mmci.c revision f829c04204de83aa0d13307d2a2dc07c0d9a94e3
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 *	      is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 *		  is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 */
66struct variant_data {
67	unsigned int		clkreg;
68	unsigned int		clkreg_enable;
69	unsigned int		datalength_bits;
70	unsigned int		fifosize;
71	unsigned int		fifohalfsize;
72	bool			sdio;
73	bool			st_clkdiv;
74	bool			blksz_datactrl16;
75	u32			pwrreg_powerup;
76	bool			signal_direction;
77	bool			pwrreg_clkgate;
78	bool			busy_detect;
79};
80
81static struct variant_data variant_arm = {
82	.fifosize		= 16 * 4,
83	.fifohalfsize		= 8 * 4,
84	.datalength_bits	= 16,
85	.pwrreg_powerup		= MCI_PWR_UP,
86};
87
88static struct variant_data variant_arm_extended_fifo = {
89	.fifosize		= 128 * 4,
90	.fifohalfsize		= 64 * 4,
91	.datalength_bits	= 16,
92	.pwrreg_powerup		= MCI_PWR_UP,
93};
94
95static struct variant_data variant_arm_extended_fifo_hwfc = {
96	.fifosize		= 128 * 4,
97	.fifohalfsize		= 64 * 4,
98	.clkreg_enable		= MCI_ARM_HWFCEN,
99	.datalength_bits	= 16,
100	.pwrreg_powerup		= MCI_PWR_UP,
101};
102
103static struct variant_data variant_u300 = {
104	.fifosize		= 16 * 4,
105	.fifohalfsize		= 8 * 4,
106	.clkreg_enable		= MCI_ST_U300_HWFCEN,
107	.datalength_bits	= 16,
108	.sdio			= true,
109	.pwrreg_powerup		= MCI_PWR_ON,
110	.signal_direction	= true,
111	.pwrreg_clkgate		= true,
112};
113
114static struct variant_data variant_nomadik = {
115	.fifosize		= 16 * 4,
116	.fifohalfsize		= 8 * 4,
117	.clkreg			= MCI_CLK_ENABLE,
118	.datalength_bits	= 24,
119	.sdio			= true,
120	.st_clkdiv		= true,
121	.pwrreg_powerup		= MCI_PWR_ON,
122	.signal_direction	= true,
123	.pwrreg_clkgate		= true,
124};
125
126static struct variant_data variant_ux500 = {
127	.fifosize		= 30 * 4,
128	.fifohalfsize		= 8 * 4,
129	.clkreg			= MCI_CLK_ENABLE,
130	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
131	.datalength_bits	= 24,
132	.sdio			= true,
133	.st_clkdiv		= true,
134	.pwrreg_powerup		= MCI_PWR_ON,
135	.signal_direction	= true,
136	.pwrreg_clkgate		= true,
137	.busy_detect		= true,
138};
139
140static struct variant_data variant_ux500v2 = {
141	.fifosize		= 30 * 4,
142	.fifohalfsize		= 8 * 4,
143	.clkreg			= MCI_CLK_ENABLE,
144	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
145	.datalength_bits	= 24,
146	.sdio			= true,
147	.st_clkdiv		= true,
148	.blksz_datactrl16	= true,
149	.pwrreg_powerup		= MCI_PWR_ON,
150	.signal_direction	= true,
151	.pwrreg_clkgate		= true,
152	.busy_detect		= true,
153};
154
155static int mmci_card_busy(struct mmc_host *mmc)
156{
157	struct mmci_host *host = mmc_priv(mmc);
158	unsigned long flags;
159	int busy = 0;
160
161	pm_runtime_get_sync(mmc_dev(mmc));
162
163	spin_lock_irqsave(&host->lock, flags);
164	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
165		busy = 1;
166	spin_unlock_irqrestore(&host->lock, flags);
167
168	pm_runtime_mark_last_busy(mmc_dev(mmc));
169	pm_runtime_put_autosuspend(mmc_dev(mmc));
170
171	return busy;
172}
173
174/*
175 * Validate mmc prerequisites
176 */
177static int mmci_validate_data(struct mmci_host *host,
178			      struct mmc_data *data)
179{
180	if (!data)
181		return 0;
182
183	if (!is_power_of_2(data->blksz)) {
184		dev_err(mmc_dev(host->mmc),
185			"unsupported block size (%d bytes)\n", data->blksz);
186		return -EINVAL;
187	}
188
189	return 0;
190}
191
192static void mmci_reg_delay(struct mmci_host *host)
193{
194	/*
195	 * According to the spec, at least three feedback clock cycles
196	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
197	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
198	 * Worst delay time during card init is at 100 kHz => 30 us.
199	 * Worst delay time when up and running is at 25 MHz => 120 ns.
200	 */
201	if (host->cclk < 25000000)
202		udelay(30);
203	else
204		ndelay(120);
205}
206
207/*
208 * This must be called with host->lock held
209 */
210static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
211{
212	if (host->clk_reg != clk) {
213		host->clk_reg = clk;
214		writel(clk, host->base + MMCICLOCK);
215	}
216}
217
218/*
219 * This must be called with host->lock held
220 */
221static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
222{
223	if (host->pwr_reg != pwr) {
224		host->pwr_reg = pwr;
225		writel(pwr, host->base + MMCIPOWER);
226	}
227}
228
229/*
230 * This must be called with host->lock held
231 */
232static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
233{
234	/* Keep ST Micro busy mode if enabled */
235	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
236
237	if (host->datactrl_reg != datactrl) {
238		host->datactrl_reg = datactrl;
239		writel(datactrl, host->base + MMCIDATACTRL);
240	}
241}
242
243/*
244 * This must be called with host->lock held
245 */
246static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
247{
248	struct variant_data *variant = host->variant;
249	u32 clk = variant->clkreg;
250
251	/* Make sure cclk reflects the current calculated clock */
252	host->cclk = 0;
253
254	if (desired) {
255		if (desired >= host->mclk) {
256			clk = MCI_CLK_BYPASS;
257			if (variant->st_clkdiv)
258				clk |= MCI_ST_UX500_NEG_EDGE;
259			host->cclk = host->mclk;
260		} else if (variant->st_clkdiv) {
261			/*
262			 * DB8500 TRM says f = mclk / (clkdiv + 2)
263			 * => clkdiv = (mclk / f) - 2
264			 * Round the divider up so we don't exceed the max
265			 * frequency
266			 */
267			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
268			if (clk >= 256)
269				clk = 255;
270			host->cclk = host->mclk / (clk + 2);
271		} else {
272			/*
273			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
274			 * => clkdiv = mclk / (2 * f) - 1
275			 */
276			clk = host->mclk / (2 * desired) - 1;
277			if (clk >= 256)
278				clk = 255;
279			host->cclk = host->mclk / (2 * (clk + 1));
280		}
281
282		clk |= variant->clkreg_enable;
283		clk |= MCI_CLK_ENABLE;
284		/* This hasn't proven to be worthwhile */
285		/* clk |= MCI_CLK_PWRSAVE; */
286	}
287
288	/* Set actual clock for debug */
289	host->mmc->actual_clock = host->cclk;
290
291	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
292		clk |= MCI_4BIT_BUS;
293	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
294		clk |= MCI_ST_8BIT_BUS;
295
296	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
297		clk |= MCI_ST_UX500_NEG_EDGE;
298
299	mmci_write_clkreg(host, clk);
300}
301
302static void
303mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
304{
305	writel(0, host->base + MMCICOMMAND);
306
307	BUG_ON(host->data);
308
309	host->mrq = NULL;
310	host->cmd = NULL;
311
312	mmc_request_done(host->mmc, mrq);
313
314	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
315	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
316}
317
318static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
319{
320	void __iomem *base = host->base;
321
322	if (host->singleirq) {
323		unsigned int mask0 = readl(base + MMCIMASK0);
324
325		mask0 &= ~MCI_IRQ1MASK;
326		mask0 |= mask;
327
328		writel(mask0, base + MMCIMASK0);
329	}
330
331	writel(mask, base + MMCIMASK1);
332}
333
334static void mmci_stop_data(struct mmci_host *host)
335{
336	mmci_write_datactrlreg(host, 0);
337	mmci_set_mask1(host, 0);
338	host->data = NULL;
339}
340
341static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
342{
343	unsigned int flags = SG_MITER_ATOMIC;
344
345	if (data->flags & MMC_DATA_READ)
346		flags |= SG_MITER_TO_SG;
347	else
348		flags |= SG_MITER_FROM_SG;
349
350	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
351}
352
353/*
354 * All the DMA operation mode stuff goes inside this ifdef.
