mmci.c revision c8ebae37034c0ead62eb4df8ef88e999ddb8d5cf
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32
33#include <asm/div64.h>
34#include <asm/io.h>
35#include <asm/sizes.h>
36
37#include "mmci.h"
38
39#define DRIVER_NAME "mmci-pl18x"
40
41static unsigned int fmax = 515633;
42
43/**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 *	      is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 *		  is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 */
55struct variant_data {
56	unsigned int		clkreg;
57	unsigned int		clkreg_enable;
58	unsigned int		datalength_bits;
59	unsigned int		fifosize;
60	unsigned int		fifohalfsize;
61	bool			sdio;
62	bool			st_clkdiv;
63};
64
65static struct variant_data variant_arm = {
66	.fifosize		= 16 * 4,
67	.fifohalfsize		= 8 * 4,
68	.datalength_bits	= 16,
69};
70
71static struct variant_data variant_u300 = {
72	.fifosize		= 16 * 4,
73	.fifohalfsize		= 8 * 4,
74	.clkreg_enable		= 1 << 13, /* HWFCEN */
75	.datalength_bits	= 16,
76	.sdio			= true,
77};
78
79static struct variant_data variant_ux500 = {
80	.fifosize		= 30 * 4,
81	.fifohalfsize		= 8 * 4,
82	.clkreg			= MCI_CLK_ENABLE,
83	.clkreg_enable		= 1 << 14, /* HWFCEN */
84	.datalength_bits	= 24,
85	.sdio			= true,
86	.st_clkdiv		= true,
87};
88
89/*
90 * This must be called with host->lock held
91 */
92static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
93{
94	struct variant_data *variant = host->variant;
95	u32 clk = variant->clkreg;
96
97	if (desired) {
98		if (desired >= host->mclk) {
99			clk = MCI_CLK_BYPASS;
100			host->cclk = host->mclk;
101		} else if (variant->st_clkdiv) {
102			/*
103			 * DB8500 TRM says f = mclk / (clkdiv + 2)
104			 * => clkdiv = (mclk / f) - 2
105			 * Round the divider up so we don't exceed the max
106			 * frequency
107			 */
108			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
109			if (clk >= 256)
110				clk = 255;
111			host->cclk = host->mclk / (clk + 2);
112		} else {
113			/*
114			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
115			 * => clkdiv = mclk / (2 * f) - 1
116			 */
117			clk = host->mclk / (2 * desired) - 1;
118			if (clk >= 256)
119				clk = 255;
120			host->cclk = host->mclk / (2 * (clk + 1));
121		}
122
123		clk |= variant->clkreg_enable;
124		clk |= MCI_CLK_ENABLE;
125		/* This hasn't proven to be worthwhile */
126		/* clk |= MCI_CLK_PWRSAVE; */
127	}
128
129	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
130		clk |= MCI_4BIT_BUS;
131	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
132		clk |= MCI_ST_8BIT_BUS;
133
134	writel(clk, host->base + MMCICLOCK);
135}
136
137static void
138mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
139{
140	writel(0, host->base + MMCICOMMAND);
141
142	BUG_ON(host->data);
143
144	host->mrq = NULL;
145	host->cmd = NULL;
146
147	/*
148	 * Need to drop the host lock here; mmc_request_done may call
149	 * back into the driver...
150	 */
151	spin_unlock(&host->lock);
152	mmc_request_done(host->mmc, mrq);
153	spin_lock(&host->lock);
154}
155
156static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
157{
158	void __iomem *base = host->base;
159
160	if (host->singleirq) {
161		unsigned int mask0 = readl(base + MMCIMASK0);
162
163		mask0 &= ~MCI_IRQ1MASK;
164		mask0 |= mask;
165
166		writel(mask0, base + MMCIMASK0);
167	}
168
169	writel(mask, base + MMCIMASK1);
170}
171
172static void mmci_stop_data(struct mmci_host *host)
173{
174	writel(0, host->base + MMCIDATACTRL);
175	mmci_set_mask1(host, 0);
176	host->data = NULL;
177}
178
179static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
180{
181	unsigned int flags = SG_MITER_ATOMIC;
182
183	if (data->flags & MMC_DATA_READ)
184		flags |= SG_MITER_TO_SG;
185	else
186		flags |= SG_MITER_FROM_SG;
187
188	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
189}
190
191/*
192 * All the DMA operation mode stuff goes inside this ifdef.
193 * This assumes that you have a generic DMA device interface,
194 * no custom DMA interfaces are supported.
