup		= MCI_PWR_ON,
177	.f_max			= 100000000,
178	.signal_direction	= true,
179	.pwrreg_clkgate		= true,
180	.busy_detect		= true,
181	.pwrreg_nopower		= true,
182};
183
184static struct variant_data variant_ux500v2 = {
185	.fifosize		= 30 * 4,
186	.fifohalfsize		= 8 * 4,
187	.clkreg			= MCI_CLK_ENABLE,
188	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
189	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
191	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
192	.datalength_bits	= 24,
193	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
194	.st_sdio		= true,
195	.st_clkdiv		= true,
196	.blksz_datactrl16	= true,
197	.pwrreg_powerup		= MCI_PWR_ON,
198	.f_max			= 100000000,
199	.signal_direction	= true,
200	.pwrreg_clkgate		= true,
201	.busy_detect		= true,
202	.pwrreg_nopower		= true,
203};
204
205static struct variant_data variant_qcom = {
206	.fifosize		= 16 * 4,
207	.fifohalfsize		= 8 * 4,
208	.clkreg			= MCI_CLK_ENABLE,
209	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
214	.blksz_datactrl4	= true,
215	.datalength_bits	= 24,
216	.pwrreg_powerup		= MCI_PWR_UP,
217	.f_max			= 208000000,
218	.explicit_mclk_control	= true,
219	.qcom_fifo		= true,
220	.qcom_dml		= true,
221};
222
223static int mmci_card_busy(struct mmc_host *mmc)
224{
225	struct mmci_host *host = mmc_priv(mmc);
226	unsigned long flags;
227	int busy = 0;
228
229	pm_runtime_get_sync(mmc_dev(mmc));
230
231	spin_lock_irqsave(&host->lock, flags);
232	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233		busy = 1;
234	spin_unlock_irqrestore(&host->lock, flags);
235
236	pm_runtime_mark_last_busy(mmc_dev(mmc));
237	pm_runtime_put_autosuspend(mmc_dev(mmc));
238
239	return busy;
240}
241
242/*
243 * Validate mmc prerequisites
244 */
245static int mmci_validate_data(struct mmci_host *host,
246			      struct mmc_data *data)
247{
248	if (!data)
249		return 0;
250
251	if (!is_power_of_2(data->blksz)) {
252		dev_err(mmc_dev(host->mmc),
253			"unsupported block size (%d bytes)\n", data->blksz);
254		return -EINVAL;
255	}
256
257	return 0;
258}
259
260static void mmci_reg_delay(struct mmci_host *host)
261{
262	/*
263	 * According to the spec, at least three feedback clock cycles
264	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266	 * Worst delay time during card init is at 100 kHz => 30 us.
267	 * Worst delay time when up and running is at 25 MHz => 120 ns.
268	 */
269	if (host->cclk < 25000000)
270		udelay(30);
271	else
272		ndelay(120);
273}
274
275/*
276 * This must be called with host->lock held
277 */
278static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279{
280	if (host->clk_reg != clk) {
281		host->clk_reg = clk;
282		writel(clk, host->base + MMCICLOCK);
283	}
284}
285
286/*
287 * This must be called with host->lock held
288 */
289static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290{
291	if (host->pwr_reg != pwr) {
292		host->pwr_reg = pwr;
293		writel(pwr, host->base + MMCIPOWER);
294	}
295}
296
297/*
298 * This must be called with host->lock held
299 */
300static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301{
302	/* Keep ST Micro busy mode if enabled */
303	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304
305	if (host->datactrl_reg != datactrl) {
306		host->datactrl_reg = datactrl;
307		writel(datactrl, host->base + MMCIDATACTRL);
308	}
309}
310
311/*
312 * This must be called with host->lock held
313 */
314static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315{
316	struct variant_data *variant = host->variant;
317	u32 clk = variant->clkreg;
318
319	/* Make sure cclk reflects the current calculated clock */
320	host->cclk = 0;
321
322	if (desired) {
323		if (variant->explicit_mclk_control) {
324			host->cclk = host->mclk;
325		} else if (desired >= host->mclk) {
326			clk = MCI_CLK_BYPASS;
327			if (variant->st_clkdiv)
328				clk |= MCI_ST_UX500_NEG_EDGE;
329			host->cclk = host->mclk;
330		} else if (variant->st_clkdiv) {
331			/*
332			 * DB8500 TRM says f = mclk / (clkdiv + 2)
333			 * => clkdiv = (mclk / f) - 2
334			 * Round the divider up so we don't exceed the max
335			 * frequency
336			 */
337			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338			if (clk >= 256)
339				clk = 255;
340			host->cclk = host->mclk / (clk + 2);
341		} else {
342			/*
343			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344			 * => clkdiv = mclk / (2 * f) - 1
345			 */
346			clk = host->mclk / (2 * desired) - 1;
347			if (clk >= 256)
348				clk = 255;
349			host->cclk = host->mclk / (2 * (clk + 1));
350		}
351
352		clk |= variant->clkreg_enable;
353		clk |= MCI_CLK_ENABLE;
354		/* This hasn't proven to be worthwhile */
355		/* clk |= MCI_CLK_PWRSAVE; */
356	}
357
358	/* Set actual clock for debug */
359	host->mmc->actual_clock = host->cclk;
360
361	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362		clk |= MCI_4BIT_BUS;
363	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364		clk |= variant->clkreg_8bit_bus_enable;
365
366	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368		clk |= variant->clkreg_neg_edge_enable;
369
370	mmci_write_clkreg(host, clk);
371}
372
373static void
374mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375{
376	writel(0, host->base + MMCICOMMAND);
377
378	BUG_ON(host->data);
379
380	host->mrq = NULL;
381	host->cmd = NULL;
382
383	mmc_request_done(host->mmc, mrq);
384
385	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387}
388
389static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390{
391	void __iomem *base = host->base;
392
393	if (host->singleirq) {
394		unsigned int mask0 = readl(base + MMCIMASK0);
395
396		mask0 &= ~MCI_IRQ1MASK;
397		mask0 |= mask;
398
399		writel(mask0, base + MMCIMASK0);
400	}
401
402	writel(mask, base + MMCIMASK1);
403}
404
405static void mmci_stop_data(struct mmci_host *host)
406{
407	mmci_write_datactrlreg(host, 0);
408	mmci_set_mask1(host, 0);
409	host->data = NULL;
410}
411
412static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413{
414	unsigned int flags = SG_MITER_ATOMIC;
415
416	if (data->flags & MMC_DATA_READ)
417		flags |= SG_MITER_TO_SG;
418	else
419		flags |= SG_MITER_FROM_SG;
420
421	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422}
423
424/*
425 * All the DMA operation mode stuff goes inside this ifdef.