355 * This assumes that you have a generic DMA device interface,
356 * no custom DMA interfaces are supported.
357 */
358#ifdef CONFIG_DMA_ENGINE
359static void mmci_dma_setup(struct mmci_host *host)
360{
361	struct mmci_platform_data *plat = host->plat;
362	const char *rxname, *txname;
363	dma_cap_mask_t mask;
364
365	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
366	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
367
368	/* initialize pre request cookie */
369	host->next_data.cookie = 1;
370
371	/* Try to acquire a generic DMA engine slave channel */
372	dma_cap_zero(mask);
373	dma_cap_set(DMA_SLAVE, mask);
374
375	if (plat && plat->dma_filter) {
376		if (!host->dma_rx_channel && plat->dma_rx_param) {
377			host->dma_rx_channel = dma_request_channel(mask,
378							   plat->dma_filter,
379							   plat->dma_rx_param);
380			/* E.g if no DMA hardware is present */
381			if (!host->dma_rx_channel)
382				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
383		}
384
385		if (!host->dma_tx_channel && plat->dma_tx_param) {
386			host->dma_tx_channel = dma_request_channel(mask,
387							   plat->dma_filter,
388							   plat->dma_tx_param);
389			if (!host->dma_tx_channel)
390				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
391		}
392	}
393
394	/*
395	 * If only an RX channel is specified, the driver will
396	 * attempt to use it bidirectionally, however if it is
397	 * is specified but cannot be located, DMA will be disabled.
398	 */
399	if (host->dma_rx_channel && !host->dma_tx_channel)
400		host->dma_tx_channel = host->dma_rx_channel;
401
402	if (host->dma_rx_channel)
403		rxname = dma_chan_name(host->dma_rx_channel);
404	else
405		rxname = "none";
406
407	if (host->dma_tx_channel)
408		txname = dma_chan_name(host->dma_tx_channel);
409	else
410		txname = "none";
411
412	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
413		 rxname, txname);
414
415	/*
416	 * Limit the maximum segment size in any SG entry according to
417	 * the parameters of the DMA engine device.
418	 */
419	if (host->dma_tx_channel) {
420		struct device *dev = host->dma_tx_channel->device->dev;
421		unsigned int max_seg_size = dma_get_max_seg_size(dev);
422
423		if (max_seg_size < host->mmc->max_seg_size)
424			host->mmc->max_seg_size = max_seg_size;
425	}
426	if (host->dma_rx_channel) {
427		struct device *dev = host->dma_rx_channel->device->dev;
428		unsigned int max_seg_size = dma_get_max_seg_size(dev);
429
430		if (max_seg_size < host->mmc->max_seg_size)
431			host->mmc->max_seg_size = max_seg_size;
432	}
433}
434
435/*
436 * This is used in or so inline it
437 * so it can be discarded.
438 */
439static inline void mmci_dma_release(struct mmci_host *host)
440{
441	struct mmci_platform_data *plat = host->plat;
442
443	if (host->dma_rx_channel)
444		dma_release_channel(host->dma_rx_channel);
445	if (host->dma_tx_channel && plat->dma_tx_param)
446		dma_release_channel(host->dma_tx_channel);
447	host->dma_rx_channel = host->dma_tx_channel = NULL;
448}
449
450static void mmci_dma_data_error(struct mmci_host *host)
451{
452	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
453	dmaengine_terminate_all(host->dma_current);
454	host->dma_current = NULL;
455	host->dma_desc_current = NULL;
456	host->data->host_cookie = 0;
457}
458
459static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
460{
461	struct dma_chan *chan;
462	enum dma_data_direction dir;
463
464	if (data->flags & MMC_DATA_READ) {
465		dir = DMA_FROM_DEVICE;
466		chan = host->dma_rx_channel;
467	} else {
468		dir = DMA_TO_DEVICE;
469		chan = host->dma_tx_channel;
470	}
471
472	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
473}
474
475static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
476{
477	u32 status;
478	int i;
479
480	/* Wait up to 1ms for the DMA to complete */
481	for (i = 0; ; i++) {
482		status = readl(host->base + MMCISTATUS);
483		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
484			break;
485		udelay(10);
486	}
487
488	/*
489	 * Check to see whether we still have some data left in the FIFO -
490	 * this catches DMA controllers which are unable to monitor the
491	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
492	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
493	 */
494	if (status & MCI_RXDATAAVLBLMASK) {
495		mmci_dma_data_error(host);
496		if (!data->error)
497			data->error = -EIO;
498	}
499
500	if (!data->host_cookie)
501		mmci_dma_unmap(host, data);
502
503	/*
504	 * Use of DMA with scatter-gather is impossible.
505	 * Give up with DMA and switch back to PIO mode.
