mtdcore.c revision 589e9c4dace6995440c119486919ce95b180dd38
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006      Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/partitions.h>
42
43#include "mtdcore.h"
44/*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
48static struct backing_dev_info mtd_bdi_unmappable = {
49	.capabilities	= BDI_CAP_MAP_COPY,
50};
51
52/*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
57static struct backing_dev_info mtd_bdi_ro_mappable = {
58	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60};
61
62/*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
67static struct backing_dev_info mtd_bdi_rw_mappable = {
68	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70			   BDI_CAP_WRITE_MAP),
71};
72
73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74static int mtd_cls_resume(struct device *dev);
75
76static struct class mtd_class = {
77	.name = "mtd",
78	.owner = THIS_MODULE,
79	.suspend = mtd_cls_suspend,
80	.resume = mtd_cls_resume,
81};
82
83static DEFINE_IDR(mtd_idr);
84
85/* These are exported solely for the purpose of mtd_blkdevs.c. You
86   should not use them for _anything_ else */
87DEFINE_MUTEX(mtd_table_mutex);
88EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90struct mtd_info *__mtd_next_device(int i)
91{
92	return idr_get_next(&mtd_idr, &i);
93}
94EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96static LIST_HEAD(mtd_notifiers);
97
98
99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
110	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111	dev_t index = MTD_DEVT(mtd->index);
112
113	/* remove /dev/mtdXro node if needed */
114	if (index)
115		device_destroy(&mtd_class, index + 1);
116}
117
118static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119{
120	struct mtd_info *mtd = dev_get_drvdata(dev);
121
122	return mtd ? mtd_suspend(mtd) : 0;
123}
124
125static int mtd_cls_resume(struct device *dev)
126{
127	struct mtd_info *mtd = dev_get_drvdata(dev);
128
129	if (mtd)
130		mtd_resume(mtd);
131	return 0;
132}
133
134static ssize_t mtd_type_show(struct device *dev,
135		struct device_attribute *attr, char *buf)
136{
137	struct mtd_info *mtd = dev_get_drvdata(dev);
138	char *type;
139
140	switch (mtd->type) {
141	case MTD_ABSENT:
142		type = "absent";
143		break;
144	case MTD_RAM:
145		type = "ram";
146		break;
147	case MTD_ROM:
148		type = "rom";
149		break;
150	case MTD_NORFLASH:
151		type = "nor";
152		break;
153	case MTD_NANDFLASH:
154		type = "nand";
155		break;
156	case MTD_DATAFLASH:
157		type = "dataflash";
158		break;
159	case MTD_UBIVOLUME:
160		type = "ubi";
161		break;
162	default:
163		type = "unknown";
164	}
165
166	return snprintf(buf, PAGE_SIZE, "%s\n", type);
167}
168static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170static ssize_t mtd_flags_show(struct device *dev,
171		struct device_attribute *attr, char *buf)
172{
173	struct mtd_info *mtd = dev_get_drvdata(dev);
174
175	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177}
178static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180static ssize_t mtd_size_show(struct device *dev,
181		struct device_attribute *attr, char *buf)
182{
183	struct mtd_info *mtd = dev_get_drvdata(dev);
184
185	return snprintf(buf, PAGE_SIZE, "%llu\n",
186		(unsigned long long)mtd->size);
187
188}
189static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191static ssize_t mtd_erasesize_show(struct device *dev,
192		struct device_attribute *attr, char *buf)
193{
194	struct mtd_info *mtd = dev_get_drvdata(dev);
195
196	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198}
199static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201static ssize_t mtd_writesize_show(struct device *dev,
202		struct device_attribute *attr, char *buf)
203{
204	struct mtd_info *mtd = dev_get_drvdata(dev);
205
206	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208}
209static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
211static ssize_t mtd_subpagesize_show(struct device *dev,
212		struct device_attribute *attr, char *buf)
213{
214	struct mtd_info *mtd = dev_get_drvdata(dev);
215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219}
220static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
222static ssize_t mtd_oobsize_show(struct device *dev,
223		struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229}