426 * This assumes that you have a generic DMA device interface,
427 * no custom DMA interfaces are supported.
428 */
429#ifdef CONFIG_DMA_ENGINE
430static void mmci_dma_setup(struct mmci_host *host)
431{
432	const char *rxname, *txname;
433	dma_cap_mask_t mask;
434	struct variant_data *variant = host->variant;
435
436	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
438
439	/* initialize pre request cookie */
440	host->next_data.cookie = 1;
441
442	/* Try to acquire a generic DMA engine slave channel */
443	dma_cap_zero(mask);
444	dma_cap_set(DMA_SLAVE, mask);
445
446	/*
447	 * If only an RX channel is specified, the driver will
448	 * attempt to use it bidirectionally, however if it is
449	 * is specified but cannot be located, DMA will be disabled.
450	 */
451	if (host->dma_rx_channel && !host->dma_tx_channel)
452		host->dma_tx_channel = host->dma_rx_channel;
453
454	if (host->dma_rx_channel)
455		rxname = dma_chan_name(host->dma_rx_channel);
456	else
457		rxname = "none";
458
459	if (host->dma_tx_channel)
460		txname = dma_chan_name(host->dma_tx_channel);
461	else
462		txname = "none";
463
464	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
465		 rxname, txname);
466
467	/*
468	 * Limit the maximum segment size in any SG entry according to
469	 * the parameters of the DMA engine device.
470	 */
471	if (host->dma_tx_channel) {
472		struct device *dev = host->dma_tx_channel->device->dev;
473		unsigned int max_seg_size = dma_get_max_seg_size(dev);
474
475		if (max_seg_size < host->mmc->max_seg_size)
476			host->mmc->max_seg_size = max_seg_size;
477	}
478	if (host->dma_rx_channel) {
479		struct device *dev = host->dma_rx_channel->device->dev;
480		unsigned int max_seg_size = dma_get_max_seg_size(dev);
481
482		if (max_seg_size < host->mmc->max_seg_size)
483			host->mmc->max_seg_size = max_seg_size;
484	}
485
486	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
487		if (dml_hw_init(host, host->mmc->parent->of_node))
488			variant->qcom_dml = false;
489}
490
491/*
492 * This is used in or so inline it
493 * so it can be discarded.
494 */
495static inline void mmci_dma_release(struct mmci_host *host)
496{
497	if (host->dma_rx_channel)
498		dma_release_channel(host->dma_rx_channel);
499	if (host->dma_tx_channel)
500		dma_release_channel(host->dma_tx_channel);
501	host->dma_rx_channel = host->dma_tx_channel = NULL;
502}
503
504static void mmci_dma_data_error(struct mmci_host *host)
505{
506	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
507	dmaengine_terminate_all(host->dma_current);
508	host->dma_current = NULL;
509	host->dma_desc_current = NULL;
510	host->data->host_cookie = 0;
511}
512
513static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
514{
515	struct dma_chan *chan;
516	enum dma_data_direction dir;
517
518	if (data->flags & MMC_DATA_READ) {
519		dir = DMA_FROM_DEVICE;
520		chan = host->dma_rx_channel;
521	} else {
522		dir = DMA_TO_DEVICE;
523		chan = host->dma_tx_channel;
524	}
525
526	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
527}
528
529static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530{
531	u32 status;
532	int i;
533
534	/* Wait up to 1ms for the DMA to complete */
535	for (i = 0; ; i++) {
536		status = readl(host->base + MMCISTATUS);
537		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538			break;
539		udelay(10);
540	}
541
542	/*
543	 * Check to see whether we still have some data left in the FIFO -
544	 * this catches DMA controllers which are unable to monitor the
545	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
547	 */
548	if (status & MCI_RXDATAAVLBLMASK) {
549		mmci_dma_data_error(host);
550		if (!data->error)
551			data->error = -EIO;
552	}
553
554	if (!data->host_cookie)
555		mmci_dma_unmap(host, data);
556
557	/*
558	 * Use of DMA with scatter-gather is impossible.
559	 * Give up with DMA and switch back to PIO mode.