195 */
196#ifdef CONFIG_DMA_ENGINE
197static void __devinit mmci_dma_setup(struct mmci_host *host)
198{
199	struct mmci_platform_data *plat = host->plat;
200	const char *rxname, *txname;
201	dma_cap_mask_t mask;
202
203	if (!plat || !plat->dma_filter) {
204		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
205		return;
206	}
207
208	/* Try to acquire a generic DMA engine slave channel */
209	dma_cap_zero(mask);
210	dma_cap_set(DMA_SLAVE, mask);
211
212	/*
213	 * If only an RX channel is specified, the driver will
214	 * attempt to use it bidirectionally, however if it is
215	 * is specified but cannot be located, DMA will be disabled.
216	 */
217	if (plat->dma_rx_param) {
218		host->dma_rx_channel = dma_request_channel(mask,
219							   plat->dma_filter,
220							   plat->dma_rx_param);
221		/* E.g if no DMA hardware is present */
222		if (!host->dma_rx_channel)
223			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
224	}
225
226	if (plat->dma_tx_param) {
227		host->dma_tx_channel = dma_request_channel(mask,
228							   plat->dma_filter,
229							   plat->dma_tx_param);
230		if (!host->dma_tx_channel)
231			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
232	} else {
233		host->dma_tx_channel = host->dma_rx_channel;
234	}
235
236	if (host->dma_rx_channel)
237		rxname = dma_chan_name(host->dma_rx_channel);
238	else
239		rxname = "none";
240
241	if (host->dma_tx_channel)
242		txname = dma_chan_name(host->dma_tx_channel);
243	else
244		txname = "none";
245
246	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
247		 rxname, txname);
248
249	/*
250	 * Limit the maximum segment size in any SG entry according to
251	 * the parameters of the DMA engine device.
252	 */
253	if (host->dma_tx_channel) {
254		struct device *dev = host->dma_tx_channel->device->dev;
255		unsigned int max_seg_size = dma_get_max_seg_size(dev);
256
257		if (max_seg_size < host->mmc->max_seg_size)
258			host->mmc->max_seg_size = max_seg_size;
259	}
260	if (host->dma_rx_channel) {
261		struct device *dev = host->dma_rx_channel->device->dev;
262		unsigned int max_seg_size = dma_get_max_seg_size(dev);
263
264		if (max_seg_size < host->mmc->max_seg_size)
265			host->mmc->max_seg_size = max_seg_size;
266	}
267}
268
269/*
270 * This is used in __devinit or __devexit so inline it
271 * so it can be discarded.
272 */
273static inline void mmci_dma_release(struct mmci_host *host)
274{
275	struct mmci_platform_data *plat = host->plat;
276
277	if (host->dma_rx_channel)
278		dma_release_channel(host->dma_rx_channel);
279	if (host->dma_tx_channel && plat->dma_tx_param)
280		dma_release_channel(host->dma_tx_channel);
281	host->dma_rx_channel = host->dma_tx_channel = NULL;
282}
283
284static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
285{
286	struct dma_chan *chan = host->dma_current;
287	enum dma_data_direction dir;
288	u32 status;
289	int i;
290
291	/* Wait up to 1ms for the DMA to complete */
292	for (i = 0; ; i++) {
293		status = readl(host->base + MMCISTATUS);
294		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
295			break;
296		udelay(10);
297	}
298
299	/*
300	 * Check to see whether we still have some data left in the FIFO -
301	 * this catches DMA controllers which are unable to monitor the
302	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
303	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
304	 */
305	if (status & MCI_RXDATAAVLBLMASK) {
306		dmaengine_terminate_all(chan);
307		if (!data->error)
308			data->error = -EIO;
309	}
310
311	if (data->flags & MMC_DATA_WRITE) {
312		dir = DMA_TO_DEVICE;
313	} else {
314		dir = DMA_FROM_DEVICE;
315	}
316
317	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
318
319	/*
320	 * Use of DMA with scatter-gather is impossible.
321	 * Give up with DMA and switch back to PIO mode.