230static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232static ssize_t mtd_numeraseregions_show(struct device *dev,
233		struct device_attribute *attr, char *buf)
234{
235	struct mtd_info *mtd = dev_get_drvdata(dev);
236
237	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239}
240static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241	NULL);
242
243static ssize_t mtd_name_show(struct device *dev,
244		struct device_attribute *attr, char *buf)
245{
246	struct mtd_info *mtd = dev_get_drvdata(dev);
247
248	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250}
251static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
253static ssize_t mtd_ecc_strength_show(struct device *dev,
254				     struct device_attribute *attr, char *buf)
255{
256	struct mtd_info *mtd = dev_get_drvdata(dev);
257
258	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259}
260static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261
262static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263					  struct device_attribute *attr,
264					  char *buf)
265{
266	struct mtd_info *mtd = dev_get_drvdata(dev);
267
268	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269}
270
271static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272					   struct device_attribute *attr,
273					   const char *buf, size_t count)
274{
275	struct mtd_info *mtd = dev_get_drvdata(dev);
276	unsigned int bitflip_threshold;
277	int retval;
278
279	retval = kstrtouint(buf, 0, &bitflip_threshold);
280	if (retval)
281		return retval;
282
283	mtd->bitflip_threshold = bitflip_threshold;
284	return count;
285}
286static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287		   mtd_bitflip_threshold_show,
288		   mtd_bitflip_threshold_store);
289
290static struct attribute *mtd_attrs[] = {
291	&dev_attr_type.attr,
292	&dev_attr_flags.attr,
293	&dev_attr_size.attr,
294	&dev_attr_erasesize.attr,
295	&dev_attr_writesize.attr,
296	&dev_attr_subpagesize.attr,
297	&dev_attr_oobsize.attr,
298	&dev_attr_numeraseregions.attr,
299	&dev_attr_name.attr,
300	&dev_attr_ecc_strength.attr,
301	&dev_attr_bitflip_threshold.attr,
302	NULL,
303};
304
305static struct attribute_group mtd_group = {
306	.attrs		= mtd_attrs,
307};
308
309static const struct attribute_group *mtd_groups[] = {
310	&mtd_group,
311	NULL,
312};
313
314static struct device_type mtd_devtype = {
315	.name		= "mtd",
316	.groups		= mtd_groups,
317	.release	= mtd_release,
318};
319
320/**
321 *	add_mtd_device - register an MTD device
322 *	@mtd: pointer to new MTD device info structure
323 *
324 *	Add a device to the list of MTD devices present in the system, and
325 *	notify each currently active MTD 'user' of its arrival. Returns
326 *	zero on success or 1 on failure, which currently will only happen
327 *	if there is insufficient memory or a sysfs error.
328 */
329
330int add_mtd_device(struct mtd_info *mtd)
331{
332	struct mtd_notifier *not;
333	int i, error;
334
335	if (!mtd->backing_dev_info) {
336		switch (mtd->type) {
337		case MTD_RAM:
338			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339			break;
340		case MTD_ROM:
341			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342			break;
343		default:
344			mtd->backing_dev_info = &mtd_bdi_unmappable;
345			break;
346		}
347	}
348
349	BUG_ON(mtd->writesize == 0);
350	mutex_lock(&mtd_table_mutex);
351
352	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
353	if (i < 0)
354		goto fail_locked;
355
356	mtd->index = i;
357	mtd->usecount = 0;
358
359	/* default value if not set by driver */
360	if (mtd->bitflip_threshold == 0)
361		mtd->bitflip_threshold = mtd->ecc_strength;
362
363	if (is_power_of_2(mtd->erasesize))
364		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
365	else
366		mtd->erasesize_shift = 0;
367
368	if (is_power_of_2(mtd->writesize))
369		mtd->writesize_shift = ffs(mtd->writesize) - 1;
370	else
371		mtd->writesize_shift = 0;
372
373	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
374	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
375
376	/* Some chips always power up locked. Unlock them now */
377	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
378		error = mtd_unlock(mtd, 0, mtd->size);
379		if (error && error != -EOPNOTSUPP)
380			printk(KERN_WARNING
381			       "%s: unlock failed, writes may not work\n",
382			       mtd->name);
383	}
384
385	/* Caller should have set dev.parent to match the
386	 * physical device.
