mmci.c revision ff783233cc13eca99a3b59c0609c1ffc6164b7a2
1/*
2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 *  Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43#include <asm/sizes.h>
44
45#include "mmci.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @datalength_bits: number of bits in the MMCIDATALENGTH register
56 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
57 *	      is asserted (likewise for RX)
58 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
59 *		  is asserted (likewise for RX)
60 * @sdio: variant supports SDIO
61 * @st_clkdiv: true if using a ST-specific clock divider algorithm
62 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
63 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
64 *		     register
65 * @pwrreg_powerup: power up value for MMCIPOWER register
66 * @signal_direction: input/out direction of bus signals can be indicated
67 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
68 * @busy_detect: true if busy detection on dat0 is supported
69 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
70 */
71struct variant_data {
72	unsigned int		clkreg;
73	unsigned int		clkreg_enable;
74	unsigned int		datalength_bits;
75	unsigned int		fifosize;
76	unsigned int		fifohalfsize;
77	bool			sdio;
78	bool			st_clkdiv;
79	bool			blksz_datactrl16;
80	bool			blksz_datactrl4;
81	u32			pwrreg_powerup;
82	bool			signal_direction;
83	bool			pwrreg_clkgate;
84	bool			busy_detect;
85	bool			pwrreg_nopower;
86};
87
88static struct variant_data variant_arm = {
89	.fifosize		= 16 * 4,
90	.fifohalfsize		= 8 * 4,
91	.datalength_bits	= 16,
92	.pwrreg_powerup		= MCI_PWR_UP,
93};
94
95static struct variant_data variant_arm_extended_fifo = {
96	.fifosize		= 128 * 4,
97	.fifohalfsize		= 64 * 4,
98	.datalength_bits	= 16,
99	.pwrreg_powerup		= MCI_PWR_UP,
100};
101
102static struct variant_data variant_arm_extended_fifo_hwfc = {
103	.fifosize		= 128 * 4,
104	.fifohalfsize		= 64 * 4,
105	.clkreg_enable		= MCI_ARM_HWFCEN,
106	.datalength_bits	= 16,
107	.pwrreg_powerup		= MCI_PWR_UP,
108};
109
110static struct variant_data variant_u300 = {
111	.fifosize		= 16 * 4,
112	.fifohalfsize		= 8 * 4,
113	.clkreg_enable		= MCI_ST_U300_HWFCEN,
114	.datalength_bits	= 16,
115	.sdio			= true,
116	.pwrreg_powerup		= MCI_PWR_ON,
117	.signal_direction	= true,
118	.pwrreg_clkgate		= true,
119	.pwrreg_nopower		= true,
120};
121
122static struct variant_data variant_nomadik = {
123	.fifosize		= 16 * 4,
124	.fifohalfsize		= 8 * 4,
125	.clkreg			= MCI_CLK_ENABLE,
126	.datalength_bits	= 24,
127	.sdio			= true,
128	.st_clkdiv		= true,
129	.pwrreg_powerup		= MCI_PWR_ON,
130	.signal_direction	= true,
131	.pwrreg_clkgate		= true,
132	.pwrreg_nopower		= true,
133};
134
135static struct variant_data variant_ux500 = {
136	.fifosize		= 30 * 4,
137	.fifohalfsize		= 8 * 4,
138	.clkreg			= MCI_CLK_ENABLE,
139	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
140	.datalength_bits	= 24,
141	.sdio			= true,
142	.st_clkdiv		= true,
143	.pwrreg_powerup		= MCI_PWR_ON,
144	.signal_direction	= true,
145	.pwrreg_clkgate		= true,
146	.busy_detect		= true,
147	.pwrreg_nopower		= true,
148};
149
150static struct variant_data variant_ux500v2 = {
151	.fifosize		= 30 * 4,
152	.fifohalfsize		= 8 * 4,
153	.clkreg			= MCI_CLK_ENABLE,
154	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
155	.datalength_bits	= 24,
156	.sdio			= true,
157	.st_clkdiv		= true,
158	.blksz_datactrl16	= true,
159	.pwrreg_powerup		= MCI_PWR_ON,
160	.signal_direction	= true,
161	.pwrreg_clkgate		= true,
162	.busy_detect		= true,
163	.pwrreg_nopower		= true,
164};
165
166static int mmci_card_busy(struct mmc_host *mmc)
167{
168	struct mmci_host *host = mmc_priv(mmc);
169	unsigned long flags;
170	int busy = 0;
171
172	pm_runtime_get_sync(mmc_dev(mmc));
173
174	spin_lock_irqsave(&host->lock, flags);
175	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
176		busy = 1;
177	spin_unlock_irqrestore(&host->lock, flags);
178
179	pm_runtime_mark_last_busy(mmc_dev(mmc));
180	pm_runtime_put_autosuspend(mmc_dev(mmc));
181
182	return busy;
183}
184
185/*
186 * Validate mmc prerequisites
187 */
188static int mmci_validate_data(struct mmci_host *host,
189			      struct mmc_data *data)
190{
191	if (!data)
192		return 0;
193
194	if (!is_power_of_2(data->blksz)) {
195		dev_err(mmc_dev(host->mmc),
196			"unsupported block size (%d bytes)\n", data->blksz);
197		return -EINVAL;
198	}
199
200	return 0;
201}
202
203static void mmci_reg_delay(struct mmci_host *host)
204{
205	/*
206	 * According to the spec, at least three feedback clock cycles
207	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
208	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
209	 * Worst delay time during card init is at 100 kHz => 30 us.
210	 * Worst delay time when up and running is at 25 MHz => 120 ns.