560	 */
561	if (status & MCI_RXDATAAVLBLMASK) {
562		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563		mmci_dma_release(host);
564	}
565
566	host->dma_current = NULL;
567	host->dma_desc_current = NULL;
568}
569
570/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
571static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
572				struct dma_chan **dma_chan,
573				struct dma_async_tx_descriptor **dma_desc)
574{
575	struct variant_data *variant = host->variant;
576	struct dma_slave_config conf = {
577		.src_addr = host->phybase + MMCIFIFO,
578		.dst_addr = host->phybase + MMCIFIFO,
579		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
580		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
582		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
583		.device_fc = false,
584	};
585	struct dma_chan *chan;
586	struct dma_device *device;
587	struct dma_async_tx_descriptor *desc;
588	enum dma_data_direction buffer_dirn;
589	int nr_sg;
590	unsigned long flags = DMA_CTRL_ACK;
591
592	if (data->flags & MMC_DATA_READ) {
593		conf.direction = DMA_DEV_TO_MEM;
594		buffer_dirn = DMA_FROM_DEVICE;
595		chan = host->dma_rx_channel;
596	} else {
597		conf.direction = DMA_MEM_TO_DEV;
598		buffer_dirn = DMA_TO_DEVICE;
599		chan = host->dma_tx_channel;
600	}
601
602	/* If there's no DMA channel, fall back to PIO */
603	if (!chan)
604		return -EINVAL;
605
606	/* If less than or equal to the fifo size, don't bother with DMA */
607	if (data->blksz * data->blocks <= variant->fifosize)
608		return -EINVAL;
609
610	device = chan->device;
611	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612	if (nr_sg == 0)
613		return -EINVAL;
614
615	if (host->variant->qcom_dml)
616		flags |= DMA_PREP_INTERRUPT;
617
618	dmaengine_slave_config(chan, &conf);
619	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
620					    conf.direction, flags);
621	if (!desc)
622		goto unmap_exit;
623
624	*dma_chan = chan;
625	*dma_desc = desc;
626
627	return 0;
628
629 unmap_exit:
630	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
631	return -ENOMEM;
632}
633
634static inline int mmci_dma_prep_data(struct mmci_host *host,
635				     struct mmc_data *data)
636{
637	/* Check if next job is already prepared. */
638	if (host->dma_current && host->dma_desc_current)
639		return 0;
640
641	/* No job were prepared thus do it now. */
642	return __mmci_dma_prep_data(host, data, &host->dma_current,
643				    &host->dma_desc_current);
644}
645
646static inline int mmci_dma_prep_next(struct mmci_host *host,
647				     struct mmc_data *data)
648{
649	struct mmci_host_next *nd = &host->next_data;
650	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651}
652
653static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654{
655	int ret;
656	struct mmc_data *data = host->data;
657
658	ret = mmci_dma_prep_data(host, host->data);
659	if (ret)
660		return ret;
661
662	/* Okay, go for it. */
663	dev_vdbg(mmc_dev(host->mmc),
664		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665		 data->sg_len, data->blksz, data->blocks, data->flags);
666	dmaengine_submit(host->dma_desc_current);
667	dma_async_issue_pending(host->dma_current);
668
669	if (host->variant->qcom_dml)
670		dml_start_xfer(host, data);
671
672	datactrl |= MCI_DPSM_DMAENABLE;
673
674	/* Trigger the DMA transfer */
675	mmci_write_datactrlreg(host, datactrl);
676
677	/*
678	 * Let the MMCI say when the data is ended and it's time
679	 * to fire next DMA request. When that happens, MMCI will
680	 * call mmci_data_end()
681	 */
682	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
683	       host->base + MMCIMASK0);
684	return 0;
685}
686
687static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
688{
689	struct mmci_host_next *next = &host->next_data;
690
691	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
692	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
693
694	host->dma_desc_current = next->dma_desc;
695	host->dma_current = next->dma_chan;
696	next->dma_desc = NULL;
697	next->dma_chan = NULL;
698}
699
700static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
701			     bool is_first_req)
702{
703	struct mmci_host *host = mmc_priv(mmc);
704	struct mmc_data *data = mrq->data;
705	struct mmci_host_next *nd = &host->next_data;
706
707	if (!data)
708		return;
709
710	BUG_ON(data->host_cookie);
711
712	if (mmci_validate_data(host, data))
713		return;
714
715	if (!mmci_dma_prep_next(host, data))
716		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717}
718
719static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720			      int err)
721{
722	struct mmci_host *host = mmc_priv(mmc);
723	struct mmc_data *data = mrq->data;
724
725	if (!data || !data->host_cookie)
726		return;
727
728	mmci_dma_unmap(host, data);
729
730	if (err) {
731		struct mmci_host_next *next = &host->next_data;
732		struct dma_chan *chan;
733		if (data->flags & MMC_DATA_READ)
734			chan = host->dma_rx_channel;
735		else
736			chan = host->dma_tx_channel;
737		dmaengine_terminate_all(chan);
738
739		next->dma_desc = NULL;
740		next->dma_chan = NULL;
741	}
742}
743
744#else
745/* Blank functions if the DMA engine is not available */
746static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
747{
748}
749static inline void mmci_dma_setup(struct mmci_host *host)
750{
751}
752
753static inline void mmci_dma_release(struct mmci_host *host)
754{
755}
756
757static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
758{
759}
760
761static inline void mmci_dma_finalize(struct mmci_host *host,
762				     struct mmc_data *data)
763{
764}
765
766static inline void mmci_dma_data_error(struct mmci_host *host)
767{
768}
769
770static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
771{
772	return -ENOSYS;
773}
774
775#define mmci_pre_request NULL
776#define mmci_post_request NULL
777
778#endif
779
780static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
781{
782	struct variant_data *variant = host->variant;
783	unsigned int datactrl, timeout, irqmask;
784	unsigned long long clks;
785	void __iomem *base;
786	int blksz_bits;
787
788	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
789		data->blksz, data->blocks, data->flags);
790
791	host->data = data;
792	host->size = data->blksz * data->blocks;
793	data->bytes_xfered = 0;
794
795	clks = (unsigned long long)data->timeout_ns * host->cclk;
796	do_div(clks, NSEC_PER_SEC);
797
798	timeout = data->timeout_clks + (unsigned int)clks;
799
800	base = host->base;
801	writel(timeout, base + MMCIDATATIMER);
802	writel(host->size, base + MMCIDATALENGTH);
803
804	blksz_bits = ffs(data->blksz) - 1;
805	BUG_ON(1 << blksz_bits != data->blksz);
806
807	if (variant->blksz_datactrl16)
808		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
809	else if (variant->blksz_datactrl4)
810		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
811	else
812		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
813
814	if (data->flags & MMC_DATA_READ)
815		datactrl |= MCI_DPSM_DIRECTION;
816
817	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
818		u32 clk;
819
820		datactrl |= variant->datactrl_mask_sdio;
821
822		/*
823		 * The ST Micro variant for SDIO small write transfers
824		 * needs to have clock H/W flow control disabled,
825		 * otherwise the transfer will not start. The threshold
826		 * depends on the rate of MCLK.
827		 */
828		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
829		    (host->size < 8 ||
830		     (host->size <= 8 && host->mclk > 50000000)))
831			clk = host->clk_reg & ~variant->clkreg_enable;
832		else
833			clk = host->clk_reg | variant->clkreg_enable;
834
835		mmci_write_clkreg(host, clk);
836	}
837
838	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
839	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
840		datactrl |= variant->datactrl_mask_ddrmode;
841
842	/*
843	 * Attempt to use DMA operation mode, if this
844	 * should fail, fall back to PIO mode
845	 */
846	if (!mmci_dma_start_data(host, datactrl))
847		return;
848
849	/* IRQ mode, map the SG list for CPU reading/writing */
850	mmci_init_sg(host, data);
851
852	if (data->flags & MMC_DATA_READ) {
853		irqmask = MCI_RXFIFOHALFFULLMASK;
854
855		/*
856		 * If we have less than the fifo 'half-full' threshold to
857		 * transfer, trigger a PIO interrupt as soon as any data
858		 * is available.