506	 */
507	if (status & MCI_RXDATAAVLBLMASK) {
508		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
509		mmci_dma_release(host);
510	}
511
512	host->dma_current = NULL;
513	host->dma_desc_current = NULL;
514}
515
516/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
517static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
518				struct dma_chan **dma_chan,
519				struct dma_async_tx_descriptor **dma_desc)
520{
521	struct variant_data *variant = host->variant;
522	struct dma_slave_config conf = {
523		.src_addr = host->phybase + MMCIFIFO,
524		.dst_addr = host->phybase + MMCIFIFO,
525		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
526		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
527		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
528		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
529		.device_fc = false,
530	};
531	struct dma_chan *chan;
532	struct dma_device *device;
533	struct dma_async_tx_descriptor *desc;
534	enum dma_data_direction buffer_dirn;
535	int nr_sg;
536
537	if (data->flags & MMC_DATA_READ) {
538		conf.direction = DMA_DEV_TO_MEM;
539		buffer_dirn = DMA_FROM_DEVICE;
540		chan = host->dma_rx_channel;
541	} else {
542		conf.direction = DMA_MEM_TO_DEV;
543		buffer_dirn = DMA_TO_DEVICE;
544		chan = host->dma_tx_channel;
545	}
546
547	/* If there's no DMA channel, fall back to PIO */
548	if (!chan)
549		return -EINVAL;
550
551	/* If less than or equal to the fifo size, don't bother with DMA */
552	if (data->blksz * data->blocks <= variant->fifosize)
553		return -EINVAL;
554
555	device = chan->device;
556	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
557	if (nr_sg == 0)
558		return -EINVAL;
559
560	dmaengine_slave_config(chan, &conf);
561	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
562					    conf.direction, DMA_CTRL_ACK);
563	if (!desc)
564		goto unmap_exit;
565
566	*dma_chan = chan;
567	*dma_desc = desc;
568
569	return 0;
570
571 unmap_exit:
572	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
573	return -ENOMEM;
574}
575
576static inline int mmci_dma_prep_data(struct mmci_host *host,
577				     struct mmc_data *data)
578{
579	/* Check if next job is already prepared. */
580	if (host->dma_current && host->dma_desc_current)
581		return 0;
582
583	/* No job were prepared thus do it now. */
584	return __mmci_dma_prep_data(host, data, &host->dma_current,
585				    &host->dma_desc_current);
586}
587
588static inline int mmci_dma_prep_next(struct mmci_host *host,
589				     struct mmc_data *data)
590{
591	struct mmci_host_next *nd = &host->next_data;
592	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
593}
594
595static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
596{
597	int ret;
598	struct mmc_data *data = host->data;
599
600	ret = mmci_dma_prep_data(host, host->data);
601	if (ret)
602		return ret;
603
604	/* Okay, go for it. */
605	dev_vdbg(mmc_dev(host->mmc),
606		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
607		 data->sg_len, data->blksz, data->blocks, data->flags);
608	dmaengine_submit(host->dma_desc_current);
609	dma_async_issue_pending(host->dma_current);
610
611	datactrl |= MCI_DPSM_DMAENABLE;
612
613	/* Trigger the DMA transfer */
614	mmci_write_datactrlreg(host, datactrl);
615
616	/*
617	 * Let the MMCI say when the data is ended and it's time
618	 * to fire next DMA request. When that happens, MMCI will
619	 * call mmci_data_end()
620	 */
621	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
622	       host->base + MMCIMASK0);
623	return 0;
624}
625
626static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
627{
628	struct mmci_host_next *next = &host->next_data;
629
630	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
631	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
632
633	host->dma_desc_current = next->dma_desc;
634	host->dma_current = next->dma_chan;
635	next->dma_desc = NULL;
636	next->dma_chan = NULL;
637}
638
639static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
640			     bool is_first_req)
641{
642	struct mmci_host *host = mmc_priv(mmc);
643	struct mmc_data *data = mrq->data;
644	struct mmci_host_next *nd = &host->next_data;
645
646	if (!data)
647		return;
648
649	BUG_ON(data->host_cookie);
650
651	if (mmci_validate_data(host, data))
652		return;
653
654	if (!mmci_dma_prep_next(host, data))
655		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
656}
657
658static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
659			      int err)
660{
661	struct mmci_host *host = mmc_priv(mmc);
662	struct mmc_data *data = mrq->data;
663
664	if (!data || !data->host_cookie)
665		return;
666
667	mmci_dma_unmap(host, data);
668
669	if (err) {
670		struct mmci_host_next *next = &host->next_data;
671		struct dma_chan *chan;
672		if (data->flags & MMC_DATA_READ)
673			chan = host->dma_rx_channel;
674		else
675			chan = host->dma_tx_channel;
676		dmaengine_terminate_all(chan);
677
678		next->dma_desc = NULL;
679		next->dma_chan = NULL;
680	}
681}
682
683#else
684/* Blank functions if the DMA engine is not available */
685static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
686{
687}
688static inline void mmci_dma_setup(struct mmci_host *host)
689{
690}
691
692static inline void mmci_dma_release(struct mmci_host *host)
693{
694}
695
696static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
697{
698}
699
700static inline void mmci_dma_finalize(struct mmci_host *host,
701				     struct mmc_data *data)
702{
703}
704
705static inline void mmci_dma_data_error(struct mmci_host *host)
706{
707}
708
709static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
710{
711	return -ENOSYS;
712}
713
714#define mmci_pre_request NULL
715#define mmci_post_request NULL
716
717#endif
718
719static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
720{
721	struct variant_data *variant = host->variant;
722	unsigned int datactrl, timeout, irqmask;
723	unsigned long long clks;
724	void __iomem *base;
725	int blksz_bits;
726
727	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
728		data->blksz, data->blocks, data->flags);
729
730	host->data = data;
731	host->size = data->blksz * data->blocks;
732	data->bytes_xfered = 0;
733
734	clks = (unsigned long long)data->timeout_ns * host->cclk;
735	do_div(clks, 1000000000UL);
736
737	timeout = data->timeout_clks + (unsigned int)clks;
738
739	base = host->base;
740	writel(timeout, base + MMCIDATATIMER);
741	writel(host->size, base + MMCIDATALENGTH);
742
743	blksz_bits = ffs(data->blksz) - 1;
744	BUG_ON(1 << blksz_bits != data->blksz);
745
746	if (variant->blksz_datactrl16)
747		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
748	else
749		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
750
751	if (data->flags & MMC_DATA_READ)
752		datactrl |= MCI_DPSM_DIRECTION;
753
754	/* The ST Micro variants has a special bit to enable SDIO */
755	if (variant->sdio && host->mmc->card)
756		if (mmc_card_sdio(host->mmc->card)) {
757			/*
758			 * The ST Micro variants has a special bit
759			 * to enable SDIO.
