mmci.c revision dfb85185bda373a70409c70c2632b02fb0f8f449
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32#include <linux/pm_runtime.h>
33#include <linux/types.h>
34
35#include <asm/div64.h>
36#include <asm/io.h>
37#include <asm/sizes.h>
38
39#include "mmci.h"
40
41#define DRIVER_NAME "mmci-pl18x"
42
43static unsigned int fmax = 515633;
44
45/**
46 * struct variant_data - MMCI variant-specific quirks
47 * @clkreg: default value for MCICLOCK register
48 * @clkreg_enable: enable value for MMCICLOCK register
49 * @datalength_bits: number of bits in the MMCIDATALENGTH register
50 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
51 *	      is asserted (likewise for RX)
52 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
53 *		  is asserted (likewise for RX)
54 * @sdio: variant supports SDIO
55 * @st_clkdiv: true if using a ST-specific clock divider algorithm
56 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
57 * @pwrreg_powerup: power up value for MMCIPOWER register
58 * @signal_direction: input/out direction of bus signals can be indicated
59 */
60struct variant_data {
61	unsigned int		clkreg;
62	unsigned int		clkreg_enable;
63	unsigned int		datalength_bits;
64	unsigned int		fifosize;
65	unsigned int		fifohalfsize;
66	bool			sdio;
67	bool			st_clkdiv;
68	bool			blksz_datactrl16;
69	u32			pwrreg_powerup;
70	bool			signal_direction;
71};
72
73static struct variant_data variant_arm = {
74	.fifosize		= 16 * 4,
75	.fifohalfsize		= 8 * 4,
76	.datalength_bits	= 16,
77	.pwrreg_powerup		= MCI_PWR_UP,
78};
79
80static struct variant_data variant_arm_extended_fifo = {
81	.fifosize		= 128 * 4,
82	.fifohalfsize		= 64 * 4,
83	.datalength_bits	= 16,
84	.pwrreg_powerup		= MCI_PWR_UP,
85};
86
87static struct variant_data variant_u300 = {
88	.fifosize		= 16 * 4,
89	.fifohalfsize		= 8 * 4,
90	.clkreg_enable		= MCI_ST_U300_HWFCEN,
91	.datalength_bits	= 16,
92	.sdio			= true,
93	.pwrreg_powerup		= MCI_PWR_ON,
94	.signal_direction	= true,
95};
96
97static struct variant_data variant_ux500 = {
98	.fifosize		= 30 * 4,
99	.fifohalfsize		= 8 * 4,
100	.clkreg			= MCI_CLK_ENABLE,
101	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
102	.datalength_bits	= 24,
103	.sdio			= true,
104	.st_clkdiv		= true,
105	.pwrreg_powerup		= MCI_PWR_ON,
106	.signal_direction	= true,
107};
108
109static struct variant_data variant_ux500v2 = {
110	.fifosize		= 30 * 4,
111	.fifohalfsize		= 8 * 4,
112	.clkreg			= MCI_CLK_ENABLE,
113	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
114	.datalength_bits	= 24,
115	.sdio			= true,
116	.st_clkdiv		= true,
117	.blksz_datactrl16	= true,
118	.pwrreg_powerup		= MCI_PWR_ON,
119	.signal_direction	= true,
120};
121
122/*
123 * This must be called with host->lock held
124 */
125static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
126{
127	if (host->clk_reg != clk) {
128		host->clk_reg = clk;
129		writel(clk, host->base + MMCICLOCK);
130	}
131}
132
133/*
134 * This must be called with host->lock held
135 */
136static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
137{
138	if (host->pwr_reg != pwr) {
139		host->pwr_reg = pwr;
140		writel(pwr, host->base + MMCIPOWER);
141	}
142}
143
144/*
145 * This must be called with host->lock held
146 */
147static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
148{
149	struct variant_data *variant = host->variant;
150	u32 clk = variant->clkreg;
151
152	if (desired) {
153		if (desired >= host->mclk) {
154			clk = MCI_CLK_BYPASS;
155			if (variant->st_clkdiv)
156				clk |= MCI_ST_UX500_NEG_EDGE;
157			host->cclk = host->mclk;
158		} else if (variant->st_clkdiv) {
159			/*
160			 * DB8500 TRM says f = mclk / (clkdiv + 2)
161			 * => clkdiv = (mclk / f) - 2
162			 * Round the divider up so we don't exceed the max
163			 * frequency
164			 */
165			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
166			if (clk >= 256)
167				clk = 255;
168			host->cclk = host->mclk / (clk + 2);
169		} else {
170			/*
171			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
172			 * => clkdiv = mclk / (2 * f) - 1
173			 */
174			clk = host->mclk / (2 * desired) - 1;
175			if (clk >= 256)
176				clk = 255;
177			host->cclk = host->mclk / (2 * (clk + 1));
178		}
179
180		clk |= variant->clkreg_enable;
181		clk |= MCI_CLK_ENABLE;
182		/* This hasn't proven to be worthwhile */
183		/* clk |= MCI_CLK_PWRSAVE; */
184	}
185
186	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
187		clk |= MCI_4BIT_BUS;
188	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
189		clk |= MCI_ST_8BIT_BUS;
190
191	mmci_write_clkreg(host, clk);
192}
193
194static void
195mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
196{
197	writel(0, host->base + MMCICOMMAND);
198
199	BUG_ON(host->data);
200
201	host->mrq = NULL;
202	host->cmd = NULL;
203
204	mmc_request_done(host->mmc, mrq);
205
206	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
207	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
208}
209
210static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
211{
212	void __iomem *base = host->base;
213
214	if (host->singleirq) {
215		unsigned int mask0 = readl(base + MMCIMASK0);
216
217		mask0 &= ~MCI_IRQ1MASK;
218		mask0 |= mask;
219
220		writel(mask0, base + MMCIMASK0);
221	}
222
223	writel(mask, base + MMCIMASK1);
224}
225
226static void mmci_stop_data(struct mmci_host *host)
227{
228	writel(0, host->base + MMCIDATACTRL);
229	mmci_set_mask1(host, 0);
230	host->data = NULL;
231}
232
233static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
234{
235	unsigned int flags = SG_MITER_ATOMIC;
236
237	if (data->flags & MMC_DATA_READ)
238		flags |= SG_MITER_TO_SG;
239	else
240		flags |= SG_MITER_FROM_SG;
241
242	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
243}
244
245/*
246 * All the DMA operation mode stuff goes inside this ifdef.