387	 */
388	mtd->dev.type = &mtd_devtype;
389	mtd->dev.class = &mtd_class;
390	mtd->dev.devt = MTD_DEVT(i);
391	dev_set_name(&mtd->dev, "mtd%d", i);
392	dev_set_drvdata(&mtd->dev, mtd);
393	if (device_register(&mtd->dev) != 0)
394		goto fail_added;
395
396	if (MTD_DEVT(i))
397		device_create(&mtd_class, mtd->dev.parent,
398			      MTD_DEVT(i) + 1,
399			      NULL, "mtd%dro", i);
400
401	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
402	/* No need to get a refcount on the module containing
403	   the notifier, since we hold the mtd_table_mutex */
404	list_for_each_entry(not, &mtd_notifiers, list)
405		not->add(mtd);
406
407	mutex_unlock(&mtd_table_mutex);
408	/* We _know_ we aren't being removed, because
409	   our caller is still holding us here. So none
410	   of this try_ nonsense, and no bitching about it
411	   either. :) */
412	__module_get(THIS_MODULE);
413	return 0;
414
415fail_added:
416	idr_remove(&mtd_idr, i);
417fail_locked:
418	mutex_unlock(&mtd_table_mutex);
419	return 1;
420}
421
422/**
423 *	del_mtd_device - unregister an MTD device
424 *	@mtd: pointer to MTD device info structure
425 *
426 *	Remove a device from the list of MTD devices present in the system,
427 *	and notify each currently active MTD 'user' of its departure.
428 *	Returns zero on success or 1 on failure, which currently will happen
429 *	if the requested device does not appear to be present in the list.
430 */
431
432int del_mtd_device(struct mtd_info *mtd)
433{
434	int ret;
435	struct mtd_notifier *not;
436
437	mutex_lock(&mtd_table_mutex);
438
439	if (idr_find(&mtd_idr, mtd->index) != mtd) {
440		ret = -ENODEV;
441		goto out_error;
442	}
443
444	/* No need to get a refcount on the module containing
445		the notifier, since we hold the mtd_table_mutex */
446	list_for_each_entry(not, &mtd_notifiers, list)
447		not->remove(mtd);
448
449	if (mtd->usecount) {
450		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
451		       mtd->index, mtd->name, mtd->usecount);
452		ret = -EBUSY;
453	} else {
454		device_unregister(&mtd->dev);
455
456		idr_remove(&mtd_idr, mtd->index);
457
458		module_put(THIS_MODULE);
459		ret = 0;
460	}
461
462out_error:
463	mutex_unlock(&mtd_table_mutex);
464	return ret;
465}
466
467/**
468 * mtd_device_parse_register - parse partitions and register an MTD device.
469 *
470 * @mtd: the MTD device to register
471 * @types: the list of MTD partition probes to try, see
472 *         'parse_mtd_partitions()' for more information
473 * @parser_data: MTD partition parser-specific data
474 * @parts: fallback partition information to register, if parsing fails;
475 *         only valid if %nr_parts > %0
476 * @nr_parts: the number of partitions in parts, if zero then the full
477 *            MTD device is registered if no partition info is found
478 *
479 * This function aggregates MTD partitions parsing (done by
480 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
481 * basically follows the most common pattern found in many MTD drivers:
482 *
483 * * It first tries to probe partitions on MTD device @mtd using parsers
484 *   specified in @types (if @types is %NULL, then the default list of parsers
485 *   is used, see 'parse_mtd_partitions()' for more information). If none are
486 *   found this functions tries to fallback to information specified in
487 *   @parts/@nr_parts.
488 * * If any partitioning info was found, this function registers the found
489 *   partitions.
490 * * If no partitions were found this function just registers the MTD device
491 *   @mtd and exits.
492 *
493 * Returns zero in case of success and a negative error code in case of failure.