859		 */
860		if (host->size < variant->fifohalfsize)
861			irqmask |= MCI_RXDATAAVLBLMASK;
862	} else {
863		/*
864		 * We don't actually need to include "FIFO empty" here
865		 * since its implicit in "FIFO half empty".
866		 */
867		irqmask = MCI_TXFIFOHALFEMPTYMASK;
868	}
869
870	mmci_write_datactrlreg(host, datactrl);
871	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
872	mmci_set_mask1(host, irqmask);
873}
874
875static void
876mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
877{
878	void __iomem *base = host->base;
879
880	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
881	    cmd->opcode, cmd->arg, cmd->flags);
882
883	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
884		writel(0, base + MMCICOMMAND);
885		mmci_reg_delay(host);
886	}
887
888	c |= cmd->opcode | MCI_CPSM_ENABLE;
889	if (cmd->flags & MMC_RSP_PRESENT) {
890		if (cmd->flags & MMC_RSP_136)
891			c |= MCI_CPSM_LONGRSP;
892		c |= MCI_CPSM_RESPONSE;
893	}
894	if (/*interrupt*/0)
895		c |= MCI_CPSM_INTERRUPT;
896
897	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
898		c |= host->variant->data_cmd_enable;
899
900	host->cmd = cmd;
901
902	writel(cmd->arg, base + MMCIARGUMENT);
903	writel(c, base + MMCICOMMAND);
904}
905
906static void
907mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
908	      unsigned int status)
909{
910	/* Make sure we have data to handle */
911	if (!data)
912		return;
913
914	/* First check for errors */
915	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
916		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
917		u32 remain, success;
918
919		/* Terminate the DMA transfer */
920		if (dma_inprogress(host)) {
921			mmci_dma_data_error(host);
922			mmci_dma_unmap(host, data);
923		}
924
925		/*
926		 * Calculate how far we are into the transfer.  Note that
927		 * the data counter gives the number of bytes transferred
928		 * on the MMC bus, not on the host side.  On reads, this
929		 * can be as much as a FIFO-worth of data ahead.  This
930		 * matters for FIFO overruns only.
931		 */
932		remain = readl(host->base + MMCIDATACNT);
933		success = data->blksz * data->blocks - remain;
934
935		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
936			status, success);
937		if (status & MCI_DATACRCFAIL) {
938			/* Last block was not successful */
939			success -= 1;
940			data->error = -EILSEQ;
941		} else if (status & MCI_DATATIMEOUT) {
942			data->error = -ETIMEDOUT;
943		} else if (status & MCI_STARTBITERR) {
944			data->error = -ECOMM;
945		} else if (status & MCI_TXUNDERRUN) {
946			data->error = -EIO;
947		} else if (status & MCI_RXOVERRUN) {
948			if (success > host->variant->fifosize)
949				success -= host->variant->fifosize;
950			else
951				success = 0;
952			data->error = -EIO;
953		}
954		data->bytes_xfered = round_down(success, data->blksz);
955	}
956
957	if (status & MCI_DATABLOCKEND)
958		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
959
960	if (status & MCI_DATAEND || data->error) {
961		if (dma_inprogress(host))
962			mmci_dma_finalize(host, data);
963		mmci_stop_data(host);
964
965		if (!data->error)
966			/* The error clause is handled above, success! */
967			data->bytes_xfered = data->blksz * data->blocks;
968
969		if (!data->stop || host->mrq->sbc) {
970			mmci_request_end(host, data->mrq);
971		} else {
972			mmci_start_command(host, data->stop, 0);
973		}
974	}
975}
976
977static void
978mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
979	     unsigned int status)
980{
981	void __iomem *base = host->base;
982	bool sbc, busy_resp;
983
984	if (!cmd)
985		return;
986
987	sbc = (cmd == host->mrq->sbc);
988	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
989
990	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
991		MCI_CMDSENT|MCI_CMDRESPEND)))
992		return;
993
994	/* Check if we need to wait for busy completion. */
995	if (host->busy_status && (status & MCI_ST_CARDBUSY))
996		return;
997
998	/* Enable busy completion if needed and supported. */
999	if (!host->busy_status && busy_resp &&
1000		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1001		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1002		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1003			base + MMCIMASK0);
1004		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1005		return;
1006	}
1007
1008	/* At busy completion, mask the IRQ and complete the request. */
1009	if (host->busy_status) {
1010		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1011			base + MMCIMASK0);
1012		host->busy_status = 0;
1013	}
1014
1015	host->cmd = NULL;
1016
1017	if (status & MCI_CMDTIMEOUT) {
1018		cmd->error = -ETIMEDOUT;
1019	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1020		cmd->error = -EILSEQ;
1021	} else {
1022		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1023		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1024		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1025		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1026	}
1027
1028	if ((!sbc && !cmd->data) || cmd->error) {
1029		if (host->data) {
1030			/* Terminate the DMA transfer */
1031			if (dma_inprogress(host)) {
1032				mmci_dma_data_error(host);
1033				mmci_dma_unmap(host, host->data);
1034			}
1035			mmci_stop_data(host);
1036		}
1037		mmci_request_end(host, host->mrq);
1038	} else if (sbc) {
1039		mmci_start_command(host, host->mrq->cmd, 0);
1040	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1041		mmci_start_data(host, cmd->data);
1042	}
1043}
1044
1045static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1046{
1047	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1048}
1049
1050static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1051{
1052	/*
1053	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1054	 * from the fifo range should be used
1055	 */
1056	if (status & MCI_RXFIFOHALFFULL)
1057		return host->variant->fifohalfsize;
1058	else if (status & MCI_RXDATAAVLBL)
1059		return 4;
1060
1061	return 0;
1062}
1063
1064static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1065{
1066	void __iomem *base = host->base;
1067	char *ptr = buffer;
1068	u32 status = readl(host->base + MMCISTATUS);
1069	int host_remain = host->size;
1070
1071	do {
1072		int count = host->get_rx_fifocnt(host, status, host_remain);
1073
1074		if (count > remain)
1075			count = remain;
1076
1077		if (count <= 0)
1078			break;
1079
1080		/*
1081		 * SDIO especially may want to send something that is
1082		 * not divisible by 4 (as opposed to card sectors
1083		 * etc). Therefore make sure to always read the last bytes
1084		 * while only doing full 32-bit reads towards the FIFO.