760			 */
761			u32 clk;
762
763			datactrl |= MCI_ST_DPSM_SDIOEN;
764
765			/*
766			 * The ST Micro variant for SDIO small write transfers
767			 * needs to have clock H/W flow control disabled,
768			 * otherwise the transfer will not start. The threshold
769			 * depends on the rate of MCLK.
770			 */
771			if (data->flags & MMC_DATA_WRITE &&
772			    (host->size < 8 ||
773			     (host->size <= 8 && host->mclk > 50000000)))
774				clk = host->clk_reg & ~variant->clkreg_enable;
775			else
776				clk = host->clk_reg | variant->clkreg_enable;
777
778			mmci_write_clkreg(host, clk);
779		}
780
781	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
782		datactrl |= MCI_ST_DPSM_DDRMODE;
783
784	/*
785	 * Attempt to use DMA operation mode, if this
786	 * should fail, fall back to PIO mode
787	 */
788	if (!mmci_dma_start_data(host, datactrl))
789		return;
790
791	/* IRQ mode, map the SG list for CPU reading/writing */
792	mmci_init_sg(host, data);
793
794	if (data->flags & MMC_DATA_READ) {
795		irqmask = MCI_RXFIFOHALFFULLMASK;
796
797		/*
798		 * If we have less than the fifo 'half-full' threshold to
799		 * transfer, trigger a PIO interrupt as soon as any data
800		 * is available.
801		 */
802		if (host->size < variant->fifohalfsize)
803			irqmask |= MCI_RXDATAAVLBLMASK;
804	} else {
805		/*
806		 * We don't actually need to include "FIFO empty" here
807		 * since its implicit in "FIFO half empty".
808		 */
809		irqmask = MCI_TXFIFOHALFEMPTYMASK;
810	}
811
812	mmci_write_datactrlreg(host, datactrl);
813	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
814	mmci_set_mask1(host, irqmask);
815}
816
817static void
818mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
819{
820	void __iomem *base = host->base;
821
822	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
823	    cmd->opcode, cmd->arg, cmd->flags);
824
825	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
826		writel(0, base + MMCICOMMAND);
827		udelay(1);
828	}
829
830	c |= cmd->opcode | MCI_CPSM_ENABLE;
831	if (cmd->flags & MMC_RSP_PRESENT) {
832		if (cmd->flags & MMC_RSP_136)
833			c |= MCI_CPSM_LONGRSP;
834		c |= MCI_CPSM_RESPONSE;
835	}
836	if (/*interrupt*/0)
837		c |= MCI_CPSM_INTERRUPT;
838
839	host->cmd = cmd;
840
841	writel(cmd->arg, base + MMCIARGUMENT);
842	writel(c, base + MMCICOMMAND);
843}
844
845static void
846mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
847	      unsigned int status)
848{
849	/* First check for errors */
850	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
851		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
852		u32 remain, success;
853
854		/* Terminate the DMA transfer */
855		if (dma_inprogress(host)) {
856			mmci_dma_data_error(host);
857			mmci_dma_unmap(host, data);
858		}
859
860		/*
861		 * Calculate how far we are into the transfer.  Note that
862		 * the data counter gives the number of bytes transferred
863		 * on the MMC bus, not on the host side.  On reads, this
864		 * can be as much as a FIFO-worth of data ahead.  This
865		 * matters for FIFO overruns only.
866		 */
867		remain = readl(host->base + MMCIDATACNT);
868		success = data->blksz * data->blocks - remain;
869
870		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
871			status, success);
872		if (status & MCI_DATACRCFAIL) {
873			/* Last block was not successful */
874			success -= 1;
875			data->error = -EILSEQ;
876		} else if (status & MCI_DATATIMEOUT) {
877			data->error = -ETIMEDOUT;
878		} else if (status & MCI_STARTBITERR) {
879			data->error = -ECOMM;
880		} else if (status & MCI_TXUNDERRUN) {
881			data->error = -EIO;
882		} else if (status & MCI_RXOVERRUN) {
883			if (success > host->variant->fifosize)
884				success -= host->variant->fifosize;
885			else
886				success = 0;
887			data->error = -EIO;
888		}
889		data->bytes_xfered = round_down(success, data->blksz);
890	}
891
892	if (status & MCI_DATABLOCKEND)
893		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
894
895	if (status & MCI_DATAEND || data->error) {
896		if (dma_inprogress(host))
897			mmci_dma_finalize(host, data);
898		mmci_stop_data(host);
899
900		if (!data->error)
901			/* The error clause is handled above, success! */
902			data->bytes_xfered = data->blksz * data->blocks;
903
904		if (!data->stop || host->mrq->sbc) {
905			mmci_request_end(host, data->mrq);
906		} else {
907			mmci_start_command(host, data->stop, 0);
908		}
909	}
910}
911
912static void
913mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
914	     unsigned int status)
915{
916	void __iomem *base = host->base;
917	bool sbc = (cmd == host->mrq->sbc);
918
919	host->cmd = NULL;
920
921	if (status & MCI_CMDTIMEOUT) {
922		cmd->error = -ETIMEDOUT;
923	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
924		cmd->error = -EILSEQ;
925	} else {
926		cmd->resp[0] = readl(base + MMCIRESPONSE0);
927		cmd->resp[1] = readl(base + MMCIRESPONSE1);
928		cmd->resp[2] = readl(base + MMCIRESPONSE2);
929		cmd->resp[3] = readl(base + MMCIRESPONSE3);
930	}
931
932	if ((!sbc && !cmd->data) || cmd->error) {
933		if (host->data) {
934			/* Terminate the DMA transfer */
935			if (dma_inprogress(host)) {
936				mmci_dma_data_error(host);
937				mmci_dma_unmap(host, host->data);
938			}
939			mmci_stop_data(host);
940		}
941		mmci_request_end(host, host->mrq);
942	} else if (sbc) {
943		mmci_start_command(host, host->mrq->cmd, 0);
944	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
945		mmci_start_data(host, cmd->data);
946	}
947}
948
949static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
950{
951	void __iomem *base = host->base;
952	char *ptr = buffer;
953	u32 status;
954	int host_remain = host->size;
955
956	do {
957		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
958
959		if (count > remain)
960			count = remain;
961
962		if (count <= 0)
963			break;
964
965		/*
966		 * SDIO especially may want to send something that is
967		 * not divisible by 4 (as opposed to card sectors
968		 * etc). Therefore make sure to always read the last bytes
969		 * while only doing full 32-bit reads towards the FIFO.