247 * This assumes that you have a generic DMA device interface,
248 * no custom DMA interfaces are supported.
249 */
250#ifdef CONFIG_DMA_ENGINE
251static void __devinit mmci_dma_setup(struct mmci_host *host)
252{
253	struct mmci_platform_data *plat = host->plat;
254	const char *rxname, *txname;
255	dma_cap_mask_t mask;
256
257	if (!plat || !plat->dma_filter) {
258		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
259		return;
260	}
261
262	/* initialize pre request cookie */
263	host->next_data.cookie = 1;
264
265	/* Try to acquire a generic DMA engine slave channel */
266	dma_cap_zero(mask);
267	dma_cap_set(DMA_SLAVE, mask);
268
269	/*
270	 * If only an RX channel is specified, the driver will
271	 * attempt to use it bidirectionally, however if it is
272	 * is specified but cannot be located, DMA will be disabled.
273	 */
274	if (plat->dma_rx_param) {
275		host->dma_rx_channel = dma_request_channel(mask,
276							   plat->dma_filter,
277							   plat->dma_rx_param);
278		/* E.g if no DMA hardware is present */
279		if (!host->dma_rx_channel)
280			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
281	}
282
283	if (plat->dma_tx_param) {
284		host->dma_tx_channel = dma_request_channel(mask,
285							   plat->dma_filter,
286							   plat->dma_tx_param);
287		if (!host->dma_tx_channel)
288			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
289	} else {
290		host->dma_tx_channel = host->dma_rx_channel;
291	}
292
293	if (host->dma_rx_channel)
294		rxname = dma_chan_name(host->dma_rx_channel);
295	else
296		rxname = "none";
297
298	if (host->dma_tx_channel)
299		txname = dma_chan_name(host->dma_tx_channel);
300	else
301		txname = "none";
302
303	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
304		 rxname, txname);
305
306	/*
307	 * Limit the maximum segment size in any SG entry according to
308	 * the parameters of the DMA engine device.
309	 */
310	if (host->dma_tx_channel) {
311		struct device *dev = host->dma_tx_channel->device->dev;
312		unsigned int max_seg_size = dma_get_max_seg_size(dev);
313
314		if (max_seg_size < host->mmc->max_seg_size)
315			host->mmc->max_seg_size = max_seg_size;
316	}
317	if (host->dma_rx_channel) {
318		struct device *dev = host->dma_rx_channel->device->dev;
319		unsigned int max_seg_size = dma_get_max_seg_size(dev);
320
321		if (max_seg_size < host->mmc->max_seg_size)
322			host->mmc->max_seg_size = max_seg_size;
323	}
324}
325
326/*
327 * This is used in __devinit or __devexit so inline it
328 * so it can be discarded.
329 */
330static inline void mmci_dma_release(struct mmci_host *host)
331{
332	struct mmci_platform_data *plat = host->plat;
333
334	if (host->dma_rx_channel)
335		dma_release_channel(host->dma_rx_channel);
336	if (host->dma_tx_channel && plat->dma_tx_param)
337		dma_release_channel(host->dma_tx_channel);
338	host->dma_rx_channel = host->dma_tx_channel = NULL;
339}
340
341static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
342{
343	struct dma_chan *chan = host->dma_current;
344	enum dma_data_direction dir;
345	u32 status;
346	int i;
347
348	/* Wait up to 1ms for the DMA to complete */
349	for (i = 0; ; i++) {
350		status = readl(host->base + MMCISTATUS);
351		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
352			break;
353		udelay(10);
354	}
355
356	/*
357	 * Check to see whether we still have some data left in the FIFO -
358	 * this catches DMA controllers which are unable to monitor the
359	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
360	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
361	 */
362	if (status & MCI_RXDATAAVLBLMASK) {
363		dmaengine_terminate_all(chan);
364		if (!data->error)
365			data->error = -EIO;
366	}
367
368	if (data->flags & MMC_DATA_WRITE) {
369		dir = DMA_TO_DEVICE;
370	} else {
371		dir = DMA_FROM_DEVICE;
372	}
373
374	if (!data->host_cookie)
375		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
376
377	/*
378	 * Use of DMA with scatter-gather is impossible.
379	 * Give up with DMA and switch back to PIO mode.