1085		 */
1086		if (unlikely(count & 0x3)) {
1087			if (count < 4) {
1088				unsigned char buf[4];
1089				ioread32_rep(base + MMCIFIFO, buf, 1);
1090				memcpy(ptr, buf, count);
1091			} else {
1092				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1093				count &= ~0x3;
1094			}
1095		} else {
1096			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1097		}
1098
1099		ptr += count;
1100		remain -= count;
1101		host_remain -= count;
1102
1103		if (remain == 0)
1104			break;
1105
1106		status = readl(base + MMCISTATUS);
1107	} while (status & MCI_RXDATAAVLBL);
1108
1109	return ptr - buffer;
1110}
1111
1112static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1113{
1114	struct variant_data *variant = host->variant;
1115	void __iomem *base = host->base;
1116	char *ptr = buffer;
1117
1118	do {
1119		unsigned int count, maxcnt;
1120
1121		maxcnt = status & MCI_TXFIFOEMPTY ?
1122			 variant->fifosize : variant->fifohalfsize;
1123		count = min(remain, maxcnt);
1124
1125		/*
1126		 * SDIO especially may want to send something that is
1127		 * not divisible by 4 (as opposed to card sectors
1128		 * etc), and the FIFO only accept full 32-bit writes.
1129		 * So compensate by adding +3 on the count, a single
1130		 * byte become a 32bit write, 7 bytes will be two
1131		 * 32bit writes etc.
1132		 */
1133		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1134
1135		ptr += count;
1136		remain -= count;
1137
1138		if (remain == 0)
1139			break;
1140
1141		status = readl(base + MMCISTATUS);
1142	} while (status & MCI_TXFIFOHALFEMPTY);
1143
1144	return ptr - buffer;
1145}
1146
1147/*
1148 * PIO data transfer IRQ handler.
1149 */
1150static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1151{
1152	struct mmci_host *host = dev_id;
1153	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1154	struct variant_data *variant = host->variant;
1155	void __iomem *base = host->base;
1156	unsigned long flags;
1157	u32 status;
1158
1159	status = readl(base + MMCISTATUS);
1160
1161	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1162
1163	local_irq_save(flags);
1164
1165	do {
1166		unsigned int remain, len;
1167		char *buffer;
1168
1169		/*
1170		 * For write, we only need to test the half-empty flag
1171		 * here - if the FIFO is completely empty, then by
1172		 * definition it is more than half empty.
1173		 *
1174		 * For read, check for data available.
1175		 */
1176		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1177			break;
1178
1179		if (!sg_miter_next(sg_miter))
1180			break;
1181
1182		buffer = sg_miter->addr;
1183		remain = sg_miter->length;
1184
1185		len = 0;
1186		if (status & MCI_RXACTIVE)
1187			len = mmci_pio_read(host, buffer, remain);
1188		if (status & MCI_TXACTIVE)
1189			len = mmci_pio_write(host, buffer, remain, status);
1190
1191		sg_miter->consumed = len;
1192
1193		host->size -= len;
1194		remain -= len;
1195
1196		if (remain)
1197			break;
1198
1199		status = readl(base + MMCISTATUS);
1200	} while (1);
1201
1202	sg_miter_stop(sg_miter);
1203
1204	local_irq_restore(flags);
1205
1206	/*
1207	 * If we have less than the fifo 'half-full' threshold to transfer,
1208	 * trigger a PIO interrupt as soon as any data is available.
1209	 */
1210	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1211		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1212
1213	/*
1214	 * If we run out of data, disable the data IRQs; this
1215	 * prevents a race where the FIFO becomes empty before
1216	 * the chip itself has disabled the data path, and
1217	 * stops us racing with our data end IRQ.
1218	 */
1219	if (host->size == 0) {
1220		mmci_set_mask1(host, 0);
1221		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1222	}
1223
1224	return IRQ_HANDLED;
1225}
1226
1227/*
1228 * Handle completion of command and data transfers.
1229 */
1230static irqreturn_t mmci_irq(int irq, void *dev_id)
1231{
1232	struct mmci_host *host = dev_id;
1233	u32 status;
1234	int ret = 0;
1235
1236	spin_lock(&host->lock);
1237
1238	do {
1239		status = readl(host->base + MMCISTATUS);
1240
1241		if (host->singleirq) {
1242			if (status & readl(host->base + MMCIMASK1))
1243				mmci_pio_irq(irq, dev_id);
1244
1245			status &= ~MCI_IRQ1MASK;
1246		}
1247
1248		/*
1249		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1250		 * enabled) since the HW seems to be triggering the IRQ on both
1251		 * edges while monitoring DAT0 for busy completion.
1252		 */
1253		status &= readl(host->base + MMCIMASK0);
1254		writel(status, host->base + MMCICLEAR);
1255
1256		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1257
1258		if (host->variant->reversed_irq_handling) {
1259			mmci_data_irq(host, host->data, status);
1260			mmci_cmd_irq(host, host->cmd, status);
1261		} else {
1262			mmci_cmd_irq(host, host->cmd, status);
1263			mmci_data_irq(host, host->data, status);
1264		}
1265
1266		/* Don't poll for busy completion in irq context. */
1267		if (host->busy_status)
1268			status &= ~MCI_ST_CARDBUSY;
1269
1270		ret = 1;
1271	} while (status);
1272
1273	spin_unlock(&host->lock);
1274
1275	return IRQ_RETVAL(ret);
1276}
1277
1278static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1279{
1280	struct mmci_host *host = mmc_priv(mmc);
1281	unsigned long flags;
1282
1283	WARN_ON(host->mrq != NULL);
1284
1285	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1286	if (mrq->cmd->error) {
1287		mmc_request_done(mmc, mrq);
1288		return;
1289	}
1290
1291	pm_runtime_get_sync(mmc_dev(mmc));
1292
1293	spin_lock_irqsave(&host->lock, flags);
1294
1295	host->mrq = mrq;
1296
1297	if (mrq->data)
1298		mmci_get_next_data(host, mrq->data);
1299
1300	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1301		mmci_start_data(host, mrq->data);
1302
1303	if (mrq->sbc)
1304		mmci_start_command(host, mrq->sbc, 0);
1305	else
1306		mmci_start_command(host, mrq->cmd, 0);
1307
1308	spin_unlock_irqrestore(&host->lock, flags);
1309}
1310
1311static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1312{
1313	struct mmci_host *host = mmc_priv(mmc);
1314	struct variant_data *variant = host->variant;
1315	u32 pwr = 0;
1316	unsigned long flags;
1317	int ret;
1318
1319	pm_runtime_get_sync(mmc_dev(mmc));
1320
1321	if (host->plat->ios_handler &&
1322		host->plat->ios_handler(mmc_dev(mmc), ios))
1323			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1324
1325	switch (ios->power_mode) {
1326	case MMC_POWER_OFF:
1327		if (!IS_ERR(mmc->supply.vmmc))
1328			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1329
1330		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1331			regulator_disable(mmc->supply.vqmmc);
1332			host->vqmmc_enabled = false;
1333		}
1334
1335		break;
1336	case MMC_POWER_UP:
1337		if (!IS_ERR(mmc->supply.vmmc))
1338			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1339
1340		/*
1341		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1342		 * and instead uses MCI_PWR_ON so apply whatever value is
1343		 * configured in the variant data.
