mmci.c revision ccff9b51825b7335889b780bdf7de84ca803e291
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson AB.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/host.h>
22#include <linux/mmc/card.h>
23#include <linux/amba/bus.h>
24#include <linux/clk.h>
25#include <linux/scatterlist.h>
26#include <linux/gpio.h>
27#include <linux/amba/mmci.h>
28#include <linux/regulator/consumer.h>
29
30#include <asm/div64.h>
31#include <asm/io.h>
32#include <asm/sizes.h>
33
34#include "mmci.h"
35
36#define DRIVER_NAME "mmci-pl18x"
37
38static unsigned int fmax = 515633;
39
40/**
41 * struct variant_data - MMCI variant-specific quirks
42 * @clkreg: default value for MCICLOCK register
43 * @clkreg_enable: enable value for MMCICLOCK register
44 * @datalength_bits: number of bits in the MMCIDATALENGTH register
45 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
46 *	      is asserted (likewise for RX)
47 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
48 *		  is asserted (likewise for RX)
49 * @sdio: variant supports SDIO
50 * @st_clkdiv: true if using a ST-specific clock divider algorithm
51 */
52struct variant_data {
53	unsigned int		clkreg;
54	unsigned int		clkreg_enable;
55	unsigned int		datalength_bits;
56	unsigned int		fifosize;
57	unsigned int		fifohalfsize;
58	bool			sdio;
59	bool			st_clkdiv;
60};
61
62static struct variant_data variant_arm = {
63	.fifosize		= 16 * 4,
64	.fifohalfsize		= 8 * 4,
65	.datalength_bits	= 16,
66};
67
68static struct variant_data variant_u300 = {
69	.fifosize		= 16 * 4,
70	.fifohalfsize		= 8 * 4,
71	.clkreg_enable		= 1 << 13, /* HWFCEN */
72	.datalength_bits	= 16,
73	.sdio			= true,
74};
75
76static struct variant_data variant_ux500 = {
77	.fifosize		= 30 * 4,
78	.fifohalfsize		= 8 * 4,
79	.clkreg			= MCI_CLK_ENABLE,
80	.clkreg_enable		= 1 << 14, /* HWFCEN */
81	.datalength_bits	= 24,
82	.sdio			= true,
83	.st_clkdiv		= true,
84};
85
86/*
87 * This must be called with host->lock held
88 */
89static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
90{
91	struct variant_data *variant = host->variant;
92	u32 clk = variant->clkreg;
93
94	if (desired) {
95		if (desired >= host->mclk) {
96			clk = MCI_CLK_BYPASS;
97			host->cclk = host->mclk;
98		} else if (variant->st_clkdiv) {
99			/*
100			 * DB8500 TRM says f = mclk / (clkdiv + 2)
101			 * => clkdiv = (mclk / f) - 2
102			 * Round the divider up so we don't exceed the max
103			 * frequency
104			 */
105			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
106			if (clk >= 256)
107				clk = 255;
108			host->cclk = host->mclk / (clk + 2);
109		} else {
110			/*
111			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
112			 * => clkdiv = mclk / (2 * f) - 1
113			 */
114			clk = host->mclk / (2 * desired) - 1;
115			if (clk >= 256)
116				clk = 255;
117			host->cclk = host->mclk / (2 * (clk + 1));
118		}
119
120		clk |= variant->clkreg_enable;
121		clk |= MCI_CLK_ENABLE;
122		/* This hasn't proven to be worthwhile */
123		/* clk |= MCI_CLK_PWRSAVE; */
124	}
125
126	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
127		clk |= MCI_4BIT_BUS;
128	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
129		clk |= MCI_ST_8BIT_BUS;
130
131	writel(clk, host->base + MMCICLOCK);
132}
133
134static void
135mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
136{
137	writel(0, host->base + MMCICOMMAND);
138
139	BUG_ON(host->data);
140
141	host->mrq = NULL;
142	host->cmd = NULL;
143
144	if (mrq->data)
145		mrq->data->bytes_xfered = host->data_xfered;
146
147	/*
148	 * Need to drop the host lock here; mmc_request_done may call
149	 * back into the driver...