970		 */
971		if (unlikely(count & 0x3)) {
972			if (count < 4) {
973				unsigned char buf[4];
974				ioread32_rep(base + MMCIFIFO, buf, 1);
975				memcpy(ptr, buf, count);
976			} else {
977				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
978				count &= ~0x3;
979			}
980		} else {
981			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
982		}
983
984		ptr += count;
985		remain -= count;
986		host_remain -= count;
987
988		if (remain == 0)
989			break;
990
991		status = readl(base + MMCISTATUS);
992	} while (status & MCI_RXDATAAVLBL);
993
994	return ptr - buffer;
995}
996
997static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
998{
999	struct variant_data *variant = host->variant;
1000	void __iomem *base = host->base;
1001	char *ptr = buffer;
1002
1003	do {
1004		unsigned int count, maxcnt;
1005
1006		maxcnt = status & MCI_TXFIFOEMPTY ?
1007			 variant->fifosize : variant->fifohalfsize;
1008		count = min(remain, maxcnt);
1009
1010		/*
1011		 * SDIO especially may want to send something that is
1012		 * not divisible by 4 (as opposed to card sectors
1013		 * etc), and the FIFO only accept full 32-bit writes.
1014		 * So compensate by adding +3 on the count, a single
1015		 * byte become a 32bit write, 7 bytes will be two
1016		 * 32bit writes etc.
1017		 */
1018		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1019
1020		ptr += count;
1021		remain -= count;
1022
1023		if (remain == 0)
1024			break;
1025
1026		status = readl(base + MMCISTATUS);
1027	} while (status & MCI_TXFIFOHALFEMPTY);
1028
1029	return ptr - buffer;
1030}
1031
1032/*
1033 * PIO data transfer IRQ handler.
1034 */
1035static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1036{
1037	struct mmci_host *host = dev_id;
1038	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1039	struct variant_data *variant = host->variant;
1040	void __iomem *base = host->base;
1041	unsigned long flags;
1042	u32 status;
1043
1044	status = readl(base + MMCISTATUS);
1045
1046	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1047
1048	local_irq_save(flags);
1049
1050	do {
1051		unsigned int remain, len;
1052		char *buffer;
1053
1054		/*
1055		 * For write, we only need to test the half-empty flag
1056		 * here - if the FIFO is completely empty, then by
1057		 * definition it is more than half empty.
1058		 *
1059		 * For read, check for data available.
1060		 */
1061		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1062			break;
1063
1064		if (!sg_miter_next(sg_miter))
1065			break;
1066
1067		buffer = sg_miter->addr;
1068		remain = sg_miter->length;
1069
1070		len = 0;
1071		if (status & MCI_RXACTIVE)
1072			len = mmci_pio_read(host, buffer, remain);
1073		if (status & MCI_TXACTIVE)
1074			len = mmci_pio_write(host, buffer, remain, status);
1075
1076		sg_miter->consumed = len;
1077
1078		host->size -= len;
1079		remain -= len;
1080
1081		if (remain)
1082			break;
1083
1084		status = readl(base + MMCISTATUS);
1085	} while (1);
1086
1087	sg_miter_stop(sg_miter);
1088
1089	local_irq_restore(flags);
1090
1091	/*
1092	 * If we have less than the fifo 'half-full' threshold to transfer,
1093	 * trigger a PIO interrupt as soon as any data is available.
1094	 */
1095	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1096		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1097
1098	/*
1099	 * If we run out of data, disable the data IRQs; this
1100	 * prevents a race where the FIFO becomes empty before
1101	 * the chip itself has disabled the data path, and
1102	 * stops us racing with our data end IRQ.
1103	 */
1104	if (host->size == 0) {
1105		mmci_set_mask1(host, 0);
1106		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1107	}
1108
1109	return IRQ_HANDLED;
1110}
1111
1112/*
1113 * Handle completion of command and data transfers.
1114 */
1115static irqreturn_t mmci_irq(int irq, void *dev_id)
1116{
1117	struct mmci_host *host = dev_id;
1118	u32 status;
1119	int ret = 0;
1120
1121	spin_lock(&host->lock);
1122
1123	do {
1124		struct mmc_command *cmd;
1125		struct mmc_data *data;
1126
1127		status = readl(host->base + MMCISTATUS);
1128
1129		if (host->singleirq) {
1130			if (status & readl(host->base + MMCIMASK1))
1131				mmci_pio_irq(irq, dev_id);
1132
1133			status &= ~MCI_IRQ1MASK;
1134		}
1135
1136		status &= readl(host->base + MMCIMASK0);
1137		writel(status, host->base + MMCICLEAR);
1138
1139		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1140
1141		data = host->data;
1142		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1143			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1144			      MCI_DATABLOCKEND) && data)
1145			mmci_data_irq(host, data, status);
1146
1147		cmd = host->cmd;
1148		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1149			mmci_cmd_irq(host, cmd, status);
1150
1151		ret = 1;
1152	} while (status);
1153
1154	spin_unlock(&host->lock);
1155
1156	return IRQ_RETVAL(ret);
1157}
1158
1159static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1160{
1161	struct mmci_host *host = mmc_priv(mmc);
1162	unsigned long flags;
1163
1164	WARN_ON(host->mrq != NULL);
1165
1166	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1167	if (mrq->cmd->error) {
1168		mmc_request_done(mmc, mrq);
1169		return;
1170	}
1171
1172	pm_runtime_get_sync(mmc_dev(mmc));
1173
1174	spin_lock_irqsave(&host->lock, flags);
1175
1176	host->mrq = mrq;
1177
1178	if (mrq->data)
1179		mmci_get_next_data(host, mrq->data);
1180
1181	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1182		mmci_start_data(host, mrq->data);
1183
1184	if (mrq->sbc)
1185		mmci_start_command(host, mrq->sbc, 0);
1186	else
1187		mmci_start_command(host, mrq->cmd, 0);
1188
1189	spin_unlock_irqrestore(&host->lock, flags);
1190}
1191
1192static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1193{
1194	struct mmci_host *host = mmc_priv(mmc);
1195	struct variant_data *variant = host->variant;
1196	u32 pwr = 0;
1197	unsigned long flags;
1198	int ret;
1199
1200	pm_runtime_get_sync(mmc_dev(mmc));
1201
1202	if (host->plat->ios_handler &&
1203		host->plat->ios_handler(mmc_dev(mmc), ios))
1204			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1205
1206	switch (ios->power_mode) {
1207	case MMC_POWER_OFF:
1208		if (!IS_ERR(mmc->supply.vmmc))
1209			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1210
1211		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1212			regulator_disable(mmc->supply.vqmmc);
1213			host->vqmmc_enabled = false;
1214		}
1215
1216		break;
1217	case MMC_POWER_UP:
1218		if (!IS_ERR(mmc->supply.vmmc))
1219			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1220
1221		/*
1222		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1223		 * and instead uses MCI_PWR_ON so apply whatever value is
1224		 * configured in the variant data.