1344		 */
1345		pwr |= variant->pwrreg_powerup;
1346
1347		break;
1348	case MMC_POWER_ON:
1349		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1350			ret = regulator_enable(mmc->supply.vqmmc);
1351			if (ret < 0)
1352				dev_err(mmc_dev(mmc),
1353					"failed to enable vqmmc regulator\n");
1354			else
1355				host->vqmmc_enabled = true;
1356		}
1357
1358		pwr |= MCI_PWR_ON;
1359		break;
1360	}
1361
1362	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1363		/*
1364		 * The ST Micro variant has some additional bits
1365		 * indicating signal direction for the signals in
1366		 * the SD/MMC bus and feedback-clock usage.
1367		 */
1368		pwr |= host->pwr_reg_add;
1369
1370		if (ios->bus_width == MMC_BUS_WIDTH_4)
1371			pwr &= ~MCI_ST_DATA74DIREN;
1372		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1373			pwr &= (~MCI_ST_DATA74DIREN &
1374				~MCI_ST_DATA31DIREN &
1375				~MCI_ST_DATA2DIREN);
1376	}
1377
1378	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1379		if (host->hw_designer != AMBA_VENDOR_ST)
1380			pwr |= MCI_ROD;
1381		else {
1382			/*
1383			 * The ST Micro variant use the ROD bit for something
1384			 * else and only has OD (Open Drain).
1385			 */
1386			pwr |= MCI_OD;
1387		}
1388	}
1389
1390	/*
1391	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1392	 * gating the clock, the MCI_PWR_ON bit is cleared.
1393	 */
1394	if (!ios->clock && variant->pwrreg_clkgate)
1395		pwr &= ~MCI_PWR_ON;
1396
1397	if (host->variant->explicit_mclk_control &&
1398	    ios->clock != host->clock_cache) {
1399		ret = clk_set_rate(host->clk, ios->clock);
1400		if (ret < 0)
1401			dev_err(mmc_dev(host->mmc),
1402				"Error setting clock rate (%d)\n", ret);
1403		else
1404			host->mclk = clk_get_rate(host->clk);
1405	}
1406	host->clock_cache = ios->clock;
1407
1408	spin_lock_irqsave(&host->lock, flags);
1409
1410	mmci_set_clkreg(host, ios->clock);
1411	mmci_write_pwrreg(host, pwr);
1412	mmci_reg_delay(host);
1413
1414	spin_unlock_irqrestore(&host->lock, flags);
1415
1416	pm_runtime_mark_last_busy(mmc_dev(mmc));
1417	pm_runtime_put_autosuspend(mmc_dev(mmc));
1418}
1419
1420static int mmci_get_cd(struct mmc_host *mmc)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct mmci_platform_data *plat = host->plat;
1424	unsigned int status = mmc_gpio_get_cd(mmc);
1425
1426	if (status == -ENOSYS) {
1427		if (!plat->status)
1428			return 1; /* Assume always present */
1429
1430		status = plat->status(mmc_dev(host->mmc));
1431	}
1432	return status;
1433}
1434
1435static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1436{
1437	int ret = 0;
1438
1439	if (!IS_ERR(mmc->supply.vqmmc)) {
1440
1441		pm_runtime_get_sync(mmc_dev(mmc));
1442
1443		switch (ios->signal_voltage) {
1444		case MMC_SIGNAL_VOLTAGE_330:
1445			ret = regulator_set_voltage(mmc->supply.vqmmc,
1446						2700000, 3600000);
1447			break;
1448		case MMC_SIGNAL_VOLTAGE_180:
1449			ret = regulator_set_voltage(mmc->supply.vqmmc,
1450						1700000, 1950000);
1451			break;
1452		case MMC_SIGNAL_VOLTAGE_120:
1453			ret = regulator_set_voltage(mmc->supply.vqmmc,
1454						1100000, 1300000);
1455			break;
1456		}
1457
1458		if (ret)
1459			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1460
1461		pm_runtime_mark_last_busy(mmc_dev(mmc));
1462		pm_runtime_put_autosuspend(mmc_dev(mmc));
1463	}
1464
1465	return ret;
1466}
1467
1468static struct mmc_host_ops mmci_ops = {
1469	.request	= mmci_request,
1470	.pre_req	= mmci_pre_request,
1471	.post_req	= mmci_post_request,
1472	.set_ios	= mmci_set_ios,
1473	.get_ro		= mmc_gpio_get_ro,
1474	.get_cd		= mmci_get_cd,
1475	.start_signal_voltage_switch = mmci_sig_volt_switch,
1476};
1477
1478static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1479{
1480	struct mmci_host *host = mmc_priv(mmc);
1481	int ret = mmc_of_parse(mmc);
1482
1483	if (ret)
1484		return ret;
1485
1486	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1487		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1488	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1489		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1490	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1491		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1492	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1493		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1494	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1495		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1496	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1497		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1498
1499	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1500		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1501	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1502		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1503
1504	return 0;
1505}
1506
1507static int mmci_probe(struct amba_device *dev,
1508	const struct amba_id *id)
1509{
1510	struct mmci_platform_data *plat = dev->dev.platform_data;
1511	struct device_node *np = dev->dev.of_node;
1512	struct variant_data *variant = id->data;
1513	struct mmci_host *host;
1514	struct mmc_host *mmc;
1515	int ret;
1516
1517	/* Must have platform data or Device Tree. */
1518	if (!plat && !np) {
1519		dev_err(&dev->dev, "No plat data or DT found\n");
1520		return -EINVAL;
1521	}
1522
1523	if (!plat) {
1524		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1525		if (!plat)
1526			return -ENOMEM;
1527	}
1528
1529	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1530	if (!mmc)
1531		return -ENOMEM;
1532
1533	ret = mmci_of_parse(np, mmc);
1534	if (ret)
1535		goto host_free;
1536
1537	host = mmc_priv(mmc);
1538	host->mmc = mmc;
1539
1540	host->hw_designer = amba_manf(dev);
1541	host->hw_revision = amba_rev(dev);
1542	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1543	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1544
1545	host->clk = devm_clk_get(&dev->dev, NULL);
1546	if (IS_ERR(host->clk)) {
1547		ret = PTR_ERR(host->clk);
1548		goto host_free;
1549	}
1550
1551	ret = clk_prepare_enable(host->clk);
1552	if (ret)
1553		goto host_free;
1554
1555	if (variant->qcom_fifo)
1556		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1557	else
1558		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1559
1560	host->plat = plat;
1561	host->variant = variant;
1562	host->mclk = clk_get_rate(host->clk);
1563	/*
1564	 * According to the spec, mclk is max 100 MHz,
1565	 * so we try to adjust the clock down to this,
1566	 * (if possible).