380	 */
381	if (status & MCI_RXDATAAVLBLMASK) {
382		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
383		mmci_dma_release(host);
384	}
385}
386
387static void mmci_dma_data_error(struct mmci_host *host)
388{
389	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
390	dmaengine_terminate_all(host->dma_current);
391}
392
393static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
394			      struct mmci_host_next *next)
395{
396	struct variant_data *variant = host->variant;
397	struct dma_slave_config conf = {
398		.src_addr = host->phybase + MMCIFIFO,
399		.dst_addr = host->phybase + MMCIFIFO,
400		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
401		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
402		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
403		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
404		.device_fc = false,
405	};
406	struct dma_chan *chan;
407	struct dma_device *device;
408	struct dma_async_tx_descriptor *desc;
409	enum dma_data_direction buffer_dirn;
410	int nr_sg;
411
412	/* Check if next job is already prepared */
413	if (data->host_cookie && !next &&
414	    host->dma_current && host->dma_desc_current)
415		return 0;
416
417	if (!next) {
418		host->dma_current = NULL;
419		host->dma_desc_current = NULL;
420	}
421
422	if (data->flags & MMC_DATA_READ) {
423		conf.direction = DMA_DEV_TO_MEM;
424		buffer_dirn = DMA_FROM_DEVICE;
425		chan = host->dma_rx_channel;
426	} else {
427		conf.direction = DMA_MEM_TO_DEV;
428		buffer_dirn = DMA_TO_DEVICE;
429		chan = host->dma_tx_channel;
430	}
431
432	/* If there's no DMA channel, fall back to PIO */
433	if (!chan)
434		return -EINVAL;
435
436	/* If less than or equal to the fifo size, don't bother with DMA */
437	if (data->blksz * data->blocks <= variant->fifosize)
438		return -EINVAL;
439
440	device = chan->device;
441	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
442	if (nr_sg == 0)
443		return -EINVAL;
444
445	dmaengine_slave_config(chan, &conf);
446	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
447					    conf.direction, DMA_CTRL_ACK);
448	if (!desc)
449		goto unmap_exit;
450
451	if (next) {
452		next->dma_chan = chan;
453		next->dma_desc = desc;
454	} else {
455		host->dma_current = chan;
456		host->dma_desc_current = desc;
457	}
458
459	return 0;
460
461 unmap_exit:
462	if (!next)
463		dmaengine_terminate_all(chan);
464	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
465	return -ENOMEM;
466}
467
468static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
469{
470	int ret;
471	struct mmc_data *data = host->data;
472
473	ret = mmci_dma_prep_data(host, host->data, NULL);
474	if (ret)
475		return ret;
476
477	/* Okay, go for it. */
478	dev_vdbg(mmc_dev(host->mmc),
479		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
480		 data->sg_len, data->blksz, data->blocks, data->flags);
481	dmaengine_submit(host->dma_desc_current);
482	dma_async_issue_pending(host->dma_current);
483
484	datactrl |= MCI_DPSM_DMAENABLE;
485
486	/* Trigger the DMA transfer */
487	writel(datactrl, host->base + MMCIDATACTRL);
488
489	/*
490	 * Let the MMCI say when the data is ended and it's time
491	 * to fire next DMA request. When that happens, MMCI will
492	 * call mmci_data_end()
493	 */
494	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
495	       host->base + MMCIMASK0);
496	return 0;
497}
498
499static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
500{
501	struct mmci_host_next *next = &host->next_data;
502
503	if (data->host_cookie && data->host_cookie != next->cookie) {
504		pr_warning("[%s] invalid cookie: data->host_cookie %d"
505		       " host->next_data.cookie %d\n",
506		       __func__, data->host_cookie, host->next_data.cookie);
507		data->host_cookie = 0;
508	}
509
510	if (!data->host_cookie)
511		return;
512
513	host->dma_desc_current = next->dma_desc;
514	host->dma_current = next->dma_chan;
515
516	next->dma_desc = NULL;
517	next->dma_chan = NULL;
518}
519
520static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
521			     bool is_first_req)
522{
523	struct mmci_host *host = mmc_priv(mmc);
524	struct mmc_data *data = mrq->data;
525	struct mmci_host_next *nd = &host->next_data;
526
527	if (!data)
528		return;
529
530	if (data->host_cookie) {
531		data->host_cookie = 0;
532		return;
533	}
534
535	/* if config for dma */
536	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
537	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
538		if (mmci_dma_prep_data(host, data, nd))
539			data->host_cookie = 0;
540		else
541			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
542	}
543}
544
545static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
546			      int err)
547{
548	struct mmci_host *host = mmc_priv(mmc);
549	struct mmc_data *data = mrq->data;
550	struct dma_chan *chan;
551	enum dma_data_direction dir;
552
553	if (!data)
554		return;
555
556	if (data->flags & MMC_DATA_READ) {
557		dir = DMA_FROM_DEVICE;
558		chan = host->dma_rx_channel;
559	} else {
560		dir = DMA_TO_DEVICE;
561		chan = host->dma_tx_channel;
562	}
563
564
565	/* if config for dma */
566	if (chan) {
567		if (err)
568			dmaengine_terminate_all(chan);
569		if (data->host_cookie)
570			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
571				     data->sg_len, dir);
572		mrq->data->host_cookie = 0;
573	}
574}
575
576#else
577/* Blank functions if the DMA engine is not available */
578static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
579{
580}
581static inline void mmci_dma_setup(struct mmci_host *host)
582{
583}
584
585static inline void mmci_dma_release(struct mmci_host *host)
586{
587}
588
589static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
590{
591}
592
593static inline void mmci_dma_data_error(struct mmci_host *host)
594{
595}
596
597static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
598{
599	return -ENOSYS;
600}
601
602#define mmci_pre_request NULL
603#define mmci_post_request NULL
604
605#endif
606
607static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
608{
609	struct variant_data *variant = host->variant;
610	unsigned int datactrl, timeout, irqmask;
611	unsigned long long clks;
612	void __iomem *base;
613	int blksz_bits;
614
615	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
616		data->blksz, data->blocks, data->flags);
617
618	host->data = data;
619	host->size = data->blksz * data->blocks;
620	data->bytes_xfered = 0;
621
622	clks = (unsigned long long)data->timeout_ns * host->cclk;
623	do_div(clks, 1000000000UL);
624
625	timeout = data->timeout_clks + (unsigned int)clks;
626
627	base = host->base;
628	writel(timeout, base + MMCIDATATIMER);
629	writel(host->size, base + MMCIDATALENGTH);
630
631	blksz_bits = ffs(data->blksz) - 1;
632	BUG_ON(1 << blksz_bits != data->blksz);
633
634	if (variant->blksz_datactrl16)
635		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
636	else
637		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
638
639	if (data->flags & MMC_DATA_READ)
640		datactrl |= MCI_DPSM_DIRECTION;
641
642	/* The ST Micro variants has a special bit to enable SDIO */
643	if (variant->sdio && host->mmc->card)
644		if (mmc_card_sdio(host->mmc->card))
645			datactrl |= MCI_ST_DPSM_SDIOEN;
646
647	/*
648	 * Attempt to use DMA operation mode, if this
649	 * should fail, fall back to PIO mode
650	 */
651	if (!mmci_dma_start_data(host, datactrl))
652		return;
653
654	/* IRQ mode, map the SG list for CPU reading/writing */
655	mmci_init_sg(host, data);
656
657	if (data->flags & MMC_DATA_READ) {
658		irqmask = MCI_RXFIFOHALFFULLMASK;
659
660		/*
661		 * If we have less than the fifo 'half-full' threshold to
662		 * transfer, trigger a PIO interrupt as soon as any data
663		 * is available.