1225		 */
1226		pwr |= variant->pwrreg_powerup;
1227
1228		break;
1229	case MMC_POWER_ON:
1230		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1231			ret = regulator_enable(mmc->supply.vqmmc);
1232			if (ret < 0)
1233				dev_err(mmc_dev(mmc),
1234					"failed to enable vqmmc regulator\n");
1235			else
1236				host->vqmmc_enabled = true;
1237		}
1238
1239		pwr |= MCI_PWR_ON;
1240		break;
1241	}
1242
1243	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1244		/*
1245		 * The ST Micro variant has some additional bits
1246		 * indicating signal direction for the signals in
1247		 * the SD/MMC bus and feedback-clock usage.
1248		 */
1249		pwr |= host->plat->sigdir;
1250
1251		if (ios->bus_width == MMC_BUS_WIDTH_4)
1252			pwr &= ~MCI_ST_DATA74DIREN;
1253		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1254			pwr &= (~MCI_ST_DATA74DIREN &
1255				~MCI_ST_DATA31DIREN &
1256				~MCI_ST_DATA2DIREN);
1257	}
1258
1259	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1260		if (host->hw_designer != AMBA_VENDOR_ST)
1261			pwr |= MCI_ROD;
1262		else {
1263			/*
1264			 * The ST Micro variant use the ROD bit for something
1265			 * else and only has OD (Open Drain).
1266			 */
1267			pwr |= MCI_OD;
1268		}
1269	}
1270
1271	/*
1272	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1273	 * gating the clock, the MCI_PWR_ON bit is cleared.
1274	 */
1275	if (!ios->clock && variant->pwrreg_clkgate)
1276		pwr &= ~MCI_PWR_ON;
1277
1278	spin_lock_irqsave(&host->lock, flags);
1279
1280	mmci_set_clkreg(host, ios->clock);
1281	mmci_write_pwrreg(host, pwr);
1282	mmci_reg_delay(host);
1283
1284	spin_unlock_irqrestore(&host->lock, flags);
1285
1286	pm_runtime_mark_last_busy(mmc_dev(mmc));
1287	pm_runtime_put_autosuspend(mmc_dev(mmc));
1288}
1289
1290static int mmci_get_ro(struct mmc_host *mmc)
1291{
1292	struct mmci_host *host = mmc_priv(mmc);
1293
1294	if (host->gpio_wp == -ENOSYS)
1295		return -ENOSYS;
1296
1297	return gpio_get_value_cansleep(host->gpio_wp);
1298}
1299
1300static int mmci_get_cd(struct mmc_host *mmc)
1301{
1302	struct mmci_host *host = mmc_priv(mmc);
1303	struct mmci_platform_data *plat = host->plat;
1304	unsigned int status;
1305
1306	if (host->gpio_cd == -ENOSYS) {
1307		if (!plat->status)
1308			return 1; /* Assume always present */
1309
1310		status = plat->status(mmc_dev(host->mmc));
1311	} else
1312		status = !!gpio_get_value_cansleep(host->gpio_cd)
1313			^ plat->cd_invert;
1314
1315	/*
1316	 * Use positive logic throughout - status is zero for no card,
1317	 * non-zero for card inserted.
1318	 */
1319	return status;
1320}
1321
1322static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1323{
1324	int ret = 0;
1325
1326	if (!IS_ERR(mmc->supply.vqmmc)) {
1327
1328		pm_runtime_get_sync(mmc_dev(mmc));
1329
1330		switch (ios->signal_voltage) {
1331		case MMC_SIGNAL_VOLTAGE_330:
1332			ret = regulator_set_voltage(mmc->supply.vqmmc,
1333						2700000, 3600000);
1334			break;
1335		case MMC_SIGNAL_VOLTAGE_180:
1336			ret = regulator_set_voltage(mmc->supply.vqmmc,
1337						1700000, 1950000);
1338			break;
1339		case MMC_SIGNAL_VOLTAGE_120:
1340			ret = regulator_set_voltage(mmc->supply.vqmmc,
1341						1100000, 1300000);
1342			break;
1343		}
1344
1345		if (ret)
1346			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1347
1348		pm_runtime_mark_last_busy(mmc_dev(mmc));
1349		pm_runtime_put_autosuspend(mmc_dev(mmc));
1350	}
1351
1352	return ret;
1353}
1354
1355static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1356{
1357	struct mmci_host *host = dev_id;
1358
1359	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1360
1361	return IRQ_HANDLED;
1362}
1363
1364static struct mmc_host_ops mmci_ops = {
1365	.request	= mmci_request,
1366	.pre_req	= mmci_pre_request,
1367	.post_req	= mmci_post_request,
1368	.set_ios	= mmci_set_ios,
1369	.get_ro		= mmci_get_ro,
1370	.get_cd		= mmci_get_cd,
1371	.start_signal_voltage_switch = mmci_sig_volt_switch,
1372};
1373
1374#ifdef CONFIG_OF
1375static void mmci_dt_populate_generic_pdata(struct device_node *np,
1376					struct mmci_platform_data *pdata)
1377{
1378	int bus_width = 0;
1379
1380	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1381	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1382
1383	if (of_get_property(np, "cd-inverted", NULL))
1384		pdata->cd_invert = true;
1385	else
1386		pdata->cd_invert = false;
1387
1388	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1389	if (!pdata->f_max)
1390		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1391
1392	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1393		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1394	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1395		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1396
1397	of_property_read_u32(np, "bus-width", &bus_width);
1398	switch (bus_width) {
1399	case 0 :
1400		/* No bus-width supplied. */
1401		break;
1402	case 4 :
1403		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1404		break;
1405	case 8 :
1406		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1407		break;
1408	default :
1409		pr_warn("%s: Unsupported bus width\n", np->full_name);
1410	}
1411}
1412#else
1413static void mmci_dt_populate_generic_pdata(struct device_node *np,
1414					struct mmci_platform_data *pdata)
1415{
1416	return;
1417}
1418#endif
1419
1420static int mmci_probe(struct amba_device *dev,
1421	const struct amba_id *id)
1422{
1423	struct mmci_platform_data *plat = dev->dev.platform_data;
1424	struct device_node *np = dev->dev.of_node;
1425	struct variant_data *variant = id->data;
1426	struct mmci_host *host;
1427	struct mmc_host *mmc;
1428	int ret;
1429
1430	/* Must have platform data or Device Tree. */
1431	if (!plat && !np) {
1432		dev_err(&dev->dev, "No plat data or DT found\n");
1433		return -EINVAL;
1434	}
1435
1436	if (!plat) {
1437		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1438		if (!plat)
1439			return -ENOMEM;
1440	}
1441
1442	if (np)
1443		mmci_dt_populate_generic_pdata(np, plat);
1444
1445	ret = amba_request_regions(dev, DRIVER_NAME);
1446	if (ret)
1447		goto out;
1448
1449	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1450	if (!mmc) {
1451		ret = -ENOMEM;
1452		goto rel_regions;
1453	}
1454
1455	host = mmc_priv(mmc);
1456	host->mmc = mmc;
1457
1458	host->gpio_wp = -ENOSYS;
1459	host->gpio_cd = -ENOSYS;
1460	host->gpio_cd_irq = -1;
1461
1462	host->hw_designer = amba_manf(dev);
1463	host->hw_revision = amba_rev(dev);
1464	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1465	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1466
1467	host->clk = devm_clk_get(&dev->dev, NULL);
1468	if (IS_ERR(host->clk)) {
1469		ret = PTR_ERR(host->clk);
1470		goto host_free;
1471	}
1472
1473	ret = clk_prepare_enable(host->clk);
1474	if (ret)
1475		goto host_free;
1476
1477	host->plat = plat;
1478	host->variant = variant;
1479	host->mclk = clk_get_rate(host->clk);
1480	/*
1481	 * According to the spec, mclk is max 100 MHz,
1482	 * so we try to adjust the clock down to this,
1483	 * (if possible).