494 */
495int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
496			      struct mtd_part_parser_data *parser_data,
497			      const struct mtd_partition *parts,
498			      int nr_parts)
499{
500	int err;
501	struct mtd_partition *real_parts;
502
503	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
504	if (err <= 0 && nr_parts && parts) {
505		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
506				     GFP_KERNEL);
507		if (!real_parts)
508			err = -ENOMEM;
509		else
510			err = nr_parts;
511	}
512
513	if (err > 0) {
514		err = add_mtd_partitions(mtd, real_parts, err);
515		kfree(real_parts);
516	} else if (err == 0) {
517		err = add_mtd_device(mtd);
518		if (err == 1)
519			err = -ENODEV;
520	}
521
522	return err;
523}
524EXPORT_SYMBOL_GPL(mtd_device_parse_register);
525
526/**
527 * mtd_device_unregister - unregister an existing MTD device.
528 *
529 * @master: the MTD device to unregister.  This will unregister both the master
530 *          and any partitions if registered.
531 */
532int mtd_device_unregister(struct mtd_info *master)
533{
534	int err;
535
536	err = del_mtd_partitions(master);
537	if (err)
538		return err;
539
540	if (!device_is_registered(&master->dev))
541		return 0;
542
543	return del_mtd_device(master);
544}
545EXPORT_SYMBOL_GPL(mtd_device_unregister);
546
547/**
548 *	register_mtd_user - register a 'user' of MTD devices.
549 *	@new: pointer to notifier info structure
550 *
551 *	Registers a pair of callbacks function to be called upon addition
552 *	or removal of MTD devices. Causes the 'add' callback to be immediately
553 *	invoked for each MTD device currently present in the system.
554 */
555void register_mtd_user (struct mtd_notifier *new)
556{
557	struct mtd_info *mtd;
558
559	mutex_lock(&mtd_table_mutex);
560
561	list_add(&new->list, &mtd_notifiers);
562
563	__module_get(THIS_MODULE);
564
565	mtd_for_each_device(mtd)
566		new->add(mtd);
567
568	mutex_unlock(&mtd_table_mutex);
569}
570EXPORT_SYMBOL_GPL(register_mtd_user);
571
572/**
573 *	unregister_mtd_user - unregister a 'user' of MTD devices.
574 *	@old: pointer to notifier info structure
575 *
576 *	Removes a callback function pair from the list of 'users' to be
577 *	notified upon addition or removal of MTD devices. Causes the
578 *	'remove' callback to be immediately invoked for each MTD device
579 *	currently present in the system.
580 */
581int unregister_mtd_user (struct mtd_notifier *old)
582{
583	struct mtd_info *mtd;
584
585	mutex_lock(&mtd_table_mutex);
586
587	module_put(THIS_MODULE);
588
589	mtd_for_each_device(mtd)
590		old->remove(mtd);
591
592	list_del(&old->list);
593	mutex_unlock(&mtd_table_mutex);
594	return 0;
595}
596EXPORT_SYMBOL_GPL(unregister_mtd_user);
597
598/**
599 *	get_mtd_device - obtain a validated handle for an MTD device
600 *	@mtd: last known address of the required MTD device
601 *	@num: internal device number of the required MTD device
602 *
603 *	Given a number and NULL address, return the num'th entry in the device
604 *	table, if any.	Given an address and num == -1, search the device table
605 *	for a device with that address and return if it's still present. Given
606 *	both, return the num'th driver only if its address matches. Return
607 *	error code if not.
608 */
609struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
610{
611	struct mtd_info *ret = NULL, *other;
612	int err = -ENODEV;
613
614	mutex_lock(&mtd_table_mutex);
615
616	if (num == -1) {
617		mtd_for_each_device(other) {
618			if (other == mtd) {
619				ret = mtd;
620				break;
621			}
622		}
623	} else if (num >= 0) {
624		ret = idr_find(&mtd_idr, num);
625		if (mtd && mtd != ret)
626			ret = NULL;
627	}
628
629	if (!ret) {
630		ret = ERR_PTR(err);
631		goto out;
632	}
633
634	err = __get_mtd_device(ret);
635	if (err)
636		ret = ERR_PTR(err);
637out:
638	mutex_unlock(&mtd_table_mutex);
639	return ret;
640}
641EXPORT_SYMBOL_GPL(get_mtd_device);
642
643
644int __get_mtd_device(struct mtd_info *mtd)
645{
646	int err;
647
648	if (!try_module_get(mtd->owner))
649		return -ENODEV;
650
651	if (mtd->_get_device) {
652		err = mtd->_get_device(mtd);
653
654		if (err) {
655			module_put(mtd->owner);
656			return err;
657		}
658	}
659	mtd->usecount++;
660	return 0;
661}
662EXPORT_SYMBOL_GPL(__get_mtd_device);
663
664/**
665 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
666 *	device name
667 *	@name: MTD device name to open
668 *
669 * 	This function returns MTD device description structure in case of
670 * 	success and an error code in case of failure.