150	 */
151	spin_unlock(&host->lock);
152	mmc_request_done(host->mmc, mrq);
153	spin_lock(&host->lock);
154}
155
156static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
157{
158	void __iomem *base = host->base;
159
160	if (host->singleirq) {
161		unsigned int mask0 = readl(base + MMCIMASK0);
162
163		mask0 &= ~MCI_IRQ1MASK;
164		mask0 |= mask;
165
166		writel(mask0, base + MMCIMASK0);
167	}
168
169	writel(mask, base + MMCIMASK1);
170}
171
172static void mmci_stop_data(struct mmci_host *host)
173{
174	writel(0, host->base + MMCIDATACTRL);
175	mmci_set_mask1(host, 0);
176	host->data = NULL;
177}
178
179static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
180{
181	unsigned int flags = SG_MITER_ATOMIC;
182
183	if (data->flags & MMC_DATA_READ)
184		flags |= SG_MITER_TO_SG;
185	else
186		flags |= SG_MITER_FROM_SG;
187
188	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
189}
190
191static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
192{
193	struct variant_data *variant = host->variant;
194	unsigned int datactrl, timeout, irqmask;
195	unsigned long long clks;
196	void __iomem *base;
197	int blksz_bits;
198
199	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
200		data->blksz, data->blocks, data->flags);
201
202	host->data = data;
203	host->size = data->blksz * data->blocks;
204	host->data_xfered = 0;
205
206	mmci_init_sg(host, data);
207
208	clks = (unsigned long long)data->timeout_ns * host->cclk;
209	do_div(clks, 1000000000UL);
210
211	timeout = data->timeout_clks + (unsigned int)clks;
212
213	base = host->base;
214	writel(timeout, base + MMCIDATATIMER);
215	writel(host->size, base + MMCIDATALENGTH);
216
217	blksz_bits = ffs(data->blksz) - 1;
218	BUG_ON(1 << blksz_bits != data->blksz);
219
220	datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
221	if (data->flags & MMC_DATA_READ) {
222		datactrl |= MCI_DPSM_DIRECTION;
223		irqmask = MCI_RXFIFOHALFFULLMASK;
224
225		/*
226		 * If we have less than a FIFOSIZE of bytes to transfer,
227		 * trigger a PIO interrupt as soon as any data is available.
228		 */
229		if (host->size < variant->fifosize)
230			irqmask |= MCI_RXDATAAVLBLMASK;
231	} else {
232		/*
233		 * We don't actually need to include "FIFO empty" here
234		 * since its implicit in "FIFO half empty".
235		 */
236		irqmask = MCI_TXFIFOHALFEMPTYMASK;
237	}
238
239	/* The ST Micro variants has a special bit to enable SDIO */
240	if (variant->sdio && host->mmc->card)
241		if (mmc_card_sdio(host->mmc->card))
242			datactrl |= MCI_ST_DPSM_SDIOEN;
243
244	writel(datactrl, base + MMCIDATACTRL);
245	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
246	mmci_set_mask1(host, irqmask);
247}
248
249static void
250mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
251{
252	void __iomem *base = host->base;
253
254	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
255	    cmd->opcode, cmd->arg, cmd->flags);
256
257	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
258		writel(0, base + MMCICOMMAND);
259		udelay(1);
260	}
261
262	c |= cmd->opcode | MCI_CPSM_ENABLE;
263	if (cmd->flags & MMC_RSP_PRESENT) {
264		if (cmd->flags & MMC_RSP_136)
265			c |= MCI_CPSM_LONGRSP;
266		c |= MCI_CPSM_RESPONSE;
267	}
268	if (/*interrupt*/0)
269		c |= MCI_CPSM_INTERRUPT;
270
271	host->cmd = cmd;
272
273	writel(cmd->arg, base + MMCIARGUMENT);
274	writel(c, base + MMCICOMMAND);
275}
276
277static void
278mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
279	      unsigned int status)
280{
281	/* First check for errors */
282	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
283		u32 remain, success;
284
285		/* Calculate how far we are into the transfer */
286		remain = readl(host->base + MMCIDATACNT);
287		success = data->blksz * data->blocks - remain;
288
289		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ (status %08x)\n", status);
290		if (status & MCI_DATACRCFAIL) {
291			/* Last block was not successful */
292			host->data_xfered = ((success - 1) / data->blksz) * data->blksz;
293			data->error = -EILSEQ;
294		} else if (status & MCI_DATATIMEOUT) {
295			host->data_xfered = success;
296			data->error = -ETIMEDOUT;
297		} else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
298			host->data_xfered = success;
299			data->error = -EIO;
300		}
301
302		/*
303		 * We hit an error condition.  Ensure that any data
304		 * partially written to a page is properly coherent.