1484	 */
1485	if (host->mclk > 100000000) {
1486		ret = clk_set_rate(host->clk, 100000000);
1487		if (ret < 0)
1488			goto clk_disable;
1489		host->mclk = clk_get_rate(host->clk);
1490		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1491			host->mclk);
1492	}
1493	host->phybase = dev->res.start;
1494	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1495	if (!host->base) {
1496		ret = -ENOMEM;
1497		goto clk_disable;
1498	}
1499
1500	if (variant->busy_detect) {
1501		mmci_ops.card_busy = mmci_card_busy;
1502		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1503	}
1504
1505	mmc->ops = &mmci_ops;
1506	/*
1507	 * The ARM and ST versions of the block have slightly different
1508	 * clock divider equations which means that the minimum divider
1509	 * differs too.
1510	 */
1511	if (variant->st_clkdiv)
1512		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1513	else
1514		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1515	/*
1516	 * If the platform data supplies a maximum operating
1517	 * frequency, this takes precedence. Else, we fall back
1518	 * to using the module parameter, which has a (low)
1519	 * default value in case it is not specified. Either
1520	 * value must not exceed the clock rate into the block,
1521	 * of course.
1522	 */
1523	if (plat->f_max)
1524		mmc->f_max = min(host->mclk, plat->f_max);
1525	else
1526		mmc->f_max = min(host->mclk, fmax);
1527	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1528
1529	/* Get regulators and the supported OCR mask */
1530	mmc_regulator_get_supply(mmc);
1531	if (!mmc->ocr_avail)
1532		mmc->ocr_avail = plat->ocr_mask;
1533	else if (plat->ocr_mask)
1534		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1535
1536	mmc->caps = plat->capabilities;
1537	mmc->caps2 = plat->capabilities2;
1538
1539	/* We support these PM capabilities. */
1540	mmc->pm_caps = MMC_PM_KEEP_POWER;
1541
1542	/*
1543	 * We can do SGIO
1544	 */
1545	mmc->max_segs = NR_SG;
1546
1547	/*
1548	 * Since only a certain number of bits are valid in the data length
1549	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1550	 * single request.
1551	 */
1552	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1553
1554	/*
1555	 * Set the maximum segment size.  Since we aren't doing DMA
1556	 * (yet) we are only limited by the data length register.
1557	 */
1558	mmc->max_seg_size = mmc->max_req_size;
1559
1560	/*
1561	 * Block size can be up to 2048 bytes, but must be a power of two.
1562	 */
1563	mmc->max_blk_size = 1 << 11;
1564
1565	/*
1566	 * Limit the number of blocks transferred so that we don't overflow
1567	 * the maximum request size.
1568	 */
1569	mmc->max_blk_count = mmc->max_req_size >> 11;
1570
1571	spin_lock_init(&host->lock);
1572
1573	writel(0, host->base + MMCIMASK0);
1574	writel(0, host->base + MMCIMASK1);
1575	writel(0xfff, host->base + MMCICLEAR);
1576
1577	if (plat->gpio_cd == -EPROBE_DEFER) {
1578		ret = -EPROBE_DEFER;
1579		goto err_gpio_cd;
1580	}
1581	if (gpio_is_valid(plat->gpio_cd)) {
1582		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1583		if (ret == 0)
1584			ret = gpio_direction_input(plat->gpio_cd);
1585		if (ret == 0)
1586			host->gpio_cd = plat->gpio_cd;
1587		else if (ret != -ENOSYS)
1588			goto err_gpio_cd;
1589
1590		/*
1591		 * A gpio pin that will detect cards when inserted and removed
1592		 * will most likely want to trigger on the edges if it is
1593		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1594		 * for the inverted case) so we request triggers on both
1595		 * edges.
1596		 */
1597		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1598				mmci_cd_irq,
1599				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1600				DRIVER_NAME " (cd)", host);
1601		if (ret >= 0)
1602			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1603	}
1604	if (plat->gpio_wp == -EPROBE_DEFER) {
1605		ret = -EPROBE_DEFER;
1606		goto err_gpio_wp;
1607	}
1608	if (gpio_is_valid(plat->gpio_wp)) {
1609		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1610		if (ret == 0)
1611			ret = gpio_direction_input(plat->gpio_wp);
1612		if (ret == 0)
1613			host->gpio_wp = plat->gpio_wp;
1614		else if (ret != -ENOSYS)
1615			goto err_gpio_wp;
1616	}
1617
1618	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1619	    && host->gpio_cd_irq < 0)
1620		mmc->caps |= MMC_CAP_NEEDS_POLL;
1621
1622	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1623	if (ret)
1624		goto unmap;
1625
1626	if (!dev->irq[1])
1627		host->singleirq = true;
1628	else {
1629		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1630				  DRIVER_NAME " (pio)", host);
1631		if (ret)
1632			goto irq0_free;
1633	}
1634
1635	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1636
1637	amba_set_drvdata(dev, mmc);
1638
1639	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1640		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1641		 amba_rev(dev), (unsigned long long)dev->res.start,
1642		 dev->irq[0], dev->irq[1]);
1643
1644	mmci_dma_setup(host);
1645
1646	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1647	pm_runtime_use_autosuspend(&dev->dev);
1648	pm_runtime_put(&dev->dev);
1649
1650	mmc_add_host(mmc);
1651
1652	return 0;
1653
1654 irq0_free:
1655	free_irq(dev->irq[0], host);
1656 unmap:
1657	if (host->gpio_wp != -ENOSYS)
1658		gpio_free(host->gpio_wp);
1659 err_gpio_wp:
1660	if (host->gpio_cd_irq >= 0)
1661		free_irq(host->gpio_cd_irq, host);
1662	if (host->gpio_cd != -ENOSYS)
1663		gpio_free(host->gpio_cd);
1664 err_gpio_cd:
1665	iounmap(host->base);
1666 clk_disable:
1667	clk_disable_unprepare(host->clk);
1668 host_free:
1669	mmc_free_host(mmc);
1670 rel_regions:
1671	amba_release_regions(dev);
1672 out:
1673	return ret;
1674}
1675
1676static int mmci_remove(struct amba_device *dev)
1677{
1678	struct mmc_host *mmc = amba_get_drvdata(dev);
1679
1680	amba_set_drvdata(dev, NULL);
1681
1682	if (mmc) {
1683		struct mmci_host *host = mmc_priv(mmc);
1684
1685		/*
1686		 * Undo pm_runtime_put() in probe.  We use the _sync
1687		 * version here so that we can access the primecell.