211	 */
212	if (host->cclk < 25000000)
213		udelay(30);
214	else
215		ndelay(120);
216}
217
218/*
219 * This must be called with host->lock held
220 */
221static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
222{
223	if (host->clk_reg != clk) {
224		host->clk_reg = clk;
225		writel(clk, host->base + MMCICLOCK);
226	}
227}
228
229/*
230 * This must be called with host->lock held
231 */
232static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
233{
234	if (host->pwr_reg != pwr) {
235		host->pwr_reg = pwr;
236		writel(pwr, host->base + MMCIPOWER);
237	}
238}
239
240/*
241 * This must be called with host->lock held
242 */
243static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
244{
245	/* Keep ST Micro busy mode if enabled */
246	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
247
248	if (host->datactrl_reg != datactrl) {
249		host->datactrl_reg = datactrl;
250		writel(datactrl, host->base + MMCIDATACTRL);
251	}
252}
253
254/*
255 * This must be called with host->lock held
256 */
257static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
258{
259	struct variant_data *variant = host->variant;
260	u32 clk = variant->clkreg;
261
262	/* Make sure cclk reflects the current calculated clock */
263	host->cclk = 0;
264
265	if (desired) {
266		if (desired >= host->mclk) {
267			clk = MCI_CLK_BYPASS;
268			if (variant->st_clkdiv)
269				clk |= MCI_ST_UX500_NEG_EDGE;
270			host->cclk = host->mclk;
271		} else if (variant->st_clkdiv) {
272			/*
273			 * DB8500 TRM says f = mclk / (clkdiv + 2)
274			 * => clkdiv = (mclk / f) - 2
275			 * Round the divider up so we don't exceed the max
276			 * frequency
277			 */
278			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
279			if (clk >= 256)
280				clk = 255;
281			host->cclk = host->mclk / (clk + 2);
282		} else {
283			/*
284			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
285			 * => clkdiv = mclk / (2 * f) - 1
286			 */
287			clk = host->mclk / (2 * desired) - 1;
288			if (clk >= 256)
289				clk = 255;
290			host->cclk = host->mclk / (2 * (clk + 1));
291		}
292
293		clk |= variant->clkreg_enable;
294		clk |= MCI_CLK_ENABLE;
295		/* This hasn't proven to be worthwhile */
296		/* clk |= MCI_CLK_PWRSAVE; */
297	}
298
299	/* Set actual clock for debug */
300	host->mmc->actual_clock = host->cclk;
301
302	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
303		clk |= MCI_4BIT_BUS;
304	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
305		clk |= MCI_ST_8BIT_BUS;
306
307	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
308	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
309		clk |= MCI_ST_UX500_NEG_EDGE;
310
311	mmci_write_clkreg(host, clk);
312}
313
314static void
315mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
316{
317	writel(0, host->base + MMCICOMMAND);
318
319	BUG_ON(host->data);
320
321	host->mrq = NULL;
322	host->cmd = NULL;
323
324	mmc_request_done(host->mmc, mrq);
325
326	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
327	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
328}
329
330static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
331{
332	void __iomem *base = host->base;
333
334	if (host->singleirq) {
335		unsigned int mask0 = readl(base + MMCIMASK0);
336
337		mask0 &= ~MCI_IRQ1MASK;
338		mask0 |= mask;
339
340		writel(mask0, base + MMCIMASK0);
341	}
342
343	writel(mask, base + MMCIMASK1);
344}
345
346static void mmci_stop_data(struct mmci_host *host)
347{
348	mmci_write_datactrlreg(host, 0);
349	mmci_set_mask1(host, 0);
350	host->data = NULL;
351}
352
353static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
354{
355	unsigned int flags = SG_MITER_ATOMIC;
356
357	if (data->flags & MMC_DATA_READ)
358		flags |= SG_MITER_TO_SG;
359	else
360		flags |= SG_MITER_FROM_SG;
361
362	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
363}
364
365/*
366 * All the DMA operation mode stuff goes inside this ifdef.
367 * This assumes that you have a generic DMA device interface,
368 * no custom DMA interfaces are supported.
369 */
370#ifdef CONFIG_DMA_ENGINE
371static void mmci_dma_setup(struct mmci_host *host)
372{
373	const char *rxname, *txname;
374	dma_cap_mask_t mask;
375
376	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
377	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
378
379	/* initialize pre request cookie */
380	host->next_data.cookie = 1;
381
382	/* Try to acquire a generic DMA engine slave channel */
383	dma_cap_zero(mask);
384	dma_cap_set(DMA_SLAVE, mask);
385
386	/*
387	 * If only an RX channel is specified, the driver will
388	 * attempt to use it bidirectionally, however if it is
389	 * is specified but cannot be located, DMA will be disabled.
390	 */
391	if (host->dma_rx_channel && !host->dma_tx_channel)
392		host->dma_tx_channel = host->dma_rx_channel;
393
394	if (host->dma_rx_channel)
395		rxname = dma_chan_name(host->dma_rx_channel);
396	else
397		rxname = "none";
398
399	if (host->dma_tx_channel)
400		txname = dma_chan_name(host->dma_tx_channel);
401	else
402		txname = "none";
403
404	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
405		 rxname, txname);
406
407	/*
408	 * Limit the maximum segment size in any SG entry according to
409	 * the parameters of the DMA engine device.
410	 */
411	if (host->dma_tx_channel) {
412		struct device *dev = host->dma_tx_channel->device->dev;
413		unsigned int max_seg_size = dma_get_max_seg_size(dev);
414
415		if (max_seg_size < host->mmc->max_seg_size)
416			host->mmc->max_seg_size = max_seg_size;
417	}
418	if (host->dma_rx_channel) {
419		struct device *dev = host->dma_rx_channel->device->dev;
420		unsigned int max_seg_size = dma_get_max_seg_size(dev);
421
422		if (max_seg_size < host->mmc->max_seg_size)
423			host->mmc->max_seg_size = max_seg_size;
424	}
425}
426
427/*
428 * This is used in or so inline it
429 * so it can be discarded.
430 */
431static inline void mmci_dma_release(struct mmci_host *host)
432{
433	if (host->dma_rx_channel)
434		dma_release_channel(host->dma_rx_channel);
435	if (host->dma_tx_channel)
436		dma_release_channel(host->dma_tx_channel);
437	host->dma_rx_channel = host->dma_tx_channel = NULL;
438}
439
440static void mmci_dma_data_error(struct mmci_host *host)
441{
442	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
443	dmaengine_terminate_all(host->dma_current);
444	host->dma_current = NULL;
445	host->dma_desc_current = NULL;
446	host->data->host_cookie = 0;
447}
448
449static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
450{
451	struct dma_chan *chan;
452	enum dma_data_direction dir;
453
454	if (data->flags & MMC_DATA_READ) {
455		dir = DMA_FROM_DEVICE;
456		chan = host->dma_rx_channel;
457	} else {
458		dir = DMA_TO_DEVICE;
459		chan = host->dma_tx_channel;
460	}
461
462	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
463}
464
465static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
466{
467	u32 status;
468	int i;
469
470	/* Wait up to 1ms for the DMA to complete */
471	for (i = 0; ; i++) {
472		status = readl(host->base + MMCISTATUS);
473		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
474			break;
475		udelay(10);
476	}
477
478	/*
479	 * Check to see whether we still have some data left in the FIFO -
480	 * this catches DMA controllers which are unable to monitor the
481	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
482	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
483	 */
484	if (status & MCI_RXDATAAVLBLMASK) {
485		mmci_dma_data_error(host);
486		if (!data->error)
487			data->error = -EIO;
488	}
489
490	if (!data->host_cookie)
491		mmci_dma_unmap(host, data);
492
493	/*
494	 * Use of DMA with scatter-gather is impossible.