305		 */
306		if (data->flags & MMC_DATA_READ) {
307			struct sg_mapping_iter *sg_miter = &host->sg_miter;
308			unsigned long flags;
309
310			local_irq_save(flags);
311			if (sg_miter_next(sg_miter)) {
312				flush_dcache_page(sg_miter->page);
313				sg_miter_stop(sg_miter);
314			}
315			local_irq_restore(flags);
316		}
317	}
318
319	if (status & MCI_DATABLOCKEND)
320		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
321
322	if (status & MCI_DATAEND || data->error) {
323		mmci_stop_data(host);
324
325		if (!data->error)
326			/* The error clause is handled above, success! */
327			host->data_xfered += data->blksz * data->blocks;
328
329		if (!data->stop) {
330			mmci_request_end(host, data->mrq);
331		} else {
332			mmci_start_command(host, data->stop, 0);
333		}
334	}
335}
336
337static void
338mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
339	     unsigned int status)
340{
341	void __iomem *base = host->base;
342
343	host->cmd = NULL;
344
345	if (status & MCI_CMDTIMEOUT) {
346		cmd->error = -ETIMEDOUT;
347	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
348		cmd->error = -EILSEQ;
349	} else {
350		cmd->resp[0] = readl(base + MMCIRESPONSE0);
351		cmd->resp[1] = readl(base + MMCIRESPONSE1);
352		cmd->resp[2] = readl(base + MMCIRESPONSE2);
353		cmd->resp[3] = readl(base + MMCIRESPONSE3);
354	}
355
356	if (!cmd->data || cmd->error) {
357		if (host->data)
358			mmci_stop_data(host);
359		mmci_request_end(host, cmd->mrq);
360	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
361		mmci_start_data(host, cmd->data);
362	}
363}
364
365static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
366{
367	void __iomem *base = host->base;
368	char *ptr = buffer;
369	u32 status;
370	int host_remain = host->size;
371
372	do {
373		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
374
375		if (count > remain)
376			count = remain;
377
378		if (count <= 0)
379			break;
380
381		readsl(base + MMCIFIFO, ptr, count >> 2);
382
383		ptr += count;
384		remain -= count;
385		host_remain -= count;
386
387		if (remain == 0)
388			break;
389
390		status = readl(base + MMCISTATUS);
391	} while (status & MCI_RXDATAAVLBL);
392
393	return ptr - buffer;
394}
395
396static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
397{
398	struct variant_data *variant = host->variant;
399	void __iomem *base = host->base;
400	char *ptr = buffer;
401
402	do {
403		unsigned int count, maxcnt;
404
405		maxcnt = status & MCI_TXFIFOEMPTY ?
406			 variant->fifosize : variant->fifohalfsize;
407		count = min(remain, maxcnt);
408
409		/*
410		 * The ST Micro variant for SDIO transfer sizes
411		 * less then 8 bytes should have clock H/W flow
412		 * control disabled.
413		 */
414		if (variant->sdio &&
415		    mmc_card_sdio(host->mmc->card)) {
416			if (count < 8)
417				writel(readl(host->base + MMCICLOCK) &
418					~variant->clkreg_enable,
419					host->base + MMCICLOCK);
420			else
421				writel(readl(host->base + MMCICLOCK) |
422					variant->clkreg_enable,
423					host->base + MMCICLOCK);
424		}
425
426		/*
427		 * SDIO especially may want to send something that is
428		 * not divisible by 4 (as opposed to card sectors
429		 * etc), and the FIFO only accept full 32-bit writes.
430		 * So compensate by adding +3 on the count, a single
431		 * byte become a 32bit write, 7 bytes will be two
432		 * 32bit writes etc.
433		 */
434		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
435
436		ptr += count;
437		remain -= count;
438
439		if (remain == 0)
440			break;
441
442		status = readl(base + MMCISTATUS);
443	} while (status & MCI_TXFIFOHALFEMPTY);
444
445	return ptr - buffer;
446}
447
448/*
449 * PIO data transfer IRQ handler.