322	 */
323	if (status & MCI_RXDATAAVLBLMASK) {
324		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
325		mmci_dma_release(host);
326	}
327}
328
329static void mmci_dma_data_error(struct mmci_host *host)
330{
331	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
332	dmaengine_terminate_all(host->dma_current);
333}
334
335static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
336{
337	struct variant_data *variant = host->variant;
338	struct dma_slave_config conf = {
339		.src_addr = host->phybase + MMCIFIFO,
340		.dst_addr = host->phybase + MMCIFIFO,
341		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
342		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
343		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
344		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
345	};
346	struct mmc_data *data = host->data;
347	struct dma_chan *chan;
348	struct dma_device *device;
349	struct dma_async_tx_descriptor *desc;
350	int nr_sg;
351
352	host->dma_current = NULL;
353
354	if (data->flags & MMC_DATA_READ) {
355		conf.direction = DMA_FROM_DEVICE;
356		chan = host->dma_rx_channel;
357	} else {
358		conf.direction = DMA_TO_DEVICE;
359		chan = host->dma_tx_channel;
360	}
361
362	/* If there's no DMA channel, fall back to PIO */
363	if (!chan)
364		return -EINVAL;
365
366	/* If less than or equal to the fifo size, don't bother with DMA */
367	if (host->size <= variant->fifosize)
368		return -EINVAL;
369
370	device = chan->device;
371	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
372	if (nr_sg == 0)
373		return -EINVAL;
374
375	dmaengine_slave_config(chan, &conf);
376	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
377					    conf.direction, DMA_CTRL_ACK);
378	if (!desc)
379		goto unmap_exit;
380
381	/* Okay, go for it. */
382	host->dma_current = chan;
383
384	dev_vdbg(mmc_dev(host->mmc),
385		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
386		 data->sg_len, data->blksz, data->blocks, data->flags);
387	dmaengine_submit(desc);
388	dma_async_issue_pending(chan);
389
390	datactrl |= MCI_DPSM_DMAENABLE;
391
392	/* Trigger the DMA transfer */
393	writel(datactrl, host->base + MMCIDATACTRL);
394
395	/*
396	 * Let the MMCI say when the data is ended and it's time
397	 * to fire next DMA request. When that happens, MMCI will
398	 * call mmci_data_end()
399	 */
400	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
401	       host->base + MMCIMASK0);
402	return 0;
403
404unmap_exit:
405	dmaengine_terminate_all(chan);
406	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
407	return -ENOMEM;
408}
409#else
410/* Blank functions if the DMA engine is not available */
411static inline void mmci_dma_setup(struct mmci_host *host)
412{
413}
414
415static inline void mmci_dma_release(struct mmci_host *host)
416{
417}
418
419static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
420{
421}
422
423static inline void mmci_dma_data_error(struct mmci_host *host)
424{
425}
426
427static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
428{
429	return -ENOSYS;
430}
431#endif
432
433static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
434{
435	struct variant_data *variant = host->variant;
436	unsigned int datactrl, timeout, irqmask;
437	unsigned long long clks;
438	void __iomem *base;
439	int blksz_bits;
440
441	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
442		data->blksz, data->blocks, data->flags);
443
444	host->data = data;
445	host->size = data->blksz * data->blocks;
446	data->bytes_xfered = 0;
447
448	clks = (unsigned long long)data->timeout_ns * host->cclk;
449	do_div(clks, 1000000000UL);
450
451	timeout = data->timeout_clks + (unsigned int)clks;
452
453	base = host->base;
454	writel(timeout, base + MMCIDATATIMER);
455	writel(host->size, base + MMCIDATALENGTH);
456
457	blksz_bits = ffs(data->blksz) - 1;
458	BUG_ON(1 << blksz_bits != data->blksz);
459
460	datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
461
462	if (data->flags & MMC_DATA_READ)
463		datactrl |= MCI_DPSM_DIRECTION;
464
465	/*
466	 * Attempt to use DMA operation mode, if this
467	 * should fail, fall back to PIO mode
468	 */
469	if (!mmci_dma_start_data(host, datactrl))
470		return;
471
472	/* IRQ mode, map the SG list for CPU reading/writing */
473	mmci_init_sg(host, data);
474
475	if (data->flags & MMC_DATA_READ) {
476		irqmask = MCI_RXFIFOHALFFULLMASK;
477
478		/*
479		 * If we have less than the fifo 'half-full' threshold to
480		 * transfer, trigger a PIO interrupt as soon as any data
481		 * is available.
482		 */
483		if (host->size < variant->fifohalfsize)
484			irqmask |= MCI_RXDATAAVLBLMASK;
485	} else {
486		/*
487		 * We don't actually need to include "FIFO empty" here
488		 * since its implicit in "FIFO half empty".