495	 * Give up with DMA and switch back to PIO mode.
496	 */
497	if (status & MCI_RXDATAAVLBLMASK) {
498		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
499		mmci_dma_release(host);
500	}
501
502	host->dma_current = NULL;
503	host->dma_desc_current = NULL;
504}
505
506/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
507static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
508				struct dma_chan **dma_chan,
509				struct dma_async_tx_descriptor **dma_desc)
510{
511	struct variant_data *variant = host->variant;
512	struct dma_slave_config conf = {
513		.src_addr = host->phybase + MMCIFIFO,
514		.dst_addr = host->phybase + MMCIFIFO,
515		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
516		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
517		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
518		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
519		.device_fc = false,
520	};
521	struct dma_chan *chan;
522	struct dma_device *device;
523	struct dma_async_tx_descriptor *desc;
524	enum dma_data_direction buffer_dirn;
525	int nr_sg;
526
527	if (data->flags & MMC_DATA_READ) {
528		conf.direction = DMA_DEV_TO_MEM;
529		buffer_dirn = DMA_FROM_DEVICE;
530		chan = host->dma_rx_channel;
531	} else {
532		conf.direction = DMA_MEM_TO_DEV;
533		buffer_dirn = DMA_TO_DEVICE;
534		chan = host->dma_tx_channel;
535	}
536
537	/* If there's no DMA channel, fall back to PIO */
538	if (!chan)
539		return -EINVAL;
540
541	/* If less than or equal to the fifo size, don't bother with DMA */
542	if (data->blksz * data->blocks <= variant->fifosize)
543		return -EINVAL;
544
545	device = chan->device;
546	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
547	if (nr_sg == 0)
548		return -EINVAL;
549
550	dmaengine_slave_config(chan, &conf);
551	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
552					    conf.direction, DMA_CTRL_ACK);
553	if (!desc)
554		goto unmap_exit;
555
556	*dma_chan = chan;
557	*dma_desc = desc;
558
559	return 0;
560
561 unmap_exit:
562	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
563	return -ENOMEM;
564}
565
566static inline int mmci_dma_prep_data(struct mmci_host *host,
567				     struct mmc_data *data)
568{
569	/* Check if next job is already prepared. */
570	if (host->dma_current && host->dma_desc_current)
571		return 0;
572
573	/* No job were prepared thus do it now. */
574	return __mmci_dma_prep_data(host, data, &host->dma_current,
575				    &host->dma_desc_current);
576}
577
578static inline int mmci_dma_prep_next(struct mmci_host *host,
579				     struct mmc_data *data)
580{
581	struct mmci_host_next *nd = &host->next_data;
582	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
583}
584
585static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
586{
587	int ret;
588	struct mmc_data *data = host->data;
589
590	ret = mmci_dma_prep_data(host, host->data);
591	if (ret)
592		return ret;
593
594	/* Okay, go for it. */
595	dev_vdbg(mmc_dev(host->mmc),
596		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
597		 data->sg_len, data->blksz, data->blocks, data->flags);
598	dmaengine_submit(host->dma_desc_current);
599	dma_async_issue_pending(host->dma_current);
600
601	datactrl |= MCI_DPSM_DMAENABLE;
602
603	/* Trigger the DMA transfer */
604	mmci_write_datactrlreg(host, datactrl);
605
606	/*
607	 * Let the MMCI say when the data is ended and it's time
608	 * to fire next DMA request. When that happens, MMCI will
609	 * call mmci_data_end()
610	 */
611	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
612	       host->base + MMCIMASK0);
613	return 0;
614}
615
616static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
617{
618	struct mmci_host_next *next = &host->next_data;
619
620	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
621	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
622
623	host->dma_desc_current = next->dma_desc;
624	host->dma_current = next->dma_chan;
625	next->dma_desc = NULL;
626	next->dma_chan = NULL;
627}
628
629static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
630			     bool is_first_req)
631{
632	struct mmci_host *host = mmc_priv(mmc);
633	struct mmc_data *data = mrq->data;
634	struct mmci_host_next *nd = &host->next_data;
635
636	if (!data)
637		return;
638
639	BUG_ON(data->host_cookie);
640
641	if (mmci_validate_data(host, data))
642		return;
643
644	if (!mmci_dma_prep_next(host, data))
645		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
646}
647
648static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
649			      int err)
650{
651	struct mmci_host *host = mmc_priv(mmc);
652	struct mmc_data *data = mrq->data;
653
654	if (!data || !data->host_cookie)
655		return;
656
657	mmci_dma_unmap(host, data);
658
659	if (err) {
660		struct mmci_host_next *next = &host->next_data;
661		struct dma_chan *chan;
662		if (data->flags & MMC_DATA_READ)
663			chan = host->dma_rx_channel;
664		else
665			chan = host->dma_tx_channel;
666		dmaengine_terminate_all(chan);
667
668		next->dma_desc = NULL;
669		next->dma_chan = NULL;
670	}
671}
672
673#else
674/* Blank functions if the DMA engine is not available */
675static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
676{
677}
678static inline void mmci_dma_setup(struct mmci_host *host)
679{
680}
681
682static inline void mmci_dma_release(struct mmci_host *host)
683{
684}
685
686static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
687{
688}
689
690static inline void mmci_dma_finalize(struct mmci_host *host,
691				     struct mmc_data *data)
692{
693}
694
695static inline void mmci_dma_data_error(struct mmci_host *host)
696{
697}
698
699static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
700{
701	return -ENOSYS;
702}
703
704#define mmci_pre_request NULL
705#define mmci_post_request NULL
706
707#endif
708
709static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
710{
711	struct variant_data *variant = host->variant;
712	unsigned int datactrl, timeout, irqmask;
713	unsigned long long clks;
714	void __iomem *base;
715	int blksz_bits;
716
717	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
718		data->blksz, data->blocks, data->flags);
719
720	host->data = data;
721	host->size = data->blksz * data->blocks;
722	data->bytes_xfered = 0;
723
724	clks = (unsigned long long)data->timeout_ns * host->cclk;
725	do_div(clks, NSEC_PER_SEC);
726
727	timeout = data->timeout_clks + (unsigned int)clks;
728
729	base = host->base;
730	writel(timeout, base + MMCIDATATIMER);
731	writel(host->size, base + MMCIDATALENGTH);
732
733	blksz_bits = ffs(data->blksz) - 1;
734	BUG_ON(1 << blksz_bits != data->blksz);
735
736	if (variant->blksz_datactrl16)
737		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
738	else if (variant->blksz_datactrl4)
739		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
740	else
741		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
742
743	if (data->flags & MMC_DATA_READ)
744		datactrl |= MCI_DPSM_DIRECTION;
745
746	/* The ST Micro variants has a special bit to enable SDIO */
747	if (variant->sdio && host->mmc->card)
748		if (mmc_card_sdio(host->mmc->card)) {
749			/*
750			 * The ST Micro variants has a special bit
751			 * to enable SDIO.