450 */
451static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
452{
453	struct mmci_host *host = dev_id;
454	struct sg_mapping_iter *sg_miter = &host->sg_miter;
455	struct variant_data *variant = host->variant;
456	void __iomem *base = host->base;
457	unsigned long flags;
458	u32 status;
459
460	status = readl(base + MMCISTATUS);
461
462	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
463
464	local_irq_save(flags);
465
466	do {
467		unsigned int remain, len;
468		char *buffer;
469
470		/*
471		 * For write, we only need to test the half-empty flag
472		 * here - if the FIFO is completely empty, then by
473		 * definition it is more than half empty.
474		 *
475		 * For read, check for data available.
476		 */
477		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
478			break;
479
480		if (!sg_miter_next(sg_miter))
481			break;
482
483		buffer = sg_miter->addr;
484		remain = sg_miter->length;
485
486		len = 0;
487		if (status & MCI_RXACTIVE)
488			len = mmci_pio_read(host, buffer, remain);
489		if (status & MCI_TXACTIVE)
490			len = mmci_pio_write(host, buffer, remain, status);
491
492		sg_miter->consumed = len;
493
494		host->size -= len;
495		remain -= len;
496
497		if (remain)
498			break;
499
500		if (status & MCI_RXACTIVE)
501			flush_dcache_page(sg_miter->page);
502
503		status = readl(base + MMCISTATUS);
504	} while (1);
505
506	sg_miter_stop(sg_miter);
507
508	local_irq_restore(flags);
509
510	/*
511	 * If we're nearing the end of the read, switch to
512	 * "any data available" mode.
513	 */
514	if (status & MCI_RXACTIVE && host->size < variant->fifosize)
515		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
516
517	/*
518	 * If we run out of data, disable the data IRQs; this
519	 * prevents a race where the FIFO becomes empty before
520	 * the chip itself has disabled the data path, and
521	 * stops us racing with our data end IRQ.
522	 */
523	if (host->size == 0) {
524		mmci_set_mask1(host, 0);
525		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
526	}
527
528	return IRQ_HANDLED;
529}
530
531/*
532 * Handle completion of command and data transfers.
533 */
534static irqreturn_t mmci_irq(int irq, void *dev_id)
535{
536	struct mmci_host *host = dev_id;
537	u32 status;
538	int ret = 0;
539
540	spin_lock(&host->lock);
541
542	do {
543		struct mmc_command *cmd;
544		struct mmc_data *data;
545
546		status = readl(host->base + MMCISTATUS);
547
548		if (host->singleirq) {
549			if (status & readl(host->base + MMCIMASK1))
550				mmci_pio_irq(irq, dev_id);
551
552			status &= ~MCI_IRQ1MASK;
553		}
554
555		status &= readl(host->base + MMCIMASK0);
556		writel(status, host->base + MMCICLEAR);
557
558		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
559
560		data = host->data;
561		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
562			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
563			mmci_data_irq(host, data, status);
564
565		cmd = host->cmd;
566		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
567			mmci_cmd_irq(host, cmd, status);
568
569		ret = 1;
570	} while (status);
571
572	spin_unlock(&host->lock);
573
574	return IRQ_RETVAL(ret);
575}
576
577static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
578{
579	struct mmci_host *host = mmc_priv(mmc);
580	unsigned long flags;
581
582	WARN_ON(host->mrq != NULL);
583
584	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
585		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
586			mrq->data->blksz);
587		mrq->cmd->error = -EINVAL;
588		mmc_request_done(mmc, mrq);
589		return;
590	}
591
592	spin_lock_irqsave(&host->lock, flags);
593
594	host->mrq = mrq;
595
596	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
597		mmci_start_data(host, mrq->data);
598
599	mmci_start_command(host, mrq->cmd, 0);
600
601	spin_unlock_irqrestore(&host->lock, flags);
602}
603
604static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
605{
606	struct mmci_host *host = mmc_priv(mmc);
607	u32 pwr = 0;
608	unsigned long flags;
609	int ret;
610
611	switch (ios->power_mode) {
612	case MMC_POWER_OFF:
613		if (host->vcc)
614			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
615		break;
616	case MMC_POWER_UP:
617		if (host->vcc) {
618			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
619			if (ret) {
620				dev_err(mmc_dev(mmc), "unable to set OCR\n");
621				/*
622				 * The .set_ios() function in the mmc_host_ops
623				 * struct return void, and failing to set the
624				 * power should be rare so we print an error
625				 * and return here.