489		 */
490		irqmask = MCI_TXFIFOHALFEMPTYMASK;
491	}
492
493	/* The ST Micro variants has a special bit to enable SDIO */
494	if (variant->sdio && host->mmc->card)
495		if (mmc_card_sdio(host->mmc->card))
496			datactrl |= MCI_ST_DPSM_SDIOEN;
497
498	writel(datactrl, base + MMCIDATACTRL);
499	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
500	mmci_set_mask1(host, irqmask);
501}
502
503static void
504mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
505{
506	void __iomem *base = host->base;
507
508	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
509	    cmd->opcode, cmd->arg, cmd->flags);
510
511	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
512		writel(0, base + MMCICOMMAND);
513		udelay(1);
514	}
515
516	c |= cmd->opcode | MCI_CPSM_ENABLE;
517	if (cmd->flags & MMC_RSP_PRESENT) {
518		if (cmd->flags & MMC_RSP_136)
519			c |= MCI_CPSM_LONGRSP;
520		c |= MCI_CPSM_RESPONSE;
521	}
522	if (/*interrupt*/0)
523		c |= MCI_CPSM_INTERRUPT;
524
525	host->cmd = cmd;
526
527	writel(cmd->arg, base + MMCIARGUMENT);
528	writel(c, base + MMCICOMMAND);
529}
530
531static void
532mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
533	      unsigned int status)
534{
535	/* First check for errors */
536	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
537		u32 remain, success;
538
539		/* Terminate the DMA transfer */
540		if (dma_inprogress(host))
541			mmci_dma_data_error(host);
542
543		/*
544		 * Calculate how far we are into the transfer.  Note that
545		 * the data counter gives the number of bytes transferred
546		 * on the MMC bus, not on the host side.  On reads, this
547		 * can be as much as a FIFO-worth of data ahead.  This
548		 * matters for FIFO overruns only.
549		 */
550		remain = readl(host->base + MMCIDATACNT);
551		success = data->blksz * data->blocks - remain;
552
553		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
554			status, success);
555		if (status & MCI_DATACRCFAIL) {
556			/* Last block was not successful */
557			success -= 1;
558			data->error = -EILSEQ;
559		} else if (status & MCI_DATATIMEOUT) {
560			data->error = -ETIMEDOUT;
561		} else if (status & MCI_TXUNDERRUN) {
562			data->error = -EIO;
563		} else if (status & MCI_RXOVERRUN) {
564			if (success > host->variant->fifosize)
565				success -= host->variant->fifosize;
566			else
567				success = 0;
568			data->error = -EIO;
569		}
570		data->bytes_xfered = round_down(success, data->blksz);
571	}
572
573	if (status & MCI_DATABLOCKEND)
574		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
575
576	if (status & MCI_DATAEND || data->error) {
577		if (dma_inprogress(host))
578			mmci_dma_unmap(host, data);
579		mmci_stop_data(host);
580
581		if (!data->error)
582			/* The error clause is handled above, success! */
583			data->bytes_xfered = data->blksz * data->blocks;
584
585		if (!data->stop) {
586			mmci_request_end(host, data->mrq);
587		} else {
588			mmci_start_command(host, data->stop, 0);
589		}
590	}
591}
592
593static void
594mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
595	     unsigned int status)
596{
597	void __iomem *base = host->base;
598
599	host->cmd = NULL;
600
601	if (status & MCI_CMDTIMEOUT) {
602		cmd->error = -ETIMEDOUT;
603	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
604		cmd->error = -EILSEQ;
605	} else {
606		cmd->resp[0] = readl(base + MMCIRESPONSE0);
607		cmd->resp[1] = readl(base + MMCIRESPONSE1);
608		cmd->resp[2] = readl(base + MMCIRESPONSE2);
609		cmd->resp[3] = readl(base + MMCIRESPONSE3);
610	}
611
612	if (!cmd->data || cmd->error) {
613		if (host->data)
614			mmci_stop_data(host);
615		mmci_request_end(host, cmd->mrq);
616	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
617		mmci_start_data(host, cmd->data);
618	}
619}
620
621static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
622{
623	void __iomem *base = host->base;
624	char *ptr = buffer;
625	u32 status;
626	int host_remain = host->size;
627
628	do {
629		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
630
631		if (count > remain)
632			count = remain;
633
634		if (count <= 0)
635			break;
636
637		readsl(base + MMCIFIFO, ptr, count >> 2);
638
639		ptr += count;
640		remain -= count;
641		host_remain -= count;
642
643		if (remain == 0)
644			break;
645
646		status = readl(base + MMCISTATUS);
647	} while (status & MCI_RXDATAAVLBL);
648
649	return ptr - buffer;
650}
651
652static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
653{
654	struct variant_data *variant = host->variant;
655	void __iomem *base = host->base;
656	char *ptr = buffer;
657
658	do {
659		unsigned int count, maxcnt;
660
661		maxcnt = status & MCI_TXFIFOEMPTY ?
662			 variant->fifosize : variant->fifohalfsize;
663		count = min(remain, maxcnt);
664
665		/*
666		 * The ST Micro variant for SDIO transfer sizes
667		 * less then 8 bytes should have clock H/W flow
668		 * control disabled.