1688		 */
1689		pm_runtime_get_sync(&dev->dev);
1690
1691		mmc_remove_host(mmc);
1692
1693		writel(0, host->base + MMCIMASK0);
1694		writel(0, host->base + MMCIMASK1);
1695
1696		writel(0, host->base + MMCICOMMAND);
1697		writel(0, host->base + MMCIDATACTRL);
1698
1699		mmci_dma_release(host);
1700		free_irq(dev->irq[0], host);
1701		if (!host->singleirq)
1702			free_irq(dev->irq[1], host);
1703
1704		if (host->gpio_wp != -ENOSYS)
1705			gpio_free(host->gpio_wp);
1706		if (host->gpio_cd_irq >= 0)
1707			free_irq(host->gpio_cd_irq, host);
1708		if (host->gpio_cd != -ENOSYS)
1709			gpio_free(host->gpio_cd);
1710
1711		iounmap(host->base);
1712		clk_disable_unprepare(host->clk);
1713
1714		mmc_free_host(mmc);
1715
1716		amba_release_regions(dev);
1717	}
1718
1719	return 0;
1720}
1721
1722#ifdef CONFIG_SUSPEND
1723static int mmci_suspend(struct device *dev)
1724{
1725	struct amba_device *adev = to_amba_device(dev);
1726	struct mmc_host *mmc = amba_get_drvdata(adev);
1727	int ret = 0;
1728
1729	if (mmc) {
1730		struct mmci_host *host = mmc_priv(mmc);
1731
1732		ret = mmc_suspend_host(mmc);
1733		if (ret == 0) {
1734			pm_runtime_get_sync(dev);
1735			writel(0, host->base + MMCIMASK0);
1736		}
1737	}
1738
1739	return ret;
1740}
1741
1742static int mmci_resume(struct device *dev)
1743{
1744	struct amba_device *adev = to_amba_device(dev);
1745	struct mmc_host *mmc = amba_get_drvdata(adev);
1746	int ret = 0;
1747
1748	if (mmc) {
1749		struct mmci_host *host = mmc_priv(mmc);
1750
1751		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1752		pm_runtime_put(dev);
1753
1754		ret = mmc_resume_host(mmc);
1755	}
1756
1757	return ret;
1758}
1759#endif
1760
1761#ifdef CONFIG_PM_RUNTIME
1762static int mmci_runtime_suspend(struct device *dev)
1763{
1764	struct amba_device *adev = to_amba_device(dev);
1765	struct mmc_host *mmc = amba_get_drvdata(adev);
1766
1767	if (mmc) {
1768		struct mmci_host *host = mmc_priv(mmc);
1769		pinctrl_pm_select_sleep_state(dev);
1770		clk_disable_unprepare(host->clk);
1771	}
1772
1773	return 0;
1774}
1775
1776static int mmci_runtime_resume(struct device *dev)
1777{
1778	struct amba_device *adev = to_amba_device(dev);
1779	struct mmc_host *mmc = amba_get_drvdata(adev);
1780
1781	if (mmc) {
1782		struct mmci_host *host = mmc_priv(mmc);
1783		clk_prepare_enable(host->clk);
1784		pinctrl_pm_select_default_state(dev);
1785	}
1786
1787	return 0;
1788}
1789#endif
1790
1791static const struct dev_pm_ops mmci_dev_pm_ops = {
1792	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1793	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1794};
1795
1796static struct amba_id mmci_ids[] = {
1797	{
1798		.id	= 0x00041180,
1799		.mask	= 0xff0fffff,
1800		.data	= &variant_arm,
1801	},
1802	{
1803		.id	= 0x01041180,
1804		.mask	= 0xff0fffff,
1805		.data	= &variant_arm_extended_fifo,
1806	},
1807	{
1808		.id	= 0x02041180,
1809		.mask	= 0xff0fffff,
1810		.data	= &variant_arm_extended_fifo_hwfc,
1811	},
1812	{
1813		.id	= 0x00041181,
1814		.mask	= 0x000fffff,
1815		.data	= &variant_arm,
1816	},
1817	/* ST Micro variants */
1818	{
1819		.id     = 0x00180180,
1820		.mask   = 0x00ffffff,
1821		.data	= &variant_u300,
1822	},
1823	{
1824		.id     = 0x10180180,
1825		.mask   = 0xf0ffffff,
1826		.data	= &variant_nomadik,
1827	},
1828	{
1829		.id     = 0x00280180,
1830		.mask   = 0x00ffffff,
1831		.data	= &variant_u300,
1832	},
1833	{
1834		.id     = 0x00480180,
1835		.mask   = 0xf0ffffff,
1836		.data	= &variant_ux500,
1837	},
1838	{
1839		.id     = 0x10480180,
1840		.mask   = 0xf0ffffff,
1841		.data	= &variant_ux500v2,
1842	},
1843	{ 0, 0 },
1844};
1845
1846MODULE_DEVICE_TABLE(amba, mmci_ids);
1847
1848static struct amba_driver mmci_driver = {
1849	.drv		= {
1850		.name	= DRIVER_NAME,
1851		.pm	= &mmci_dev_pm_ops,
1852	},
1853	.probe		= mmci_probe,
1854	.remove		= mmci_remove,
1855	.id_table	= mmci_ids,
1856};
1857
1858module_amba_driver(mmci_driver);
1859
1860module_param(fmax, uint, 0444);
1861
1862MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1863MODULE_LICENSE("GPL");
1864