752			 */
753			u32 clk;
754
755			datactrl |= MCI_ST_DPSM_SDIOEN;
756
757			/*
758			 * The ST Micro variant for SDIO small write transfers
759			 * needs to have clock H/W flow control disabled,
760			 * otherwise the transfer will not start. The threshold
761			 * depends on the rate of MCLK.
762			 */
763			if (data->flags & MMC_DATA_WRITE &&
764			    (host->size < 8 ||
765			     (host->size <= 8 && host->mclk > 50000000)))
766				clk = host->clk_reg & ~variant->clkreg_enable;
767			else
768				clk = host->clk_reg | variant->clkreg_enable;
769
770			mmci_write_clkreg(host, clk);
771		}
772
773	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
774	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
775		datactrl |= MCI_ST_DPSM_DDRMODE;
776
777	/*
778	 * Attempt to use DMA operation mode, if this
779	 * should fail, fall back to PIO mode
780	 */
781	if (!mmci_dma_start_data(host, datactrl))
782		return;
783
784	/* IRQ mode, map the SG list for CPU reading/writing */
785	mmci_init_sg(host, data);
786
787	if (data->flags & MMC_DATA_READ) {
788		irqmask = MCI_RXFIFOHALFFULLMASK;
789
790		/*
791		 * If we have less than the fifo 'half-full' threshold to
792		 * transfer, trigger a PIO interrupt as soon as any data
793		 * is available.
794		 */
795		if (host->size < variant->fifohalfsize)
796			irqmask |= MCI_RXDATAAVLBLMASK;
797	} else {
798		/*
799		 * We don't actually need to include "FIFO empty" here
800		 * since its implicit in "FIFO half empty".
801		 */
802		irqmask = MCI_TXFIFOHALFEMPTYMASK;
803	}
804
805	mmci_write_datactrlreg(host, datactrl);
806	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
807	mmci_set_mask1(host, irqmask);
808}
809
810static void
811mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
812{
813	void __iomem *base = host->base;
814
815	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
816	    cmd->opcode, cmd->arg, cmd->flags);
817
818	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
819		writel(0, base + MMCICOMMAND);
820		mmci_reg_delay(host);
821	}
822
823	c |= cmd->opcode | MCI_CPSM_ENABLE;
824	if (cmd->flags & MMC_RSP_PRESENT) {
825		if (cmd->flags & MMC_RSP_136)
826			c |= MCI_CPSM_LONGRSP;
827		c |= MCI_CPSM_RESPONSE;
828	}
829	if (/*interrupt*/0)
830		c |= MCI_CPSM_INTERRUPT;
831
832	host->cmd = cmd;
833
834	writel(cmd->arg, base + MMCIARGUMENT);
835	writel(c, base + MMCICOMMAND);
836}
837
838static void
839mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
840	      unsigned int status)
841{
842	/* First check for errors */
843	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
844		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
845		u32 remain, success;
846
847		/* Terminate the DMA transfer */
848		if (dma_inprogress(host)) {
849			mmci_dma_data_error(host);
850			mmci_dma_unmap(host, data);
851		}
852
853		/*
854		 * Calculate how far we are into the transfer.  Note that
855		 * the data counter gives the number of bytes transferred
856		 * on the MMC bus, not on the host side.  On reads, this
857		 * can be as much as a FIFO-worth of data ahead.  This
858		 * matters for FIFO overruns only.