664		 */
665		if (host->size < variant->fifohalfsize)
666			irqmask |= MCI_RXDATAAVLBLMASK;
667	} else {
668		/*
669		 * We don't actually need to include "FIFO empty" here
670		 * since its implicit in "FIFO half empty".
671		 */
672		irqmask = MCI_TXFIFOHALFEMPTYMASK;
673	}
674
675	writel(datactrl, base + MMCIDATACTRL);
676	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
677	mmci_set_mask1(host, irqmask);
678}
679
680static void
681mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
682{
683	void __iomem *base = host->base;
684
685	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
686	    cmd->opcode, cmd->arg, cmd->flags);
687
688	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
689		writel(0, base + MMCICOMMAND);
690		udelay(1);
691	}
692
693	c |= cmd->opcode | MCI_CPSM_ENABLE;
694	if (cmd->flags & MMC_RSP_PRESENT) {
695		if (cmd->flags & MMC_RSP_136)
696			c |= MCI_CPSM_LONGRSP;
697		c |= MCI_CPSM_RESPONSE;
698	}
699	if (/*interrupt*/0)
700		c |= MCI_CPSM_INTERRUPT;
701
702	host->cmd = cmd;
703
704	writel(cmd->arg, base + MMCIARGUMENT);
705	writel(c, base + MMCICOMMAND);
706}
707
708static void
709mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
710	      unsigned int status)
711{
712	/* First check for errors */
713	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
714		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
715		u32 remain, success;
716
717		/* Terminate the DMA transfer */
718		if (dma_inprogress(host))
719			mmci_dma_data_error(host);
720
721		/*
722		 * Calculate how far we are into the transfer.  Note that
723		 * the data counter gives the number of bytes transferred
724		 * on the MMC bus, not on the host side.  On reads, this
725		 * can be as much as a FIFO-worth of data ahead.  This
726		 * matters for FIFO overruns only.
727		 */
728		remain = readl(host->base + MMCIDATACNT);
729		success = data->blksz * data->blocks - remain;
730
731		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
732			status, success);
733		if (status & MCI_DATACRCFAIL) {
734			/* Last block was not successful */
735			success -= 1;
736			data->error = -EILSEQ;
737		} else if (status & MCI_DATATIMEOUT) {
738			data->error = -ETIMEDOUT;
739		} else if (status & MCI_STARTBITERR) {
740			data->error = -ECOMM;
741		} else if (status & MCI_TXUNDERRUN) {
742			data->error = -EIO;
743		} else if (status & MCI_RXOVERRUN) {
744			if (success > host->variant->fifosize)
745				success -= host->variant->fifosize;
746			else
747				success = 0;
748			data->error = -EIO;
749		}
750		data->bytes_xfered = round_down(success, data->blksz);
751	}
752
753	if (status & MCI_DATABLOCKEND)
754		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
755
756	if (status & MCI_DATAEND || data->error) {
757		if (dma_inprogress(host))
758			mmci_dma_unmap(host, data);
759		mmci_stop_data(host);
760
761		if (!data->error)
762			/* The error clause is handled above, success! */
763			data->bytes_xfered = data->blksz * data->blocks;
764
765		if (!data->stop) {
766			mmci_request_end(host, data->mrq);
767		} else {
768			mmci_start_command(host, data->stop, 0);
769		}
770	}
771}
772
773static void
774mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
775	     unsigned int status)
776{
777	void __iomem *base = host->base;
778
779	host->cmd = NULL;
780
781	if (status & MCI_CMDTIMEOUT) {
782		cmd->error = -ETIMEDOUT;
783	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
784		cmd->error = -EILSEQ;
785	} else {
786		cmd->resp[0] = readl(base + MMCIRESPONSE0);
787		cmd->resp[1] = readl(base + MMCIRESPONSE1);
788		cmd->resp[2] = readl(base + MMCIRESPONSE2);
789		cmd->resp[3] = readl(base + MMCIRESPONSE3);
790	}
791
792	if (!cmd->data || cmd->error) {
793		if (host->data) {
794			/* Terminate the DMA transfer */
795			if (dma_inprogress(host))
796				mmci_dma_data_error(host);
797			mmci_stop_data(host);
798		}
799		mmci_request_end(host, cmd->mrq);
800	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
801		mmci_start_data(host, cmd->data);
802	}
803}
804
805static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
806{
807	void __iomem *base = host->base;
808	char *ptr = buffer;
809	u32 status;
810	int host_remain = host->size;
811
812	do {
813		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
814
815		if (count > remain)
816			count = remain;
817
818		if (count <= 0)
819			break;
820
821		/*
822		 * SDIO especially may want to send something that is
823		 * not divisible by 4 (as opposed to card sectors
824		 * etc). Therefore make sure to always read the last bytes
825		 * while only doing full 32-bit reads towards the FIFO.