626				 */
627				return;
628			}
629		}
630		if (host->plat->vdd_handler)
631			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
632						       ios->power_mode);
633		/* The ST version does not have this, fall through to POWER_ON */
634		if (host->hw_designer != AMBA_VENDOR_ST) {
635			pwr |= MCI_PWR_UP;
636			break;
637		}
638	case MMC_POWER_ON:
639		pwr |= MCI_PWR_ON;
640		break;
641	}
642
643	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
644		if (host->hw_designer != AMBA_VENDOR_ST)
645			pwr |= MCI_ROD;
646		else {
647			/*
648			 * The ST Micro variant use the ROD bit for something
649			 * else and only has OD (Open Drain).
650			 */
651			pwr |= MCI_OD;
652		}
653	}
654
655	spin_lock_irqsave(&host->lock, flags);
656
657	mmci_set_clkreg(host, ios->clock);
658
659	if (host->pwr != pwr) {
660		host->pwr = pwr;
661		writel(pwr, host->base + MMCIPOWER);
662	}
663
664	spin_unlock_irqrestore(&host->lock, flags);
665}
666
667static int mmci_get_ro(struct mmc_host *mmc)
668{
669	struct mmci_host *host = mmc_priv(mmc);
670
671	if (host->gpio_wp == -ENOSYS)
672		return -ENOSYS;
673
674	return gpio_get_value_cansleep(host->gpio_wp);
675}
676
677static int mmci_get_cd(struct mmc_host *mmc)
678{
679	struct mmci_host *host = mmc_priv(mmc);
680	struct mmci_platform_data *plat = host->plat;
681	unsigned int status;
682
683	if (host->gpio_cd == -ENOSYS) {
684		if (!plat->status)
685			return 1; /* Assume always present */
686
687		status = plat->status(mmc_dev(host->mmc));
688	} else
689		status = !!gpio_get_value_cansleep(host->gpio_cd)
690			^ plat->cd_invert;
691
692	/*
693	 * Use positive logic throughout - status is zero for no card,
694	 * non-zero for card inserted.
695	 */
696	return status;
697}
698
699static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
700{
701	struct mmci_host *host = dev_id;
702
703	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
704
705	return IRQ_HANDLED;
706}
707
708static const struct mmc_host_ops mmci_ops = {
709	.request	= mmci_request,
710	.set_ios	= mmci_set_ios,
711	.get_ro		= mmci_get_ro,
712	.get_cd		= mmci_get_cd,
713};
714
715static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
716{
717	struct mmci_platform_data *plat = dev->dev.platform_data;
718	struct variant_data *variant = id->data;
719	struct mmci_host *host;
720	struct mmc_host *mmc;
721	int ret;
722
723	/* must have platform data */
724	if (!plat) {
725		ret = -EINVAL;
726		goto out;
727	}
728
729	ret = amba_request_regions(dev, DRIVER_NAME);
730	if (ret)
731		goto out;
732
733	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
734	if (!mmc) {
735		ret = -ENOMEM;
736		goto rel_regions;
737	}
738
739	host = mmc_priv(mmc);
740	host->mmc = mmc;
741
742	host->gpio_wp = -ENOSYS;
743	host->gpio_cd = -ENOSYS;
744	host->gpio_cd_irq = -1;
745
746	host->hw_designer = amba_manf(dev);
747	host->hw_revision = amba_rev(dev);
748	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
749	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
750
751	host->clk = clk_get(&dev->dev, NULL);
752	if (IS_ERR(host->clk)) {
753		ret = PTR_ERR(host->clk);
754		host->clk = NULL;
755		goto host_free;
756	}
757
758	ret = clk_enable(host->clk);
759	if (ret)
760		goto clk_free;
761
762	host->plat = plat;
763	host->variant = variant;
764	host->mclk = clk_get_rate(host->clk);
765	/*
766	 * According to the spec, mclk is max 100 MHz,
767	 * so we try to adjust the clock down to this,
768	 * (if possible).
769	 */
770	if (host->mclk > 100000000) {
771		ret = clk_set_rate(host->clk, 100000000);
772		if (ret < 0)
773			goto clk_disable;
774		host->mclk = clk_get_rate(host->clk);
775		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
776			host->mclk);
777	}
778	host->base = ioremap(dev->res.start, resource_size(&dev->res));
779	if (!host->base) {
780		ret = -ENOMEM;
781		goto clk_disable;
782	}
783
784	mmc->ops = &mmci_ops;
785	mmc->f_min = (host->mclk + 511) / 512;
786	/*
787	 * If the platform data supplies a maximum operating
788	 * frequency, this takes precedence. Else, we fall back
789	 * to using the module parameter, which has a (low)
790	 * default value in case it is not specified. Either
791	 * value must not exceed the clock rate into the block,
792	 * of course.