1567	 */
1568	if (host->mclk > variant->f_max) {
1569		ret = clk_set_rate(host->clk, variant->f_max);
1570		if (ret < 0)
1571			goto clk_disable;
1572		host->mclk = clk_get_rate(host->clk);
1573		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1574			host->mclk);
1575	}
1576
1577	host->phybase = dev->res.start;
1578	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1579	if (IS_ERR(host->base)) {
1580		ret = PTR_ERR(host->base);
1581		goto clk_disable;
1582	}
1583
1584	/*
1585	 * The ARM and ST versions of the block have slightly different
1586	 * clock divider equations which means that the minimum divider
1587	 * differs too.
1588	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1589	 */
1590	if (variant->st_clkdiv)
1591		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1592	else if (variant->explicit_mclk_control)
1593		mmc->f_min = clk_round_rate(host->clk, 100000);
1594	else
1595		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1596	/*
1597	 * If no maximum operating frequency is supplied, fall back to use
1598	 * the module parameter, which has a (low) default value in case it
1599	 * is not specified. Either value must not exceed the clock rate into
1600	 * the block, of course.
1601	 */
1602	if (mmc->f_max)
1603		mmc->f_max = variant->explicit_mclk_control ?
1604				min(variant->f_max, mmc->f_max) :
1605				min(host->mclk, mmc->f_max);
1606	else
1607		mmc->f_max = variant->explicit_mclk_control ?
1608				fmax : min(host->mclk, fmax);
1609
1610
1611	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1612
1613	/* Get regulators and the supported OCR mask */
1614	mmc_regulator_get_supply(mmc);
1615	if (!mmc->ocr_avail)
1616		mmc->ocr_avail = plat->ocr_mask;
1617	else if (plat->ocr_mask)
1618		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1619
1620	/* DT takes precedence over platform data. */
1621	if (!np) {
1622		if (!plat->cd_invert)
1623			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1624		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1625	}
1626
1627	/* We support these capabilities. */
1628	mmc->caps |= MMC_CAP_CMD23;
1629
1630	if (variant->busy_detect) {
1631		mmci_ops.card_busy = mmci_card_busy;
1632		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1633		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1634		mmc->max_busy_timeout = 0;
1635	}
1636
1637	mmc->ops = &mmci_ops;
1638
1639	/* We support these PM capabilities. */
1640	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1641
1642	/*
1643	 * We can do SGIO
1644	 */
1645	mmc->max_segs = NR_SG;
1646
1647	/*
1648	 * Since only a certain number of bits are valid in the data length
1649	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1650	 * single request.
1651	 */
1652	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1653
1654	/*
1655	 * Set the maximum segment size.  Since we aren't doing DMA
1656	 * (yet) we are only limited by the data length register.
1657	 */
1658	mmc->max_seg_size = mmc->max_req_size;
1659
1660	/*
1661	 * Block size can be up to 2048 bytes, but must be a power of two.
1662	 */
1663	mmc->max_blk_size = 1 << 11;
1664
1665	/*
1666	 * Limit the number of blocks transferred so that we don't overflow
1667	 * the maximum request size.
1668	 */
1669	mmc->max_blk_count = mmc->max_req_size >> 11;
1670
1671	spin_lock_init(&host->lock);
1672
1673	writel(0, host->base + MMCIMASK0);
1674	writel(0, host->base + MMCIMASK1);
1675	writel(0xfff, host->base + MMCICLEAR);
1676
1677	/*
1678	 * If:
1679	 * - not using DT but using a descriptor table, or
1680	 * - using a table of descriptors ALONGSIDE DT, or
1681	 * look up these descriptors named "cd" and "wp" right here, fail
1682	 * silently of these do not exist and proceed to try platform data
1683	 */
1684	if (!np) {
1685		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
1686		if (ret < 0) {
1687			if (ret == -EPROBE_DEFER)
1688				goto clk_disable;
1689			else if (gpio_is_valid(plat->gpio_cd)) {
1690				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1691				if (ret)
1692					goto clk_disable;
1693			}
1694		}
1695
1696		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0);
1697		if (ret < 0) {
1698			if (ret == -EPROBE_DEFER)
1699				goto clk_disable;
1700			else if (gpio_is_valid(plat->gpio_wp)) {
1701				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1702				if (ret)
1703					goto clk_disable;
1704			}
1705		}
1706	}
1707
1708	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1709			DRIVER_NAME " (cmd)", host);
1710	if (ret)
1711		goto clk_disable;
1712
1713	if (!dev->irq[1])
1714		host->singleirq = true;
1715	else {
1716		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1717				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1718		if (ret)
1719			goto clk_disable;
1720	}
1721
1722	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1723
1724	amba_set_drvdata(dev, mmc);
1725
1726	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1727		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1728		 amba_rev(dev), (unsigned long long)dev->res.start,
1729		 dev->irq[0], dev->irq[1]);
1730
1731	mmci_dma_setup(host);
1732
1733	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1734	pm_runtime_use_autosuspend(&dev->dev);
1735	pm_runtime_put(&dev->dev);
1736
1737	mmc_add_host(mmc);
1738
1739	return 0;
1740
1741 clk_disable:
1742	clk_disable_unprepare(host->clk);
1743 host_free:
1744	mmc_free_host(mmc);
1745	return ret;
1746}
1747
1748static int mmci_remove(struct amba_device *dev)
1749{
1750	struct mmc_host *mmc = amba_get_drvdata(dev);
1751
1752	if (mmc) {
1753		struct mmci_host *host = mmc_priv(mmc);
1754
1755		/*
1756		 * Undo pm_runtime_put() in probe.  We use the _sync
1757		 * version here so that we can access the primecell.