669		 */
670		if (variant->sdio &&
671		    mmc_card_sdio(host->mmc->card)) {
672			if (count < 8)
673				writel(readl(host->base + MMCICLOCK) &
674					~variant->clkreg_enable,
675					host->base + MMCICLOCK);
676			else
677				writel(readl(host->base + MMCICLOCK) |
678					variant->clkreg_enable,
679					host->base + MMCICLOCK);
680		}
681
682		/*
683		 * SDIO especially may want to send something that is
684		 * not divisible by 4 (as opposed to card sectors
685		 * etc), and the FIFO only accept full 32-bit writes.
686		 * So compensate by adding +3 on the count, a single
687		 * byte become a 32bit write, 7 bytes will be two
688		 * 32bit writes etc.
689		 */
690		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
691
692		ptr += count;
693		remain -= count;
694
695		if (remain == 0)
696			break;
697
698		status = readl(base + MMCISTATUS);
699	} while (status & MCI_TXFIFOHALFEMPTY);
700
701	return ptr - buffer;
702}
703
704/*
705 * PIO data transfer IRQ handler.
706 */
707static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
708{
709	struct mmci_host *host = dev_id;
710	struct sg_mapping_iter *sg_miter = &host->sg_miter;
711	struct variant_data *variant = host->variant;
712	void __iomem *base = host->base;
713	unsigned long flags;
714	u32 status;
715
716	status = readl(base + MMCISTATUS);
717
718	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
719
720	local_irq_save(flags);
721
722	do {
723		unsigned int remain, len;
724		char *buffer;
725
726		/*
727		 * For write, we only need to test the half-empty flag
728		 * here - if the FIFO is completely empty, then by
729		 * definition it is more than half empty.
730		 *
731		 * For read, check for data available.
732		 */
733		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
734			break;
735
736		if (!sg_miter_next(sg_miter))
737			break;
738
739		buffer = sg_miter->addr;
740		remain = sg_miter->length;
741
742		len = 0;
743		if (status & MCI_RXACTIVE)
744			len = mmci_pio_read(host, buffer, remain);
745		if (status & MCI_TXACTIVE)
746			len = mmci_pio_write(host, buffer, remain, status);
747
748		sg_miter->consumed = len;
749
750		host->size -= len;
751		remain -= len;
752
753		if (remain)
754			break;
755
756		status = readl(base + MMCISTATUS);
757	} while (1);
758
759	sg_miter_stop(sg_miter);
760
761	local_irq_restore(flags);
762
763	/*
764	 * If we have less than the fifo 'half-full' threshold to transfer,
765	 * trigger a PIO interrupt as soon as any data is available.
766	 */
767	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
768		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
769
770	/*
771	 * If we run out of data, disable the data IRQs; this
772	 * prevents a race where the FIFO becomes empty before
773	 * the chip itself has disabled the data path, and
774	 * stops us racing with our data end IRQ.
775	 */
776	if (host->size == 0) {
777		mmci_set_mask1(host, 0);
778		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
779	}
780
781	return IRQ_HANDLED;
782}
783
784/*
785 * Handle completion of command and data transfers.
786 */
787static irqreturn_t mmci_irq(int irq, void *dev_id)
788{
789	struct mmci_host *host = dev_id;
790	u32 status;
791	int ret = 0;
792
793	spin_lock(&host->lock);
794
795	do {
796		struct mmc_command *cmd;
797		struct mmc_data *data;
798
799		status = readl(host->base + MMCISTATUS);
800
801		if (host->singleirq) {
802			if (status & readl(host->base + MMCIMASK1))
803				mmci_pio_irq(irq, dev_id);
804
805			status &= ~MCI_IRQ1MASK;
806		}
807
808		status &= readl(host->base + MMCIMASK0);
809		writel(status, host->base + MMCICLEAR);
810
811		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
812
813		data = host->data;
814		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
815			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
816			mmci_data_irq(host, data, status);
817
818		cmd = host->cmd;
819		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
820			mmci_cmd_irq(host, cmd, status);
821
822		ret = 1;
823	} while (status);
824
825	spin_unlock(&host->lock);
826
827	return IRQ_RETVAL(ret);
828}
829
830static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
831{
832	struct mmci_host *host = mmc_priv(mmc);
833	unsigned long flags;
834
835	WARN_ON(host->mrq != NULL);
836
837	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
838		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
839			mrq->data->blksz);
840		mrq->cmd->error = -EINVAL;
841		mmc_request_done(mmc, mrq);
842		return;
843	}
844
845	spin_lock_irqsave(&host->lock, flags);
846
847	host->mrq = mrq;
848
849	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
850		mmci_start_data(host, mrq->data);
851
852	mmci_start_command(host, mrq->cmd, 0);
853
854	spin_unlock_irqrestore(&host->lock, flags);
855}
856
857static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
858{
859	struct mmci_host *host = mmc_priv(mmc);
860	u32 pwr = 0;
861	unsigned long flags;
862	int ret;
863
864	switch (ios->power_mode) {
865	case MMC_POWER_OFF:
866		if (host->vcc)
867			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
868		break;
869	case MMC_POWER_UP:
870		if (host->vcc) {
871			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
872			if (ret) {
873				dev_err(mmc_dev(mmc), "unable to set OCR\n");
874				/*
875				 * The .set_ios() function in the mmc_host_ops
876				 * struct return void, and failing to set the
877				 * power should be rare so we print an error
878				 * and return here.