859		 */
860		remain = readl(host->base + MMCIDATACNT);
861		success = data->blksz * data->blocks - remain;
862
863		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
864			status, success);
865		if (status & MCI_DATACRCFAIL) {
866			/* Last block was not successful */
867			success -= 1;
868			data->error = -EILSEQ;
869		} else if (status & MCI_DATATIMEOUT) {
870			data->error = -ETIMEDOUT;
871		} else if (status & MCI_STARTBITERR) {
872			data->error = -ECOMM;
873		} else if (status & MCI_TXUNDERRUN) {
874			data->error = -EIO;
875		} else if (status & MCI_RXOVERRUN) {
876			if (success > host->variant->fifosize)
877				success -= host->variant->fifosize;
878			else
879				success = 0;
880			data->error = -EIO;
881		}
882		data->bytes_xfered = round_down(success, data->blksz);
883	}
884
885	if (status & MCI_DATABLOCKEND)
886		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
887
888	if (status & MCI_DATAEND || data->error) {
889		if (dma_inprogress(host))
890			mmci_dma_finalize(host, data);
891		mmci_stop_data(host);
892
893		if (!data->error)
894			/* The error clause is handled above, success! */
895			data->bytes_xfered = data->blksz * data->blocks;
896
897		if (!data->stop || host->mrq->sbc) {
898			mmci_request_end(host, data->mrq);
899		} else {
900			mmci_start_command(host, data->stop, 0);
901		}
902	}
903}
904
905static void
906mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
907	     unsigned int status)
908{
909	void __iomem *base = host->base;
910	bool sbc = (cmd == host->mrq->sbc);
911	bool busy_resp = host->variant->busy_detect &&
912			(cmd->flags & MMC_RSP_BUSY);
913
914	/* Check if we need to wait for busy completion. */
915	if (host->busy_status && (status & MCI_ST_CARDBUSY))
916		return;
917
918	/* Enable busy completion if needed and supported. */
919	if (!host->busy_status && busy_resp &&
920		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
921		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
922		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
923			base + MMCIMASK0);
924		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
925		return;
926	}
927
928	/* At busy completion, mask the IRQ and complete the request. */
929	if (host->busy_status) {
930		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
931			base + MMCIMASK0);
932		host->busy_status = 0;
933	}
934
935	host->cmd = NULL;
936
937	if (status & MCI_CMDTIMEOUT) {
938		cmd->error = -ETIMEDOUT;
939	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
940		cmd->error = -EILSEQ;
941	} else {
942		cmd->resp[0] = readl(base + MMCIRESPONSE0);
943		cmd->resp[1] = readl(base + MMCIRESPONSE1);
944		cmd->resp[2] = readl(base + MMCIRESPONSE2);
945		cmd->resp[3] = readl(base + MMCIRESPONSE3);
946	}
947
948	if ((!sbc && !cmd->data) || cmd->error) {
949		if (host->data) {
950			/* Terminate the DMA transfer */
951			if (dma_inprogress(host)) {
952				mmci_dma_data_error(host);
953				mmci_dma_unmap(host, host->data);
954			}
955			mmci_stop_data(host);
956		}
957		mmci_request_end(host, host->mrq);
958	} else if (sbc) {
959		mmci_start_command(host, host->mrq->cmd, 0);
960	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
961		mmci_start_data(host, cmd->data);
962	}
963}
964
965static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
966{
967	void __iomem *base = host->base;
968	char *ptr = buffer;
969	u32 status;
970	int host_remain = host->size;
971
972	do {
973		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
974
975		if (count > remain)
976			count = remain;
977
978		if (count <= 0)
979			break;
980
981		/*
982		 * SDIO especially may want to send something that is
983		 * not divisible by 4 (as opposed to card sectors
984		 * etc). Therefore make sure to always read the last bytes
985		 * while only doing full 32-bit reads towards the FIFO.
986		 */
987		if (unlikely(count & 0x3)) {
988			if (count < 4) {
989				unsigned char buf[4];
990				ioread32_rep(base + MMCIFIFO, buf, 1);
991				memcpy(ptr, buf, count);
992			} else {
993				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
994				count &= ~0x3;
995			}
996		} else {
997			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
998		}
999
1000		ptr += count;
1001		remain -= count;
1002		host_remain -= count;
1003
1004		if (remain == 0)
1005			break;
1006
1007		status = readl(base + MMCISTATUS);
1008	} while (status & MCI_RXDATAAVLBL);
1009
1010	return ptr - buffer;
1011}
1012
1013static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1014{
1015	struct variant_data *variant = host->variant;
1016	void __iomem *base = host->base;
1017	char *ptr = buffer;
1018
1019	do {
1020		unsigned int count, maxcnt;
1021
1022		maxcnt = status & MCI_TXFIFOEMPTY ?
1023			 variant->fifosize : variant->fifohalfsize;
1024		count = min(remain, maxcnt);
1025
1026		/*
1027		 * SDIO especially may want to send something that is
1028		 * not divisible by 4 (as opposed to card sectors
1029		 * etc), and the FIFO only accept full 32-bit writes.
1030		 * So compensate by adding +3 on the count, a single
1031		 * byte become a 32bit write, 7 bytes will be two
1032		 * 32bit writes etc.
1033		 */
1034		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1035
1036		ptr += count;
1037		remain -= count;
1038
1039		if (remain == 0)
1040			break;
1041
1042		status = readl(base + MMCISTATUS);
1043	} while (status & MCI_TXFIFOHALFEMPTY);
1044
1045	return ptr - buffer;
1046}
1047
1048/*
1049 * PIO data transfer IRQ handler.
1050 */
1051static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1052{
1053	struct mmci_host *host = dev_id;
1054	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1055	struct variant_data *variant = host->variant;
1056	void __iomem *base = host->base;
1057	unsigned long flags;
1058	u32 status;
1059
1060	status = readl(base + MMCISTATUS);
1061
1062	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1063
1064	local_irq_save(flags);
1065
1066	do {
1067		unsigned int remain, len;
1068		char *buffer;
1069
1070		/*
1071		 * For write, we only need to test the half-empty flag
1072		 * here - if the FIFO is completely empty, then by
1073		 * definition it is more than half empty.
1074		 *
1075		 * For read, check for data available.
1076		 */
1077		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1078			break;
1079
1080		if (!sg_miter_next(sg_miter))
1081			break;
1082
1083		buffer = sg_miter->addr;
1084		remain = sg_miter->length;
1085
1086		len = 0;
1087		if (status & MCI_RXACTIVE)
1088			len = mmci_pio_read(host, buffer, remain);
1089		if (status & MCI_TXACTIVE)
1090			len = mmci_pio_write(host, buffer, remain, status);
1091
1092		sg_miter->consumed = len;
1093
1094		host->size -= len;
1095		remain -= len;
1096
1097		if (remain)
1098			break;
1099
1100		status = readl(base + MMCISTATUS);
1101	} while (1);
1102
1103	sg_miter_stop(sg_miter);
1104
1105	local_irq_restore(flags);
1106
1107	/*
1108	 * If we have less than the fifo 'half-full' threshold to transfer,
1109	 * trigger a PIO interrupt as soon as any data is available.
1110	 */
1111	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1112		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1113
1114	/*
1115	 * If we run out of data, disable the data IRQs; this
1116	 * prevents a race where the FIFO becomes empty before
1117	 * the chip itself has disabled the data path, and
1118	 * stops us racing with our data end IRQ.
1119	 */
1120	if (host->size == 0) {
1121		mmci_set_mask1(host, 0);
1122		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1123	}
1124
1125	return IRQ_HANDLED;
1126}
1127
1128/*
1129 * Handle completion of command and data transfers.