671 */
672struct mtd_info *get_mtd_device_nm(const char *name)
673{
674	int err = -ENODEV;
675	struct mtd_info *mtd = NULL, *other;
676
677	mutex_lock(&mtd_table_mutex);
678
679	mtd_for_each_device(other) {
680		if (!strcmp(name, other->name)) {
681			mtd = other;
682			break;
683		}
684	}
685
686	if (!mtd)
687		goto out_unlock;
688
689	err = __get_mtd_device(mtd);
690	if (err)
691		goto out_unlock;
692
693	mutex_unlock(&mtd_table_mutex);
694	return mtd;
695
696out_unlock:
697	mutex_unlock(&mtd_table_mutex);
698	return ERR_PTR(err);
699}
700EXPORT_SYMBOL_GPL(get_mtd_device_nm);
701
702void put_mtd_device(struct mtd_info *mtd)
703{
704	mutex_lock(&mtd_table_mutex);
705	__put_mtd_device(mtd);
706	mutex_unlock(&mtd_table_mutex);
707
708}
709EXPORT_SYMBOL_GPL(put_mtd_device);
710
711void __put_mtd_device(struct mtd_info *mtd)
712{
713	--mtd->usecount;
714	BUG_ON(mtd->usecount < 0);
715
716	if (mtd->_put_device)
717		mtd->_put_device(mtd);
718
719	module_put(mtd->owner);
720}
721EXPORT_SYMBOL_GPL(__put_mtd_device);
722
723/*
724 * Erase is an asynchronous operation.  Device drivers are supposed
725 * to call instr->callback() whenever the operation completes, even
726 * if it completes with a failure.
727 * Callers are supposed to pass a callback function and wait for it
728 * to be called before writing to the block.
729 */
730int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
731{
732	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
733		return -EINVAL;
734	if (!(mtd->flags & MTD_WRITEABLE))
735		return -EROFS;
736	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
737	if (!instr->len) {
738		instr->state = MTD_ERASE_DONE;
739		mtd_erase_callback(instr);
740		return 0;
741	}
742	return mtd->_erase(mtd, instr);
743}
744EXPORT_SYMBOL_GPL(mtd_erase);
745
746/*
747 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
748 */
749int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
750	      void **virt, resource_size_t *phys)
751{
752	*retlen = 0;
753	*virt = NULL;
754	if (phys)
755		*phys = 0;
756	if (!mtd->_point)
757		return -EOPNOTSUPP;
758	if (from < 0 || from > mtd->size || len > mtd->size - from)
759		return -EINVAL;
760	if (!len)
761		return 0;
762	return mtd->_point(mtd, from, len, retlen, virt, phys);
763}
764EXPORT_SYMBOL_GPL(mtd_point);
765
766/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
767int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
768{
769	if (!mtd->_point)
770		return -EOPNOTSUPP;
771	if (from < 0 || from > mtd->size || len > mtd->size - from)
772		return -EINVAL;
773	if (!len)
774		return 0;
775	return mtd->_unpoint(mtd, from, len);
776}
777EXPORT_SYMBOL_GPL(mtd_unpoint);
778
779/*
780 * Allow NOMMU mmap() to directly map the device (if not NULL)
781 * - return the address to which the offset maps
782 * - return -ENOSYS to indicate refusal to do the mapping
783 */
784unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
785				    unsigned long offset, unsigned long flags)
786{
787	if (!mtd->_get_unmapped_area)
788		return -EOPNOTSUPP;
789	if (offset > mtd->size || len > mtd->size - offset)
790		return -EINVAL;
791	return mtd->_get_unmapped_area(mtd, len, offset, flags);
792}
793EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
794
795int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
796	     u_char *buf)
797{
798	int ret_code;
799	*retlen = 0;
800	if (from < 0 || from > mtd->size || len > mtd->size - from)
801		return -EINVAL;
802	if (!len)
803		return 0;
804
805	/*
806	 * In the absence of an error, drivers return a non-negative integer
807	 * representing the maximum number of bitflips that were corrected on
808	 * any one ecc region (if applicable; zero otherwise).