793	 */
794	if (plat->f_max)
795		mmc->f_max = min(host->mclk, plat->f_max);
796	else
797		mmc->f_max = min(host->mclk, fmax);
798	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
799
800#ifdef CONFIG_REGULATOR
801	/* If we're using the regulator framework, try to fetch a regulator */
802	host->vcc = regulator_get(&dev->dev, "vmmc");
803	if (IS_ERR(host->vcc))
804		host->vcc = NULL;
805	else {
806		int mask = mmc_regulator_get_ocrmask(host->vcc);
807
808		if (mask < 0)
809			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
810				mask);
811		else {
812			host->mmc->ocr_avail = (u32) mask;
813			if (plat->ocr_mask)
814				dev_warn(&dev->dev,
815				 "Provided ocr_mask/setpower will not be used "
816				 "(using regulator instead)\n");
817		}
818	}
819#endif
820	/* Fall back to platform data if no regulator is found */
821	if (host->vcc == NULL)
822		mmc->ocr_avail = plat->ocr_mask;
823	mmc->caps = plat->capabilities;
824
825	/*
826	 * We can do SGIO
827	 */
828	mmc->max_segs = NR_SG;
829
830	/*
831	 * Since only a certain number of bits are valid in the data length
832	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
833	 * single request.
834	 */
835	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
836
837	/*
838	 * Set the maximum segment size.  Since we aren't doing DMA
839	 * (yet) we are only limited by the data length register.
840	 */
841	mmc->max_seg_size = mmc->max_req_size;
842
843	/*
844	 * Block size can be up to 2048 bytes, but must be a power of two.
845	 */
846	mmc->max_blk_size = 2048;
847
848	/*
849	 * No limit on the number of blocks transferred.
850	 */
851	mmc->max_blk_count = mmc->max_req_size;
852
853	spin_lock_init(&host->lock);
854
855	writel(0, host->base + MMCIMASK0);
856	writel(0, host->base + MMCIMASK1);
857	writel(0xfff, host->base + MMCICLEAR);
858
859	if (gpio_is_valid(plat->gpio_cd)) {
860		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
861		if (ret == 0)
862			ret = gpio_direction_input(plat->gpio_cd);
863		if (ret == 0)
864			host->gpio_cd = plat->gpio_cd;
865		else if (ret != -ENOSYS)
866			goto err_gpio_cd;
867
868		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
869					      mmci_cd_irq, 0,
870					      DRIVER_NAME " (cd)", host);
871		if (ret >= 0)
872			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
873	}
874	if (gpio_is_valid(plat->gpio_wp)) {
875		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
876		if (ret == 0)
877			ret = gpio_direction_input(plat->gpio_wp);
878		if (ret == 0)
879			host->gpio_wp = plat->gpio_wp;
880		else if (ret != -ENOSYS)
881			goto err_gpio_wp;
882	}
883
884	if ((host->plat->status || host->gpio_cd != -ENOSYS)
885	    && host->gpio_cd_irq < 0)
886		mmc->caps |= MMC_CAP_NEEDS_POLL;
887
888	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
889	if (ret)
890		goto unmap;
891
892	if (dev->irq[1] == NO_IRQ)
893		host->singleirq = true;
894	else {
895		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
896				  DRIVER_NAME " (pio)", host);
897		if (ret)
898			goto irq0_free;
899	}
900
901	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
902
903	amba_set_drvdata(dev, mmc);
904
905	dev_info(&dev->dev, "%s: PL%03x rev%u at 0x%08llx irq %d,%d\n",
906		mmc_hostname(mmc), amba_part(dev), amba_rev(dev),
907		(unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]);
908
909	mmc_add_host(mmc);
910
911	return 0;
912
913 irq0_free:
914	free_irq(dev->irq[0], host);
915 unmap:
916	if (host->gpio_wp != -ENOSYS)