1130 */
1131static irqreturn_t mmci_irq(int irq, void *dev_id)
1132{
1133	struct mmci_host *host = dev_id;
1134	u32 status;
1135	int ret = 0;
1136
1137	spin_lock(&host->lock);
1138
1139	do {
1140		struct mmc_command *cmd;
1141		struct mmc_data *data;
1142
1143		status = readl(host->base + MMCISTATUS);
1144
1145		if (host->singleirq) {
1146			if (status & readl(host->base + MMCIMASK1))
1147				mmci_pio_irq(irq, dev_id);
1148
1149			status &= ~MCI_IRQ1MASK;
1150		}
1151
1152		/*
1153		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1154		 * enabled) since the HW seems to be triggering the IRQ on both
1155		 * edges while monitoring DAT0 for busy completion.
1156		 */
1157		status &= readl(host->base + MMCIMASK0);
1158		writel(status, host->base + MMCICLEAR);
1159
1160		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1161
1162		cmd = host->cmd;
1163		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1164			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1165			mmci_cmd_irq(host, cmd, status);
1166
1167		data = host->data;
1168		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1169			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1170			      MCI_DATABLOCKEND) && data)
1171			mmci_data_irq(host, data, status);
1172
1173		/* Don't poll for busy completion in irq context. */
1174		if (host->busy_status)
1175			status &= ~MCI_ST_CARDBUSY;
1176
1177		ret = 1;
1178	} while (status);
1179
1180	spin_unlock(&host->lock);
1181
1182	return IRQ_RETVAL(ret);
1183}
1184
1185static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1186{
1187	struct mmci_host *host = mmc_priv(mmc);
1188	unsigned long flags;
1189
1190	WARN_ON(host->mrq != NULL);
1191
1192	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1193	if (mrq->cmd->error) {
1194		mmc_request_done(mmc, mrq);
1195		return;
1196	}
1197
1198	pm_runtime_get_sync(mmc_dev(mmc));
1199
1200	spin_lock_irqsave(&host->lock, flags);
1201
1202	host->mrq = mrq;
1203
1204	if (mrq->data)
1205		mmci_get_next_data(host, mrq->data);
1206
1207	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1208		mmci_start_data(host, mrq->data);
1209
1210	if (mrq->sbc)
1211		mmci_start_command(host, mrq->sbc, 0);
1212	else
1213		mmci_start_command(host, mrq->cmd, 0);
1214
1215	spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1219{
1220	struct mmci_host *host = mmc_priv(mmc);
1221	struct variant_data *variant = host->variant;
1222	u32 pwr = 0;
1223	unsigned long flags;
1224	int ret;
1225
1226	pm_runtime_get_sync(mmc_dev(mmc));
1227
1228	if (host->plat->ios_handler &&
1229		host->plat->ios_handler(mmc_dev(mmc), ios))
1230			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1231
1232	switch (ios->power_mode) {
1233	case MMC_POWER_OFF:
1234		if (!IS_ERR(mmc->supply.vmmc))
1235			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1236
1237		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1238			regulator_disable(mmc->supply.vqmmc);
1239			host->vqmmc_enabled = false;
1240		}
1241
1242		break;
1243	case MMC_POWER_UP:
1244		if (!IS_ERR(mmc->supply.vmmc))
1245			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1246
1247		/*
1248		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1249		 * and instead uses MCI_PWR_ON so apply whatever value is
1250		 * configured in the variant data.
1251		 */
1252		pwr |= variant->pwrreg_powerup;
1253
1254		break;
1255	case MMC_POWER_ON:
1256		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1257			ret = regulator_enable(mmc->supply.vqmmc);
1258			if (ret < 0)
1259				dev_err(mmc_dev(mmc),
1260					"failed to enable vqmmc regulator\n");
1261			else
1262				host->vqmmc_enabled = true;
1263		}
1264
1265		pwr |= MCI_PWR_ON;
1266		break;
1267	}
1268
1269	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1270		/*
1271		 * The ST Micro variant has some additional bits
1272		 * indicating signal direction for the signals in
1273		 * the SD/MMC bus and feedback-clock usage.
1274		 */
1275		pwr |= host->pwr_reg_add;
1276
1277		if (ios->bus_width == MMC_BUS_WIDTH_4)
1278			pwr &= ~MCI_ST_DATA74DIREN;
1279		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1280			pwr &= (~MCI_ST_DATA74DIREN &
1281				~MCI_ST_DATA31DIREN &
1282				~MCI_ST_DATA2DIREN);
1283	}
1284
1285	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1286		if (host->hw_designer != AMBA_VENDOR_ST)
1287			pwr |= MCI_ROD;
1288		else {
1289			/*
1290			 * The ST Micro variant use the ROD bit for something
1291			 * else and only has OD (Open Drain).
1292			 */
1293			pwr |= MCI_OD;
1294		}
1295	}
1296
1297	/*
1298	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1299	 * gating the clock, the MCI_PWR_ON bit is cleared.