809	 */
810	ret_code = mtd->_read(mtd, from, len, retlen, buf);
811	if (unlikely(ret_code < 0))
812		return ret_code;
813	if (mtd->ecc_strength == 0)
814		return 0;	/* device lacks ecc */
815	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
816}
817EXPORT_SYMBOL_GPL(mtd_read);
818
819int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
820	      const u_char *buf)
821{
822	*retlen = 0;
823	if (to < 0 || to > mtd->size || len > mtd->size - to)
824		return -EINVAL;
825	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
826		return -EROFS;
827	if (!len)
828		return 0;
829	return mtd->_write(mtd, to, len, retlen, buf);
830}
831EXPORT_SYMBOL_GPL(mtd_write);
832
833/*
834 * In blackbox flight recorder like scenarios we want to make successful writes
835 * in interrupt context. panic_write() is only intended to be called when its
836 * known the kernel is about to panic and we need the write to succeed. Since
837 * the kernel is not going to be running for much longer, this function can
838 * break locks and delay to ensure the write succeeds (but not sleep).
839 */
840int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
841		    const u_char *buf)
842{
843	*retlen = 0;
844	if (!mtd->_panic_write)
845		return -EOPNOTSUPP;
846	if (to < 0 || to > mtd->size || len > mtd->size - to)
847		return -EINVAL;
848	if (!(mtd->flags & MTD_WRITEABLE))
849		return -EROFS;
850	if (!len)
851		return 0;
852	return mtd->_panic_write(mtd, to, len, retlen, buf);
853}
854EXPORT_SYMBOL_GPL(mtd_panic_write);
855
856int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
857{
858	int ret_code;
859	ops->retlen = ops->oobretlen = 0;
860	if (!mtd->_read_oob)
861		return -EOPNOTSUPP;
862	/*
863	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
864	 * similar to mtd->_read(), returning a non-negative integer
865	 * representing max bitflips. In other cases, mtd->_read_oob() may
866	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
867	 */
868	ret_code = mtd->_read_oob(mtd, from, ops);
869	if (unlikely(ret_code < 0))
870		return ret_code;
871	if (mtd->ecc_strength == 0)
872		return 0;	/* device lacks ecc */
873	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
874}
875EXPORT_SYMBOL_GPL(mtd_read_oob);
876
877/*
878 * Method to access the protection register area, present in some flash
879 * devices. The user data is one time programmable but the factory data is read
880 * only.