826		 */
827		if (unlikely(count & 0x3)) {
828			if (count < 4) {
829				unsigned char buf[4];
830				readsl(base + MMCIFIFO, buf, 1);
831				memcpy(ptr, buf, count);
832			} else {
833				readsl(base + MMCIFIFO, ptr, count >> 2);
834				count &= ~0x3;
835			}
836		} else {
837			readsl(base + MMCIFIFO, ptr, count >> 2);
838		}
839
840		ptr += count;
841		remain -= count;
842		host_remain -= count;
843
844		if (remain == 0)
845			break;
846
847		status = readl(base + MMCISTATUS);
848	} while (status & MCI_RXDATAAVLBL);
849
850	return ptr - buffer;
851}
852
853static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
854{
855	struct variant_data *variant = host->variant;
856	void __iomem *base = host->base;
857	char *ptr = buffer;
858
859	do {
860		unsigned int count, maxcnt;
861
862		maxcnt = status & MCI_TXFIFOEMPTY ?
863			 variant->fifosize : variant->fifohalfsize;
864		count = min(remain, maxcnt);
865
866		/*
867		 * The ST Micro variant for SDIO transfer sizes
868		 * less then 8 bytes should have clock H/W flow
869		 * control disabled.
870		 */
871		if (variant->sdio &&
872		    mmc_card_sdio(host->mmc->card)) {
873			u32 clk;
874			if (count < 8)
875				clk = host->clk_reg & ~variant->clkreg_enable;
876			else
877				clk = host->clk_reg | variant->clkreg_enable;
878
879			mmci_write_clkreg(host, clk);
880		}
881
882		/*
883		 * SDIO especially may want to send something that is
884		 * not divisible by 4 (as opposed to card sectors
885		 * etc), and the FIFO only accept full 32-bit writes.
886		 * So compensate by adding +3 on the count, a single
887		 * byte become a 32bit write, 7 bytes will be two
888		 * 32bit writes etc.
889		 */
890		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
891
892		ptr += count;
893		remain -= count;
894
895		if (remain == 0)
896			break;
897
898		status = readl(base + MMCISTATUS);
899	} while (status & MCI_TXFIFOHALFEMPTY);
900
901	return ptr - buffer;
902}
903
904/*
905 * PIO data transfer IRQ handler.
906 */
907static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
908{
909	struct mmci_host *host = dev_id;
910	struct sg_mapping_iter *sg_miter = &host->sg_miter;
911	struct variant_data *variant = host->variant;
912	void __iomem *base = host->base;
913	unsigned long flags;
914	u32 status;
915
916	status = readl(base + MMCISTATUS);
917
918	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
919
920	local_irq_save(flags);
921
922	do {
923		unsigned int remain, len;
924		char *buffer;
925
926		/*
927		 * For write, we only need to test the half-empty flag
928		 * here - if the FIFO is completely empty, then by
929		 * definition it is more than half empty.
930		 *
931		 * For read, check for data available.
932		 */
933		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
934			break;
935
936		if (!sg_miter_next(sg_miter))
937			break;
938
939		buffer = sg_miter->addr;
940		remain = sg_miter->length;
941
942		len = 0;
943		if (status & MCI_RXACTIVE)
944			len = mmci_pio_read(host, buffer, remain);
945		if (status & MCI_TXACTIVE)
946			len = mmci_pio_write(host, buffer, remain, status);
947
948		sg_miter->consumed = len;
949
950		host->size -= len;
951		remain -= len;
952
953		if (remain)
954			break;
955
956		status = readl(base + MMCISTATUS);
957	} while (1);
958
959	sg_miter_stop(sg_miter);
960
961	local_irq_restore(flags);
962
963	/*
964	 * If we have less than the fifo 'half-full' threshold to transfer,
965	 * trigger a PIO interrupt as soon as any data is available.
966	 */
967	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
968		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
969
970	/*
971	 * If we run out of data, disable the data IRQs; this
972	 * prevents a race where the FIFO becomes empty before
973	 * the chip itself has disabled the data path, and
974	 * stops us racing with our data end IRQ.
975	 */
976	if (host->size == 0) {
977		mmci_set_mask1(host, 0);
978		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
979	}
980
981	return IRQ_HANDLED;
982}
983
984/*
985 * Handle completion of command and data transfers.
986 */
987static irqreturn_t mmci_irq(int irq, void *dev_id)
988{
989	struct mmci_host *host = dev_id;
990	u32 status;
991	int ret = 0;
992
993	spin_lock(&host->lock);
994
995	do {
996		struct mmc_command *cmd;
997		struct mmc_data *data;
998
999		status = readl(host->base + MMCISTATUS);
1000
1001		if (host->singleirq) {
1002			if (status & readl(host->base + MMCIMASK1))
1003				mmci_pio_irq(irq, dev_id);
1004
1005			status &= ~MCI_IRQ1MASK;
1006		}
1007
1008		status &= readl(host->base + MMCIMASK0);
1009		writel(status, host->base + MMCICLEAR);
1010
1011		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1012
1013		data = host->data;
1014		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1015			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1016			      MCI_DATABLOCKEND) && data)
1017			mmci_data_irq(host, data, status);
1018
1019		cmd = host->cmd;
1020		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1021			mmci_cmd_irq(host, cmd, status);
1022
1023		ret = 1;
1024	} while (status);
1025
1026	spin_unlock(&host->lock);
1027
1028	return IRQ_RETVAL(ret);
1029}
1030
1031static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1032{
1033	struct mmci_host *host = mmc_priv(mmc);
1034	unsigned long flags;
1035
1036	WARN_ON(host->mrq != NULL);
1037
1038	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1039		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1040			mrq->data->blksz);
1041		mrq->cmd->error = -EINVAL;
1042		mmc_request_done(mmc, mrq);
1043		return;
1044	}
1045
1046	pm_runtime_get_sync(mmc_dev(mmc));
1047
1048	spin_lock_irqsave(&host->lock, flags);
1049
1050	host->mrq = mrq;
1051
1052	if (mrq->data)
1053		mmci_get_next_data(host, mrq->data);
1054
1055	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1056		mmci_start_data(host, mrq->data);
1057
1058	mmci_start_command(host, mrq->cmd, 0);
1059
1060	spin_unlock_irqrestore(&host->lock, flags);
1061}
1062
1063static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1064{
1065	struct mmci_host *host = mmc_priv(mmc);
1066	struct variant_data *variant = host->variant;
1067	u32 pwr = 0;
1068	unsigned long flags;
1069	int ret;
1070
1071	pm_runtime_get_sync(mmc_dev(mmc));
1072
1073	if (host->plat->ios_handler &&
1074		host->plat->ios_handler(mmc_dev(mmc), ios))
1075			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1076
1077	switch (ios->power_mode) {
1078	case MMC_POWER_OFF:
1079		if (host->vcc)
1080			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1081		break;
1082	case MMC_POWER_UP:
1083		if (host->vcc) {
1084			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1085			if (ret) {
1086				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1087				/*
1088				 * The .set_ios() function in the mmc_host_ops
1089				 * struct return void, and failing to set the
1090				 * power should be rare so we print an error
1091				 * and return here.