1300	 */
1301	if (!ios->clock && variant->pwrreg_clkgate)
1302		pwr &= ~MCI_PWR_ON;
1303
1304	spin_lock_irqsave(&host->lock, flags);
1305
1306	mmci_set_clkreg(host, ios->clock);
1307	mmci_write_pwrreg(host, pwr);
1308	mmci_reg_delay(host);
1309
1310	spin_unlock_irqrestore(&host->lock, flags);
1311
1312	pm_runtime_mark_last_busy(mmc_dev(mmc));
1313	pm_runtime_put_autosuspend(mmc_dev(mmc));
1314}
1315
1316static int mmci_get_cd(struct mmc_host *mmc)
1317{
1318	struct mmci_host *host = mmc_priv(mmc);
1319	struct mmci_platform_data *plat = host->plat;
1320	unsigned int status = mmc_gpio_get_cd(mmc);
1321
1322	if (status == -ENOSYS) {
1323		if (!plat->status)
1324			return 1; /* Assume always present */
1325
1326		status = plat->status(mmc_dev(host->mmc));
1327	}
1328	return status;
1329}
1330
1331static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1332{
1333	int ret = 0;
1334
1335	if (!IS_ERR(mmc->supply.vqmmc)) {
1336
1337		pm_runtime_get_sync(mmc_dev(mmc));
1338
1339		switch (ios->signal_voltage) {
1340		case MMC_SIGNAL_VOLTAGE_330:
1341			ret = regulator_set_voltage(mmc->supply.vqmmc,
1342						2700000, 3600000);
1343			break;
1344		case MMC_SIGNAL_VOLTAGE_180:
1345			ret = regulator_set_voltage(mmc->supply.vqmmc,
1346						1700000, 1950000);
1347			break;
1348		case MMC_SIGNAL_VOLTAGE_120:
1349			ret = regulator_set_voltage(mmc->supply.vqmmc,
1350						1100000, 1300000);
1351			break;
1352		}
1353
1354		if (ret)
1355			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1356
1357		pm_runtime_mark_last_busy(mmc_dev(mmc));
1358		pm_runtime_put_autosuspend(mmc_dev(mmc));
1359	}
1360
1361	return ret;
1362}
1363
1364static struct mmc_host_ops mmci_ops = {
1365	.request	= mmci_request,
1366	.pre_req	= mmci_pre_request,
1367	.post_req	= mmci_post_request,
1368	.set_ios	= mmci_set_ios,
1369	.get_ro		= mmc_gpio_get_ro,
1370	.get_cd		= mmci_get_cd,
1371	.start_signal_voltage_switch = mmci_sig_volt_switch,
1372};
1373
1374static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1375{
1376	struct mmci_host *host = mmc_priv(mmc);
1377	int ret = mmc_of_parse(mmc);
1378
1379	if (ret)
1380		return ret;
1381
1382	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1383		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1384	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1385		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1386	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1387		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1388	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1389		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1390	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1391		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1392	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1393		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1394
1395	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1396		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1397	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1398		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1399
1400	return 0;
1401}
1402
1403static int mmci_probe(struct amba_device *dev,
1404	const struct amba_id *id)
1405{
1406	struct mmci_platform_data *plat = dev->dev.platform_data;
1407	struct device_node *np = dev->dev.of_node;
1408	struct variant_data *variant = id->data;
1409	struct mmci_host *host;
1410	struct mmc_host *mmc;
1411	int ret;
1412
1413	/* Must have platform data or Device Tree. */
1414	if (!plat && !np) {
1415		dev_err(&dev->dev, "No plat data or DT found\n");
1416		return -EINVAL;
1417	}
1418
1419	if (!plat) {
1420		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1421		if (!plat)
1422			return -ENOMEM;
1423	}
1424
1425	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1426	if (!mmc)
1427		return -ENOMEM;
1428
1429	ret = mmci_of_parse(np, mmc);
1430	if (ret)
1431		goto host_free;
1432
1433	host = mmc_priv(mmc);
1434	host->mmc = mmc;
1435
1436	host->hw_designer = amba_manf(dev);
1437	host->hw_revision = amba_rev(dev);
1438	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1439	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1440
1441	host->clk = devm_clk_get(&dev->dev, NULL);
1442	if (IS_ERR(host->clk)) {
1443		ret = PTR_ERR(host->clk);
1444		goto host_free;
1445	}
1446
1447	ret = clk_prepare_enable(host->clk);
1448	if (ret)
1449		goto host_free;
1450
1451	host->plat = plat;
1452	host->variant = variant;
1453	host->mclk = clk_get_rate(host->clk);
1454	/*
1455	 * According to the spec, mclk is max 100 MHz,
1456	 * so we try to adjust the clock down to this,
1457	 * (if possible).
1458	 */
1459	if (host->mclk > 100000000) {
1460		ret = clk_set_rate(host->clk, 100000000);
1461		if (ret < 0)
1462			goto clk_disable;
1463		host->mclk = clk_get_rate(host->clk);
1464		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1465			host->mclk);
1466	}
1467
1468	host->phybase = dev->res.start;
1469	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1470	if (IS_ERR(host->base)) {
1471		ret = PTR_ERR(host->base);
1472		goto clk_disable;
1473	}
1474
1475	/*
1476	 * The ARM and ST versions of the block have slightly different
1477	 * clock divider equations which means that the minimum divider
1478	 * differs too.
1479	 */
1480	if (variant->st_clkdiv)
1481		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1482	else
1483		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1484	/*
1485	 * If no maximum operating frequency is supplied, fall back to use
1486	 * the module parameter, which has a (low) default value in case it
1487	 * is not specified. Either value must not exceed the clock rate into
1488	 * the block, of course.
1489	 */
1490	if (mmc->f_max)
1491		mmc->f_max = min(host->mclk, mmc->f_max);
1492	else
1493		mmc->f_max = min(host->mclk, fmax);
1494	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1495
1496	/* Get regulators and the supported OCR mask */
1497	mmc_regulator_get_supply(mmc);
1498	if (!mmc->ocr_avail)
1499		mmc->ocr_avail = plat->ocr_mask;
1500	else if (plat->ocr_mask)
1501		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1502
1503	/* DT takes precedence over platform data. */
1504	if (!np) {
1505		if (!plat->cd_invert)
1506			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1507		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1508	}
1509
1510	/* We support these capabilities. */
1511	mmc->caps |= MMC_CAP_CMD23;
1512
1513	if (variant->busy_detect) {
1514		mmci_ops.card_busy = mmci_card_busy;
1515		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1516		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1517		mmc->max_busy_timeout = 0;
1518	}
1519
1520	mmc->ops = &mmci_ops;
1521
1522	/* We support these PM capabilities. */
1523	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1524
1525	/*
1526	 * We can do SGIO
1527	 */
1528	mmc->max_segs = NR_SG;
1529
1530	/*
1531	 * Since only a certain number of bits are valid in the data length
1532	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1533	 * single request.
1534	 */
1535	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1536
1537	/*
1538	 * Set the maximum segment size.  Since we aren't doing DMA
1539	 * (yet) we are only limited by the data length register.
1540	 */
1541	mmc->max_seg_size = mmc->max_req_size;
1542
1543	/*
1544	 * Block size can be up to 2048 bytes, but must be a power of two.
1545	 */
1546	mmc->max_blk_size = 1 << 11;
1547
1548	/*
1549	 * Limit the number of blocks transferred so that we don't overflow
1550	 * the maximum request size.