881 */
882int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
883			   size_t len)
884{
885	if (!mtd->_get_fact_prot_info)
886		return -EOPNOTSUPP;
887	if (!len)
888		return 0;
889	return mtd->_get_fact_prot_info(mtd, buf, len);
890}
891EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
892
893int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
894			   size_t *retlen, u_char *buf)
895{
896	*retlen = 0;
897	if (!mtd->_read_fact_prot_reg)
898		return -EOPNOTSUPP;
899	if (!len)
900		return 0;
901	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
902}
903EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
904
905int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
906			   size_t len)
907{
908	if (!mtd->_get_user_prot_info)
909		return -EOPNOTSUPP;
910	if (!len)
911		return 0;
912	return mtd->_get_user_prot_info(mtd, buf, len);
913}
914EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
915
916int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
917			   size_t *retlen, u_char *buf)
918{
919	*retlen = 0;
920	if (!mtd->_read_user_prot_reg)
921		return -EOPNOTSUPP;
922	if (!len)
923		return 0;
924	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
925}
926EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
927
928int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
929			    size_t *retlen, u_char *buf)
930{
931	*retlen = 0;
932	if (!mtd->_write_user_prot_reg)
933		return -EOPNOTSUPP;
934	if (!len)
935		return 0;
936	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
937}
938EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
939
940int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
941{
942	if (!mtd->_lock_user_prot_reg)
943		return -EOPNOTSUPP;
944	if (!len)
945		return 0;
946	return mtd->_lock_user_prot_reg(mtd, from, len);
947}
948EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
949
950/* Chip-supported device locking */
951int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
952{
953	if (!mtd->_lock)
954		return -EOPNOTSUPP;
955	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
956		return -EINVAL;
957	if (!len)
958		return 0;
959	return mtd->_lock(mtd, ofs, len);
960}
961EXPORT_SYMBOL_GPL(mtd_lock);
962
963int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964{
965	if (!mtd->_unlock)
966		return -EOPNOTSUPP;
967	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968		return -EINVAL;
969	if (!len)
970		return 0;
971	return mtd->_unlock(mtd, ofs, len);
972}
973EXPORT_SYMBOL_GPL(mtd_unlock);
974
975int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976{
977	if (!mtd->_is_locked)
978		return -EOPNOTSUPP;
979	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980		return -EINVAL;
981	if (!len)
982		return 0;
983	return mtd->_is_locked(mtd, ofs, len);
984}
985EXPORT_SYMBOL_GPL(mtd_is_locked);
986
987int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
988{
989	if (!mtd->_block_isbad)
990		return 0;
991	if (ofs < 0 || ofs > mtd->size)
992		return -EINVAL;
993	return mtd->_block_isbad(mtd, ofs);
994}
995EXPORT_SYMBOL_GPL(mtd_block_isbad);
996
997int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
998{
999	if (!mtd->_block_markbad)
1000		return -EOPNOTSUPP;
1001	if (ofs < 0 || ofs > mtd->size)
1002		return -EINVAL;
1003	if (!(mtd->flags & MTD_WRITEABLE))
1004		return -EROFS;
1005	return mtd->_block_markbad(mtd, ofs);
1006}
1007EXPORT_SYMBOL_GPL(mtd_block_markbad);
1008
1009/*
1010 * default_mtd_writev - the default writev method
1011 * @mtd: mtd device description object pointer
1012 * @vecs: the vectors to write
1013 * @count: count of vectors in @vecs
1014 * @to: the MTD device offset to write to
1015 * @retlen: on exit contains the count of bytes written to the MTD device.
1016 *
1017 * This function returns zero in case of success and a negative error code in
1018 * case of failure.
1019 */
1020static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1021			      unsigned long count, loff_t to, size_t *retlen)
1022{
1023	unsigned long i;
1024	size_t totlen = 0, thislen;
1025	int ret = 0;
1026
1027	for (i = 0; i < count; i++) {
1028		if (!vecs[i].iov_len)
1029			continue;
1030		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1031				vecs[i].iov_base);
1032		totlen += thislen;
1033		if (ret || thislen != vecs[i].iov_len)
1034			break;
1035		to += vecs[i].iov_len;
1036	}
1037	*retlen = totlen;
1038	return ret;
1039}
1040
1041/*
1042 * mtd_writev - the vector-based MTD write method
1043 * @mtd: mtd device description object pointer
1044 * @vecs: the vectors to write
1045 * @count: count of vectors in @vecs
1046 * @to: the MTD device offset to write to
1047 * @retlen: on exit contains the count of bytes written to the MTD device.
1048 *
1049 * This function returns zero in case of success and a negative error code in
1050 * case of failure.
1051 */
1052int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1053	       unsigned long count, loff_t to, size_t *retlen)
1054{
1055	*retlen = 0;
1056	if (!(mtd->flags & MTD_WRITEABLE))
1057		return -EROFS;
1058	if (!mtd->_writev)
1059		return default_mtd_writev(mtd, vecs, count, to, retlen);
1060	return mtd->_writev(mtd, vecs, count, to, retlen);
1061}
1062EXPORT_SYMBOL_GPL(mtd_writev);
1063
1064/**
1065 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1066 * @mtd: mtd device description object pointer
1067 * @size: a pointer to the ideal or maximum size of the allocation, points
1068 *        to the actual allocation size on success.