879				 */
880				return;
881			}
882		}
883		if (host->plat->vdd_handler)
884			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
885						       ios->power_mode);
886		/* The ST version does not have this, fall through to POWER_ON */
887		if (host->hw_designer != AMBA_VENDOR_ST) {
888			pwr |= MCI_PWR_UP;
889			break;
890		}
891	case MMC_POWER_ON:
892		pwr |= MCI_PWR_ON;
893		break;
894	}
895
896	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
897		if (host->hw_designer != AMBA_VENDOR_ST)
898			pwr |= MCI_ROD;
899		else {
900			/*
901			 * The ST Micro variant use the ROD bit for something
902			 * else and only has OD (Open Drain).
903			 */
904			pwr |= MCI_OD;
905		}
906	}
907
908	spin_lock_irqsave(&host->lock, flags);
909
910	mmci_set_clkreg(host, ios->clock);
911
912	if (host->pwr != pwr) {
913		host->pwr = pwr;
914		writel(pwr, host->base + MMCIPOWER);
915	}
916
917	spin_unlock_irqrestore(&host->lock, flags);
918}
919
920static int mmci_get_ro(struct mmc_host *mmc)
921{
922	struct mmci_host *host = mmc_priv(mmc);
923
924	if (host->gpio_wp == -ENOSYS)
925		return -ENOSYS;
926
927	return gpio_get_value_cansleep(host->gpio_wp);
928}
929
930static int mmci_get_cd(struct mmc_host *mmc)
931{
932	struct mmci_host *host = mmc_priv(mmc);
933	struct mmci_platform_data *plat = host->plat;
934	unsigned int status;
935
936	if (host->gpio_cd == -ENOSYS) {
937		if (!plat->status)
938			return 1; /* Assume always present */
939
940		status = plat->status(mmc_dev(host->mmc));
941	} else
942		status = !!gpio_get_value_cansleep(host->gpio_cd)
943			^ plat->cd_invert;
944
945	/*
946	 * Use positive logic throughout - status is zero for no card,
947	 * non-zero for card inserted.
948	 */
949	return status;
950}
951
952static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
953{
954	struct mmci_host *host = dev_id;
955
956	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
957
958	return IRQ_HANDLED;
959}
960
961static const struct mmc_host_ops mmci_ops = {
962	.request	= mmci_request,
963	.set_ios	= mmci_set_ios,
964	.get_ro		= mmci_get_ro,
965	.get_cd		= mmci_get_cd,
966};
967
968static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
969{
970	struct mmci_platform_data *plat = dev->dev.platform_data;
971	struct variant_data *variant = id->data;
972	struct mmci_host *host;
973	struct mmc_host *mmc;
974	int ret;
975
976	/* must have platform data */
977	if (!plat) {
978		ret = -EINVAL;
979		goto out;
980	}
981
982	ret = amba_request_regions(dev, DRIVER_NAME);
983	if (ret)
984		goto out;
985
986	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
987	if (!mmc) {
988		ret = -ENOMEM;
989		goto rel_regions;
990	}
991
992	host = mmc_priv(mmc);
993	host->mmc = mmc;
994
995	host->gpio_wp = -ENOSYS;
996	host->gpio_cd = -ENOSYS;
997	host->gpio_cd_irq = -1;
998
999	host->hw_designer = amba_manf(dev);
1000	host->hw_revision = amba_rev(dev);
1001	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1002	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1003
1004	host->clk = clk_get(&dev->dev, NULL);
1005	if (IS_ERR(host->clk)) {
1006		ret = PTR_ERR(host->clk);
1007		host->clk = NULL;
1008		goto host_free;
1009	}
1010
1011	ret = clk_enable(host->clk);
1012	if (ret)
1013		goto clk_free;
1014
1015	host->plat = plat;
1016	host->variant = variant;
1017	host->mclk = clk_get_rate(host->clk);
1018	/*
1019	 * According to the spec, mclk is max 100 MHz,
1020	 * so we try to adjust the clock down to this,
1021	 * (if possible).