917		gpio_free(host->gpio_wp);
918 err_gpio_wp:
919	if (host->gpio_cd_irq >= 0)
920		free_irq(host->gpio_cd_irq, host);
921	if (host->gpio_cd != -ENOSYS)
922		gpio_free(host->gpio_cd);
923 err_gpio_cd:
924	iounmap(host->base);
925 clk_disable:
926	clk_disable(host->clk);
927 clk_free:
928	clk_put(host->clk);
929 host_free:
930	mmc_free_host(mmc);
931 rel_regions:
932	amba_release_regions(dev);
933 out:
934	return ret;
935}
936
937static int __devexit mmci_remove(struct amba_device *dev)
938{
939	struct mmc_host *mmc = amba_get_drvdata(dev);
940
941	amba_set_drvdata(dev, NULL);
942
943	if (mmc) {
944		struct mmci_host *host = mmc_priv(mmc);
945
946		mmc_remove_host(mmc);
947
948		writel(0, host->base + MMCIMASK0);
949		writel(0, host->base + MMCIMASK1);
950
951		writel(0, host->base + MMCICOMMAND);
952		writel(0, host->base + MMCIDATACTRL);
953
954		free_irq(dev->irq[0], host);
955		if (!host->singleirq)
956			free_irq(dev->irq[1], host);
957
958		if (host->gpio_wp != -ENOSYS)
959			gpio_free(host->gpio_wp);
960		if (host->gpio_cd_irq >= 0)
961			free_irq(host->gpio_cd_irq, host);
962		if (host->gpio_cd != -ENOSYS)
963			gpio_free(host->gpio_cd);
964
965		iounmap(host->base);
966		clk_disable(host->clk);
967		clk_put(host->clk);
968
969		if (host->vcc)
970			mmc_regulator_set_ocr(mmc, host->vcc, 0);
971		regulator_put(host->vcc);
972
973		mmc_free_host(mmc);
974
975		amba_release_regions(dev);
976	}
977
978	return 0;
979}
980
981#ifdef CONFIG_PM
982static int mmci_suspend(struct amba_device *dev, pm_message_t state)
983{
984	struct mmc_host *mmc = amba_get_drvdata(dev);
985	int ret = 0;
986
987	if (mmc) {
988		struct mmci_host *host = mmc_priv(mmc);
989
990		ret = mmc_suspend_host(mmc);
991		if (ret == 0)
992			writel(0, host->base + MMCIMASK0);
993	}
994
995	return ret;
996}
997
998static int mmci_resume(struct amba_device *dev)
999{
1000	struct mmc_host *mmc = amba_get_drvdata(dev);
1001	int ret = 0;
1002
1003	if (mmc) {
1004		struct mmci_host *host = mmc_priv(mmc);
1005
1006		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1007
1008		ret = mmc_resume_host(mmc);
1009	}
1010
1011	return ret;
1012}
1013#else
1014#define mmci_suspend	NULL
1015#define mmci_resume	NULL
1016#endif
1017
1018static struct amba_id mmci_ids[] = {
1019	{
1020		.id	= 0x00041180,
1021		.mask	= 0x000fffff,
1022		.data	= &variant_arm,
1023	},
1024	{
1025		.id	= 0x00041181,
1026		.mask	= 0x000fffff,
1027		.data	= &variant_arm,
1028	},
1029	/* ST Micro variants */
1030	{
1031		.id     = 0x00180180,
1032		.mask   = 0x00ffffff,
1033		.data	= &variant_u300,
1034	},
1035	{
1036		.id     = 0x00280180,
1037		.mask   = 0x00ffffff,
1038		.data	= &variant_u300,
1039	},
1040	{
1041		.id     = 0x00480180,
1042		.mask   = 0x00ffffff,
1043		.data	= &variant_ux500,
1044	},
1045	{ 0, 0 },
1046};
1047
1048static struct amba_driver mmci_driver = {
1049	.drv		= {
1050		.name	= DRIVER_NAME,
1051	},
1052	.probe		= mmci_probe,
1053	.remove		= __devexit_p(mmci_remove),
1054	.suspend	= mmci_suspend,
1055	.resume		= mmci_resume,
1056	.id_table	= mmci_ids,
1057};
1058
1059static int __init mmci_init(void)
1060{
1061	return amba_driver_register(&mmci_driver);
1062}
1063
1064static void __exit mmci_exit(void)
1065{
1066	amba_driver_unregister(&mmci_driver);
1067}
1068
1069module_init(mmci_init);
1070module_exit(mmci_exit);
1071module_param(fmax, uint, 0444);
1072
1073MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1074MODULE_LICENSE("GPL");
1075