1092				 */
1093				goto out;
1094			}
1095		}
1096		/*
1097		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1098		 * and instead uses MCI_PWR_ON so apply whatever value is
1099		 * configured in the variant data.
1100		 */
1101		pwr |= variant->pwrreg_powerup;
1102
1103		break;
1104	case MMC_POWER_ON:
1105		pwr |= MCI_PWR_ON;
1106		break;
1107	}
1108
1109	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1110		/*
1111		 * The ST Micro variant has some additional bits
1112		 * indicating signal direction for the signals in
1113		 * the SD/MMC bus and feedback-clock usage.
1114		 */
1115		pwr |= host->plat->sigdir;
1116
1117		if (ios->bus_width == MMC_BUS_WIDTH_4)
1118			pwr &= ~MCI_ST_DATA74DIREN;
1119		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1120			pwr &= (~MCI_ST_DATA74DIREN &
1121				~MCI_ST_DATA31DIREN &
1122				~MCI_ST_DATA2DIREN);
1123	}
1124
1125	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1126		if (host->hw_designer != AMBA_VENDOR_ST)
1127			pwr |= MCI_ROD;
1128		else {
1129			/*
1130			 * The ST Micro variant use the ROD bit for something
1131			 * else and only has OD (Open Drain).
1132			 */
1133			pwr |= MCI_OD;
1134		}
1135	}
1136
1137	spin_lock_irqsave(&host->lock, flags);
1138
1139	mmci_set_clkreg(host, ios->clock);
1140	mmci_write_pwrreg(host, pwr);
1141
1142	spin_unlock_irqrestore(&host->lock, flags);
1143
1144 out:
1145	pm_runtime_mark_last_busy(mmc_dev(mmc));
1146	pm_runtime_put_autosuspend(mmc_dev(mmc));
1147}
1148
1149static int mmci_get_ro(struct mmc_host *mmc)
1150{
1151	struct mmci_host *host = mmc_priv(mmc);
1152
1153	if (host->gpio_wp == -ENOSYS)
1154		return -ENOSYS;
1155
1156	return gpio_get_value_cansleep(host->gpio_wp);
1157}
1158
1159static int mmci_get_cd(struct mmc_host *mmc)
1160{
1161	struct mmci_host *host = mmc_priv(mmc);
1162	struct mmci_platform_data *plat = host->plat;
1163	unsigned int status;
1164
1165	if (host->gpio_cd == -ENOSYS) {
1166		if (!plat->status)
1167			return 1; /* Assume always present */
1168
1169		status = plat->status(mmc_dev(host->mmc));
1170	} else
1171		status = !!gpio_get_value_cansleep(host->gpio_cd)
1172			^ plat->cd_invert;
1173
1174	/*
1175	 * Use positive logic throughout - status is zero for no card,
1176	 * non-zero for card inserted.
1177	 */
1178	return status;
1179}
1180
1181static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1182{
1183	struct mmci_host *host = dev_id;
1184
1185	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1186
1187	return IRQ_HANDLED;
1188}
1189
1190static const struct mmc_host_ops mmci_ops = {
1191	.request	= mmci_request,
1192	.pre_req	= mmci_pre_request,
1193	.post_req	= mmci_post_request,
1194	.set_ios	= mmci_set_ios,
1195	.get_ro		= mmci_get_ro,
1196	.get_cd		= mmci_get_cd,
1197};
1198
1199static int __devinit mmci_probe(struct amba_device *dev,
1200	const struct amba_id *id)
1201{
1202	struct mmci_platform_data *plat = dev->dev.platform_data;
1203	struct variant_data *variant = id->data;
1204	struct mmci_host *host;
1205	struct mmc_host *mmc;
1206	int ret;
1207
1208	/* must have platform data */
1209	if (!plat) {
1210		ret = -EINVAL;
1211		goto out;
1212	}
1213
1214	ret = amba_request_regions(dev, DRIVER_NAME);
1215	if (ret)
1216		goto out;
1217
1218	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1219	if (!mmc) {
1220		ret = -ENOMEM;
1221		goto rel_regions;
1222	}
1223
1224	host = mmc_priv(mmc);
1225	host->mmc = mmc;
1226
1227	host->gpio_wp = -ENOSYS;
1228	host->gpio_cd = -ENOSYS;
1229	host->gpio_cd_irq = -1;
1230
1231	host->hw_designer = amba_manf(dev);
1232	host->hw_revision = amba_rev(dev);
1233	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1234	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1235
1236	host->clk = clk_get(&dev->dev, NULL);
1237	if (IS_ERR(host->clk)) {
1238		ret = PTR_ERR(host->clk);
1239		host->clk = NULL;
1240		goto host_free;
1241	}
1242
1243	ret = clk_prepare(host->clk);
1244	if (ret)
1245		goto clk_free;
1246
1247	ret = clk_enable(host->clk);
1248	if (ret)
1249		goto clk_unprep;
1250
1251	host->plat = plat;
1252	host->variant = variant;
1253	host->mclk = clk_get_rate(host->clk);
1254	/*
1255	 * According to the spec, mclk is max 100 MHz,
1256	 * so we try to adjust the clock down to this,
1257	 * (if possible).