1022	 */
1023	if (host->mclk > 100000000) {
1024		ret = clk_set_rate(host->clk, 100000000);
1025		if (ret < 0)
1026			goto clk_disable;
1027		host->mclk = clk_get_rate(host->clk);
1028		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1029			host->mclk);
1030	}
1031	host->phybase = dev->res.start;
1032	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1033	if (!host->base) {
1034		ret = -ENOMEM;
1035		goto clk_disable;
1036	}
1037
1038	mmc->ops = &mmci_ops;
1039	mmc->f_min = (host->mclk + 511) / 512;
1040	/*
1041	 * If the platform data supplies a maximum operating
1042	 * frequency, this takes precedence. Else, we fall back
1043	 * to using the module parameter, which has a (low)
1044	 * default value in case it is not specified. Either
1045	 * value must not exceed the clock rate into the block,
1046	 * of course.
1047	 */
1048	if (plat->f_max)
1049		mmc->f_max = min(host->mclk, plat->f_max);
1050	else
1051		mmc->f_max = min(host->mclk, fmax);
1052	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1053
1054#ifdef CONFIG_REGULATOR
1055	/* If we're using the regulator framework, try to fetch a regulator */
1056	host->vcc = regulator_get(&dev->dev, "vmmc");
1057	if (IS_ERR(host->vcc))
1058		host->vcc = NULL;
1059	else {
1060		int mask = mmc_regulator_get_ocrmask(host->vcc);
1061
1062		if (mask < 0)
1063			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1064				mask);
1065		else {
1066			host->mmc->ocr_avail = (u32) mask;
1067			if (plat->ocr_mask)
1068				dev_warn(&dev->dev,
1069				 "Provided ocr_mask/setpower will not be used "
1070				 "(using regulator instead)\n");
1071		}
1072	}
1073#endif
1074	/* Fall back to platform data if no regulator is found */
1075	if (host->vcc == NULL)
1076		mmc->ocr_avail = plat->ocr_mask;
1077	mmc->caps = plat->capabilities;
1078
1079	/*
1080	 * We can do SGIO
1081	 */
1082	mmc->max_segs = NR_SG;
1083
1084	/*
1085	 * Since only a certain number of bits are valid in the data length
1086	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1087	 * single request.
1088	 */
1089	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1090
1091	/*
1092	 * Set the maximum segment size.  Since we aren't doing DMA
1093	 * (yet) we are only limited by the data length register.
1094	 */
1095	mmc->max_seg_size = mmc->max_req_size;
1096
1097	/*
1098	 * Block size can be up to 2048 bytes, but must be a power of two.
1099	 */
1100	mmc->max_blk_size = 2048;
1101
1102	/*
1103	 * No limit on the number of blocks transferred.
1104	 */
1105	mmc->max_blk_count = mmc->max_req_size;
1106
1107	spin_lock_init(&host->lock);
1108
1109	writel(0, host->base + MMCIMASK0);
1110	writel(0, host->base + MMCIMASK1);
1111	writel(0xfff, host->base + MMCICLEAR);
1112
1113	if (gpio_is_valid(plat->gpio_cd)) {
1114		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1115		if (ret == 0)
1116			ret = gpio_direction_input(plat->gpio_cd);
1117		if (ret == 0)
1118			host->gpio_cd = plat->gpio_cd;
1119		else if (ret != -ENOSYS)
1120			goto err_gpio_cd;
1121
1122		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1123					      mmci_cd_irq, 0,
1124					      DRIVER_NAME " (cd)", host);
1125		if (ret >= 0)
1126			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1127	}
1128	if (gpio_is_valid(plat->gpio_wp)) {
1129		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1130		if (ret == 0)
1131			ret = gpio_direction_input(plat->gpio_wp);
1132		if (ret == 0)
1133			host->gpio_wp = plat->gpio_wp;
1134		else if (ret != -ENOSYS)
1135			goto err_gpio_wp;
1136	}
1137
1138	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1139	    && host->gpio_cd_irq < 0)
1140		mmc->caps |= MMC_CAP_NEEDS_POLL;
1141
1142	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1143	if (ret)
1144		goto unmap;
1145
1146	if (dev->irq[1] == NO_IRQ)
1147		host->singleirq = true;
1148	else {
1149		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1150				  DRIVER_NAME " (pio)", host);
1151		if (ret)
1152			goto irq0_free;
1153	}
1154
1155	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1156