1758		 */
1759		pm_runtime_get_sync(&dev->dev);
1760
1761		mmc_remove_host(mmc);
1762
1763		writel(0, host->base + MMCIMASK0);
1764		writel(0, host->base + MMCIMASK1);
1765
1766		writel(0, host->base + MMCICOMMAND);
1767		writel(0, host->base + MMCIDATACTRL);
1768
1769		mmci_dma_release(host);
1770		clk_disable_unprepare(host->clk);
1771		mmc_free_host(mmc);
1772	}
1773
1774	return 0;
1775}
1776
1777#ifdef CONFIG_PM
1778static void mmci_save(struct mmci_host *host)
1779{
1780	unsigned long flags;
1781
1782	spin_lock_irqsave(&host->lock, flags);
1783
1784	writel(0, host->base + MMCIMASK0);
1785	if (host->variant->pwrreg_nopower) {
1786		writel(0, host->base + MMCIDATACTRL);
1787		writel(0, host->base + MMCIPOWER);
1788		writel(0, host->base + MMCICLOCK);
1789	}
1790	mmci_reg_delay(host);
1791
1792	spin_unlock_irqrestore(&host->lock, flags);
1793}
1794
1795static void mmci_restore(struct mmci_host *host)
1796{
1797	unsigned long flags;
1798
1799	spin_lock_irqsave(&host->lock, flags);
1800
1801	if (host->variant->pwrreg_nopower) {
1802		writel(host->clk_reg, host->base + MMCICLOCK);
1803		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1804		writel(host->pwr_reg, host->base + MMCIPOWER);
1805	}
1806	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1807	mmci_reg_delay(host);
1808
1809	spin_unlock_irqrestore(&host->lock, flags);
1810}
1811
1812static int mmci_runtime_suspend(struct device *dev)
1813{
1814	struct amba_device *adev = to_amba_device(dev);
1815	struct mmc_host *mmc = amba_get_drvdata(adev);
1816
1817	if (mmc) {
1818		struct mmci_host *host = mmc_priv(mmc);
1819		pinctrl_pm_select_sleep_state(dev);
1820		mmci_save(host);
1821		clk_disable_unprepare(host->clk);
1822	}
1823
1824	return 0;
1825}
1826
1827static int mmci_runtime_resume(struct device *dev)
1828{
1829	struct amba_device *adev = to_amba_device(dev);
1830	struct mmc_host *mmc = amba_get_drvdata(adev);
1831
1832	if (mmc) {
1833		struct mmci_host *host = mmc_priv(mmc);
1834		clk_prepare_enable(host->clk);
1835		mmci_restore(host);
1836		pinctrl_pm_select_default_state(dev);
1837	}
1838
1839	return 0;
1840}
1841#endif
1842
1843static const struct dev_pm_ops mmci_dev_pm_ops = {
1844	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1845				pm_runtime_force_resume)
1846	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1847};
1848
1849static struct amba_id mmci_ids[] = {
1850	{
1851		.id	= 0x00041180,
1852		.mask	= 0xff0fffff,
1853		.data	= &variant_arm,
1854	},
1855	{
1856		.id	= 0x01041180,
1857		.mask	= 0xff0fffff,
1858		.data	= &variant_arm_extended_fifo,
1859	},
1860	{
1861		.id	= 0x02041180,
1862		.mask	= 0xff0fffff,
1863		.data	= &variant_arm_extended_fifo_hwfc,
1864	},
1865	{
1866		.id	= 0x00041181,
1867		.mask	= 0x000fffff,
1868		.data	= &variant_arm,
1869	},
1870	/* ST Micro variants */
1871	{
1872		.id     = 0x00180180,
1873		.mask   = 0x00ffffff,
1874		.data	= &variant_u300,
1875	},
1876	{
1877		.id     = 0x10180180,
1878		.mask   = 0xf0ffffff,
1879		.data	= &variant_nomadik,
1880	},
1881	{
1882		.id     = 0x00280180,
1883		.mask   = 0x00ffffff,
1884		.data	= &variant_u300,
1885	},
1886	{
1887		.id     = 0x00480180,
1888		.mask   = 0xf0ffffff,
1889		.data	= &variant_ux500,
1890	},
1891	{
1892		.id     = 0x10480180,
1893		.mask   = 0xf0ffffff,
1894		.data	= &variant_ux500v2,
1895	},
1896	/* Qualcomm variants */
1897	{
1898		.id     = 0x00051180,
1899		.mask	= 0x000fffff,
1900		.data	= &variant_qcom,
1901	},
1902	{ 0, 0 },
1903};
1904
1905MODULE_DEVICE_TABLE(amba, mmci_ids);
1906
1907static struct amba_driver mmci_driver = {
1908	.drv		= {
1909		.name	= DRIVER_NAME,
1910		.pm	= &mmci_dev_pm_ops,
1911	},
1912	.probe		= mmci_probe,
1913	.remove		= mmci_remove,
1914	.id_table	= mmci_ids,
1915};
1916
1917module_amba_driver(mmci_driver);
1918
1919module_param(fmax, uint, 0444);
1920
1921MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1922MODULE_LICENSE("GPL");
1923