1258	 */
1259	if (host->mclk > 100000000) {
1260		ret = clk_set_rate(host->clk, 100000000);
1261		if (ret < 0)
1262			goto clk_disable;
1263		host->mclk = clk_get_rate(host->clk);
1264		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1265			host->mclk);
1266	}
1267	host->phybase = dev->res.start;
1268	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1269	if (!host->base) {
1270		ret = -ENOMEM;
1271		goto clk_disable;
1272	}
1273
1274	mmc->ops = &mmci_ops;
1275	/*
1276	 * The ARM and ST versions of the block have slightly different
1277	 * clock divider equations which means that the minimum divider
1278	 * differs too.
1279	 */
1280	if (variant->st_clkdiv)
1281		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1282	else
1283		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1284	/*
1285	 * If the platform data supplies a maximum operating
1286	 * frequency, this takes precedence. Else, we fall back
1287	 * to using the module parameter, which has a (low)
1288	 * default value in case it is not specified. Either
1289	 * value must not exceed the clock rate into the block,
1290	 * of course.
1291	 */
1292	if (plat->f_max)
1293		mmc->f_max = min(host->mclk, plat->f_max);
1294	else
1295		mmc->f_max = min(host->mclk, fmax);
1296	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1297
1298#ifdef CONFIG_REGULATOR
1299	/* If we're using the regulator framework, try to fetch a regulator */
1300	host->vcc = regulator_get(&dev->dev, "vmmc");
1301	if (IS_ERR(host->vcc))
1302		host->vcc = NULL;
1303	else {
1304		int mask = mmc_regulator_get_ocrmask(host->vcc);
1305
1306		if (mask < 0)
1307			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1308				mask);
1309		else {
1310			host->mmc->ocr_avail = (u32) mask;
1311			if (plat->ocr_mask)
1312				dev_warn(&dev->dev,
1313				 "Provided ocr_mask/setpower will not be used "
1314				 "(using regulator instead)\n");
1315		}
1316	}
1317#endif
1318	/* Fall back to platform data if no regulator is found */
1319	if (host->vcc == NULL)
1320		mmc->ocr_avail = plat->ocr_mask;
1321	mmc->caps = plat->capabilities;
1322	mmc->caps2 = plat->capabilities2;
1323
1324	/*
1325	 * We can do SGIO
1326	 */
1327	mmc->max_segs = NR_SG;
1328
1329	/*
1330	 * Since only a certain number of bits are valid in the data length
1331	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1332	 * single request.
1333	 */
1334	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1335
1336	/*
1337	 * Set the maximum segment size.  Since we aren't doing DMA
1338	 * (yet) we are only limited by the data length register.
1339	 */
1340	mmc->max_seg_size = mmc->max_req_size;
1341
1342	/*
1343	 * Block size can be up to 2048 bytes, but must be a power of two.
1344	 */
1345	mmc->max_blk_size = 1 << 11;
1346
1347	/*
1348	 * Limit the number of blocks transferred so that we don't overflow
1349	 * the maximum request size.
1350	 */
1351	mmc->max_blk_count = mmc->max_req_size >> 11;
1352
1353	spin_lock_init(&host->lock);
1354
1355	writel(0, host->base + MMCIMASK0);
1356	writel(0, host->base + MMCIMASK1);
1357	writel(0xfff, host->base + MMCICLEAR);
1358
1359	if (gpio_is_valid(plat->gpio_cd)) {
1360		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1361		if (ret == 0)
1362			ret = gpio_direction_input(plat->gpio_cd);
1363		if (ret == 0)
1364			host->gpio_cd = plat->gpio_cd;
1365		else if (ret != -ENOSYS)
1366			goto err_gpio_cd;
1367
1368		/*
1369		 * A gpio pin that will detect cards when inserted and removed
1370		 * will most likely want to trigger on the edges if it is
1371		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1372		 * for the inverted case) so we request triggers on both
1373		 * edges.