1157	amba_set_drvdata(dev, mmc);
1158
1159	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1160		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1161		 amba_rev(dev), (unsigned long long)dev->res.start,
1162		 dev->irq[0], dev->irq[1]);
1163
1164	mmci_dma_setup(host);
1165
1166	mmc_add_host(mmc);
1167
1168	return 0;
1169
1170 irq0_free:
1171	free_irq(dev->irq[0], host);
1172 unmap:
1173	if (host->gpio_wp != -ENOSYS)
1174		gpio_free(host->gpio_wp);
1175 err_gpio_wp:
1176	if (host->gpio_cd_irq >= 0)
1177		free_irq(host->gpio_cd_irq, host);
1178	if (host->gpio_cd != -ENOSYS)
1179		gpio_free(host->gpio_cd);
1180 err_gpio_cd:
1181	iounmap(host->base);
1182 clk_disable:
1183	clk_disable(host->clk);
1184 clk_free:
1185	clk_put(host->clk);
1186 host_free:
1187	mmc_free_host(mmc);
1188 rel_regions:
1189	amba_release_regions(dev);
1190 out:
1191	return ret;
1192}
1193
1194static int __devexit mmci_remove(struct amba_device *dev)
1195{
1196	struct mmc_host *mmc = amba_get_drvdata(dev);
1197
1198	amba_set_drvdata(dev, NULL);
1199
1200	if (mmc) {
1201		struct mmci_host *host = mmc_priv(mmc);
1202
1203		mmc_remove_host(mmc);
1204
1205		writel(0, host->base + MMCIMASK0);
1206		writel(0, host->base + MMCIMASK1);
1207
1208		writel(0, host->base + MMCICOMMAND);
1209		writel(0, host->base + MMCIDATACTRL);
1210
1211		mmci_dma_release(host);
1212		free_irq(dev->irq[0], host);
1213		if (!host->singleirq)
1214			free_irq(dev->irq[1], host);
1215
1216		if (host->gpio_wp != -ENOSYS)
1217			gpio_free(host->gpio_wp);
1218		if (host->gpio_cd_irq >= 0)
1219			free_irq(host->gpio_cd_irq, host);
1220		if (host->gpio_cd != -ENOSYS)
1221			gpio_free(host->gpio_cd);
1222
1223		iounmap(host->base);
1224		clk_disable(host->clk);
1225		clk_put(host->clk);
1226
1227		if (host->vcc)
1228			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1229		regulator_put(host->vcc);
1230
1231		mmc_free_host(mmc);
1232
1233		amba_release_regions(dev);
1234	}
1235
1236	return 0;
1237}
1238
1239#ifdef CONFIG_PM
1240static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1241{
1242	struct mmc_host *mmc = amba_get_drvdata(dev);
1243	int ret = 0;
1244
1245	if (mmc) {
1246		struct mmci_host *host = mmc_priv(mmc);
1247
1248		ret = mmc_suspend_host(mmc);
1249		if (ret == 0)
1250			writel(0, host->base + MMCIMASK0);
1251	}
1252
1253	return ret;
1254}
1255
1256static int mmci_resume(struct amba_device *dev)
1257{
1258	struct mmc_host *mmc = amba_get_drvdata(dev);
1259	int ret = 0;
1260
1261	if (mmc) {
1262		struct mmci_host *host = mmc_priv(mmc);
1263
1264		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1265
1266		ret = mmc_resume_host(mmc);
1267	}
1268
1269	return ret;
1270}
1271#else
1272#define mmci_suspend	NULL
1273#define mmci_resume	NULL
1274#endif
1275
1276static struct amba_id mmci_ids[] = {
1277	{
1278		.id	= 0x00041180,
1279		.mask	= 0x000fffff,
1280		.data	= &variant_arm,
1281	},
1282	{
1283		.id	= 0x00041181,
1284		.mask	= 0x000fffff,
1285		.data	= &variant_arm,
1286	},
1287	/* ST Micro variants */
1288	{
1289		.id     = 0x00180180,
1290		.mask   = 0x00ffffff,
1291		.data	= &variant_u300,
1292	},
1293	{
1294		.id     = 0x00280180,
1295		.mask   = 0x00ffffff,
1296		.data	= &variant_u300,
1297	},
1298	{
1299		.id     = 0x00480180,
1300		.mask   = 0x00ffffff,
1301		.data	= &variant_ux500,
1302	},
1303	{ 0, 0 },
1304};
1305
1306static struct amba_driver mmci_driver = {
1307	.drv		= {
1308		.name	= DRIVER_NAME,
1309	},
1310	.probe		= mmci_probe,
1311	.remove		= __devexit_p(mmci_remove),
1312	.suspend	= mmci_suspend,
1313	.resume		= mmci_resume,
1314	.id_table	= mmci_ids,
1315};
1316
1317static int __init mmci_init(void)
1318{
1319	return amba_driver_register(&mmci_driver);
1320}
1321
1322static void __exit mmci_exit(void)
1323{
1324	amba_driver_unregister(&mmci_driver);
1325}
1326
1327module_init(mmci_init);
1328module_exit(mmci_exit);
1329module_param(fmax, uint, 0444);
1330
1331MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1332MODULE_LICENSE("GPL");
1333