1551	 */
1552	mmc->max_blk_count = mmc->max_req_size >> 11;
1553
1554	spin_lock_init(&host->lock);
1555
1556	writel(0, host->base + MMCIMASK0);
1557	writel(0, host->base + MMCIMASK1);
1558	writel(0xfff, host->base + MMCICLEAR);
1559
1560	/* If DT, cd/wp gpios must be supplied through it. */
1561	if (!np && gpio_is_valid(plat->gpio_cd)) {
1562		ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1563		if (ret)
1564			goto clk_disable;
1565	}
1566	if (!np && gpio_is_valid(plat->gpio_wp)) {
1567		ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1568		if (ret)
1569			goto clk_disable;
1570	}
1571
1572	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1573			DRIVER_NAME " (cmd)", host);
1574	if (ret)
1575		goto clk_disable;
1576
1577	if (!dev->irq[1])
1578		host->singleirq = true;
1579	else {
1580		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1581				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1582		if (ret)
1583			goto clk_disable;
1584	}
1585
1586	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1587
1588	amba_set_drvdata(dev, mmc);
1589
1590	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1591		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1592		 amba_rev(dev), (unsigned long long)dev->res.start,
1593		 dev->irq[0], dev->irq[1]);
1594
1595	mmci_dma_setup(host);
1596
1597	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1598	pm_runtime_use_autosuspend(&dev->dev);
1599	pm_runtime_put(&dev->dev);
1600
1601	mmc_add_host(mmc);
1602
1603	return 0;
1604
1605 clk_disable:
1606	clk_disable_unprepare(host->clk);
1607 host_free:
1608	mmc_free_host(mmc);
1609	return ret;
1610}
1611
1612static int mmci_remove(struct amba_device *dev)
1613{
1614	struct mmc_host *mmc = amba_get_drvdata(dev);
1615
1616	if (mmc) {
1617		struct mmci_host *host = mmc_priv(mmc);
1618
1619		/*
1620		 * Undo pm_runtime_put() in probe.  We use the _sync
1621		 * version here so that we can access the primecell.
1622		 */
1623		pm_runtime_get_sync(&dev->dev);
1624
1625		mmc_remove_host(mmc);
1626
1627		writel(0, host->base + MMCIMASK0);
1628		writel(0, host->base + MMCIMASK1);
1629
1630		writel(0, host->base + MMCICOMMAND);
1631		writel(0, host->base + MMCIDATACTRL);
1632
1633		mmci_dma_release(host);
1634		clk_disable_unprepare(host->clk);
1635		mmc_free_host(mmc);
1636	}
1637
1638	return 0;
1639}
1640
1641#ifdef CONFIG_PM
1642static void mmci_save(struct mmci_host *host)
1643{
1644	unsigned long flags;
1645
1646	spin_lock_irqsave(&host->lock, flags);
1647
1648	writel(0, host->base + MMCIMASK0);
1649	if (host->variant->pwrreg_nopower) {
1650		writel(0, host->base + MMCIDATACTRL);
1651		writel(0, host->base + MMCIPOWER);
1652		writel(0, host->base + MMCICLOCK);
1653	}
1654	mmci_reg_delay(host);
1655
1656	spin_unlock_irqrestore(&host->lock, flags);
1657}
1658
1659static void mmci_restore(struct mmci_host *host)
1660{
1661	unsigned long flags;
1662
1663	spin_lock_irqsave(&host->lock, flags);
1664
1665	if (host->variant->pwrreg_nopower) {
1666		writel(host->clk_reg, host->base + MMCICLOCK);
1667		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1668		writel(host->pwr_reg, host->base + MMCIPOWER);
1669	}
1670	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1671	mmci_reg_delay(host);
1672
1673	spin_unlock_irqrestore(&host->lock, flags);
1674}
1675
1676static int mmci_runtime_suspend(struct device *dev)
1677{
1678	struct amba_device *adev = to_amba_device(dev);
1679	struct mmc_host *mmc = amba_get_drvdata(adev);
1680
1681	if (mmc) {
1682		struct mmci_host *host = mmc_priv(mmc);
1683		pinctrl_pm_select_sleep_state(dev);
1684		mmci_save(host);
1685		clk_disable_unprepare(host->clk);
1686	}
1687
1688	return 0;
1689}
1690
1691static int mmci_runtime_resume(struct device *dev)
1692{
1693	struct amba_device *adev = to_amba_device(dev);
1694	struct mmc_host *mmc = amba_get_drvdata(adev);
1695
1696	if (mmc) {
1697		struct mmci_host *host = mmc_priv(mmc);
1698		clk_prepare_enable(host->clk);
1699		mmci_restore(host);
1700		pinctrl_pm_select_default_state(dev);
1701	}
1702
1703	return 0;
1704}
1705#endif
1706
1707static const struct dev_pm_ops mmci_dev_pm_ops = {
1708	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1709				pm_runtime_force_resume)
1710	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1711};
1712
1713static struct amba_id mmci_ids[] = {
1714	{
1715		.id	= 0x00041180,
1716		.mask	= 0xff0fffff,
1717		.data	= &variant_arm,
1718	},
1719	{
1720		.id	= 0x01041180,
1721		.mask	= 0xff0fffff,
1722		.data	= &variant_arm_extended_fifo,
1723	},
1724	{
1725		.id	= 0x02041180,
1726		.mask	= 0xff0fffff,
1727		.data	= &variant_arm_extended_fifo_hwfc,
1728	},
1729	{
1730		.id	= 0x00041181,
1731		.mask	= 0x000fffff,
1732		.data	= &variant_arm,
1733	},
1734	/* ST Micro variants */
1735	{
1736		.id     = 0x00180180,
1737		.mask   = 0x00ffffff,
1738		.data	= &variant_u300,
1739	},
1740	{
1741		.id     = 0x10180180,
1742		.mask   = 0xf0ffffff,
1743		.data	= &variant_nomadik,
1744	},
1745	{
1746		.id     = 0x00280180,
1747		.mask   = 0x00ffffff,
1748		.data	= &variant_u300,
1749	},
1750	{
1751		.id     = 0x00480180,
1752		.mask   = 0xf0ffffff,
1753		.data	= &variant_ux500,
1754	},
1755	{
1756		.id     = 0x10480180,
1757		.mask   = 0xf0ffffff,
1758		.data	= &variant_ux500v2,
1759	},
1760	{ 0, 0 },
1761};
1762
1763MODULE_DEVICE_TABLE(amba, mmci_ids);
1764
1765static struct amba_driver mmci_driver = {
1766	.drv		= {
1767		.name	= DRIVER_NAME,
1768		.pm	= &mmci_dev_pm_ops,
1769	},
1770	.probe		= mmci_probe,
1771	.remove		= mmci_remove,
1772	.id_table	= mmci_ids,
1773};
1774
1775module_amba_driver(mmci_driver);
1776
1777module_param(fmax, uint, 0444);
1778
1779MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1780MODULE_LICENSE("GPL");
1781