1374		 */
1375		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1376				mmci_cd_irq,
1377				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1378				DRIVER_NAME " (cd)", host);
1379		if (ret >= 0)
1380			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1381	}
1382	if (gpio_is_valid(plat->gpio_wp)) {
1383		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1384		if (ret == 0)
1385			ret = gpio_direction_input(plat->gpio_wp);
1386		if (ret == 0)
1387			host->gpio_wp = plat->gpio_wp;
1388		else if (ret != -ENOSYS)
1389			goto err_gpio_wp;
1390	}
1391
1392	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1393	    && host->gpio_cd_irq < 0)
1394		mmc->caps |= MMC_CAP_NEEDS_POLL;
1395
1396	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1397	if (ret)
1398		goto unmap;
1399
1400	if (!dev->irq[1])
1401		host->singleirq = true;
1402	else {
1403		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1404				  DRIVER_NAME " (pio)", host);
1405		if (ret)
1406			goto irq0_free;
1407	}
1408
1409	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1410
1411	amba_set_drvdata(dev, mmc);
1412
1413	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1414		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1415		 amba_rev(dev), (unsigned long long)dev->res.start,
1416		 dev->irq[0], dev->irq[1]);
1417
1418	mmci_dma_setup(host);
1419
1420	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1421	pm_runtime_use_autosuspend(&dev->dev);
1422	pm_runtime_put(&dev->dev);
1423
1424	mmc_add_host(mmc);
1425
1426	return 0;
1427
1428 irq0_free:
1429	free_irq(dev->irq[0], host);
1430 unmap:
1431	if (host->gpio_wp != -ENOSYS)
1432		gpio_free(host->gpio_wp);
1433 err_gpio_wp:
1434	if (host->gpio_cd_irq >= 0)
1435		free_irq(host->gpio_cd_irq, host);
1436	if (host->gpio_cd != -ENOSYS)
1437		gpio_free(host->gpio_cd);
1438 err_gpio_cd:
1439	iounmap(host->base);
1440 clk_disable:
1441	clk_disable(host->clk);
1442 clk_unprep:
1443	clk_unprepare(host->clk);
1444 clk_free:
1445	clk_put(host->clk);
1446 host_free:
1447	mmc_free_host(mmc);
1448 rel_regions:
1449	amba_release_regions(dev);
1450 out:
1451	return ret;
1452}
1453
1454static int __devexit mmci_remove(struct amba_device *dev)
1455{
1456	struct mmc_host *mmc = amba_get_drvdata(dev);
1457
1458	amba_set_drvdata(dev, NULL);
1459
1460	if (mmc) {
1461		struct mmci_host *host = mmc_priv(mmc);
1462
1463		/*
1464		 * Undo pm_runtime_put() in probe.  We use the _sync
1465		 * version here so that we can access the primecell.
1466		 */
1467		pm_runtime_get_sync(&dev->dev);
1468
1469		mmc_remove_host(mmc);
1470
1471		writel(0, host->base + MMCIMASK0);
1472		writel(0, host->base + MMCIMASK1);
1473
1474		writel(0, host->base + MMCICOMMAND);
1475		writel(0, host->base + MMCIDATACTRL);
1476
1477		mmci_dma_release(host);
1478		free_irq(dev->irq[0], host);
1479		if (!host->singleirq)
1480			free_irq(dev->irq[1], host);
1481
1482		if (host->gpio_wp != -ENOSYS)
1483			gpio_free(host->gpio_wp);
1484		if (host->gpio_cd_irq >= 0)
1485			free_irq(host->gpio_cd_irq, host);
1486		if (host->gpio_cd != -ENOSYS)
1487			gpio_free(host->gpio_cd);
1488
1489		iounmap(host->base);
1490		clk_disable(host->clk);
1491		clk_unprepare(host->clk);
1492		clk_put(host->clk);
1493
1494		if (host->vcc)
1495			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1496		regulator_put(host->vcc);
1497
1498		mmc_free_host(mmc);
1499
1500		amba_release_regions(dev);
1501	}
1502
1503	return 0;
1504}
1505
1506#ifdef CONFIG_SUSPEND
1507static int mmci_suspend(struct device *dev)
1508{
1509	struct amba_device *adev = to_amba_device(dev);
1510	struct mmc_host *mmc = amba_get_drvdata(adev);
1511	int ret = 0;
1512
1513	if (mmc) {
1514		struct mmci_host *host = mmc_priv(mmc);
1515
1516		ret = mmc_suspend_host(mmc);
1517		if (ret == 0) {
1518			pm_runtime_get_sync(dev);
1519			writel(0, host->base + MMCIMASK0);
1520		}
1521	}
1522
1523	return ret;
1524}
1525
1526static int mmci_resume(struct device *dev)
1527{
1528	struct amba_device *adev = to_amba_device(dev);
1529	struct mmc_host *mmc = amba_get_drvdata(adev);
1530	int ret = 0;
1531
1532	if (mmc) {
1533		struct mmci_host *host = mmc_priv(mmc);
1534
1535		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1536		pm_runtime_put(dev);
1537
1538		ret = mmc_resume_host(mmc);
1539	}
1540
1541	return ret;
1542}
1543#endif
1544
1545static const struct dev_pm_ops mmci_dev_pm_ops = {
1546	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1547};
1548
1549static struct amba_id mmci_ids[] = {
1550	{
1551		.id	= 0x00041180,
1552		.mask	= 0xff0fffff,
1553		.data	= &variant_arm,
1554	},
1555	{
1556		.id	= 0x01041180,
1557		.mask	= 0xff0fffff,
1558		.data	= &variant_arm_extended_fifo,
1559	},
1560	{
1561		.id	= 0x00041181,
1562		.mask	= 0x000fffff,
1563		.data	= &variant_arm,
1564	},
1565	/* ST Micro variants */
1566	{
1567		.id     = 0x00180180,
1568		.mask   = 0x00ffffff,
1569		.data	= &variant_u300,
1570	},
1571	{
1572		.id     = 0x00280180,
1573		.mask   = 0x00ffffff,
1574		.data	= &variant_u300,
1575	},
1576	{
1577		.id     = 0x00480180,
1578		.mask   = 0xf0ffffff,
1579		.data	= &variant_ux500,
1580	},
1581	{
1582		.id     = 0x10480180,
1583		.mask   = 0xf0ffffff,
1584		.data	= &variant_ux500v2,
1585	},
1586	{ 0, 0 },
1587};
1588
1589MODULE_DEVICE_TABLE(amba, mmci_ids);
1590
1591static struct amba_driver mmci_driver = {
1592	.drv		= {
1593		.name	= DRIVER_NAME,
1594		.pm	= &mmci_dev_pm_ops,
1595	},
1596	.probe		= mmci_probe,
1597	.remove		= __devexit_p(mmci_remove),
1598	.id_table	= mmci_ids,
1599};
1600
1601module_amba_driver(mmci_driver);
1602
1603module_param(fmax, uint, 0444);
1604
1605MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1606MODULE_LICENSE("GPL");
1607