1069 *
1070 * This routine attempts to allocate a contiguous kernel buffer up to
1071 * the specified size, backing off the size of the request exponentially
1072 * until the request succeeds or until the allocation size falls below
1073 * the system page size. This attempts to make sure it does not adversely
1074 * impact system performance, so when allocating more than one page, we
1075 * ask the memory allocator to avoid re-trying, swapping, writing back
1076 * or performing I/O.
1077 *
1078 * Note, this function also makes sure that the allocated buffer is aligned to
1079 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1080 *
1081 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1082 * to handle smaller (i.e. degraded) buffer allocations under low- or
1083 * fragmented-memory situations where such reduced allocations, from a
1084 * requested ideal, are allowed.
1085 *
1086 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1087 */
1088void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1089{
1090	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1091		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1092	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1093	void *kbuf;
1094
1095	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1096
1097	while (*size > min_alloc) {
1098		kbuf = kmalloc(*size, flags);
1099		if (kbuf)
1100			return kbuf;
1101
1102		*size >>= 1;
1103		*size = ALIGN(*size, mtd->writesize);
1104	}
1105
1106	/*
1107	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1108	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1109	 */
1110	return kmalloc(*size, GFP_KERNEL);
1111}
1112EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1113
1114#ifdef CONFIG_PROC_FS
1115
1116/*====================================================================*/
1117/* Support for /proc/mtd */
1118
1119static struct proc_dir_entry *proc_mtd;
1120
1121static int mtd_proc_show(struct seq_file *m, void *v)
1122{
1123	struct mtd_info *mtd;
1124
1125	seq_puts(m, "dev:    size   erasesize  name\n");
1126	mutex_lock(&mtd_table_mutex);
1127	mtd_for_each_device(mtd) {
1128		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1129			   mtd->index, (unsigned long long)mtd->size,
1130			   mtd->erasesize, mtd->name);
1131	}
1132	mutex_unlock(&mtd_table_mutex);
1133	return 0;
1134}
1135
1136static int mtd_proc_open(struct inode *inode, struct file *file)
1137{
1138	return single_open(file, mtd_proc_show, NULL);
1139}
1140
1141static const struct file_operations mtd_proc_ops = {
1142	.open		= mtd_proc_open,
1143	.read		= seq_read,
1144	.llseek		= seq_lseek,
1145	.release	= single_release,
1146};
1147#endif /* CONFIG_PROC_FS */
1148
1149/*====================================================================*/
1150/* Init code */
1151
1152static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1153{
1154	int ret;
1155
1156	ret = bdi_init(bdi);
1157	if (!ret)
1158		ret = bdi_register(bdi, NULL, name);
1159
1160	if (ret)
1161		bdi_destroy(bdi);
1162
1163	return ret;
1164}
1165
1166static int __init init_mtd(void)
1167{
1168	int ret;
1169
1170	ret = class_register(&mtd_class);
1171	if (ret)
1172		goto err_reg;
1173
1174	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1175	if (ret)
1176		goto err_bdi1;
1177
1178	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1179	if (ret)
1180		goto err_bdi2;
1181
1182	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1183	if (ret)
1184		goto err_bdi3;
1185
1186#ifdef CONFIG_PROC_FS
1187	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1188#endif /* CONFIG_PROC_FS */
1189	return 0;
1190
1191err_bdi3:
1192	bdi_destroy(&mtd_bdi_ro_mappable);
1193err_bdi2:
1194	bdi_destroy(&mtd_bdi_unmappable);
1195err_bdi1:
1196	class_unregister(&mtd_class);
1197err_reg:
1198	pr_err("Error registering mtd class or bdi: %d\n", ret);
1199	return ret;
1200}
1201
1202static void __exit cleanup_mtd(void)
1203{
1204#ifdef CONFIG_PROC_FS
1205	if (proc_mtd)
1206		remove_proc_entry( "mtd", NULL);
1207#endif /* CONFIG_PROC_FS */
1208	class_unregister(&mtd_class);
1209	bdi_destroy(&mtd_bdi_unmappable);
1210	bdi_destroy(&mtd_bdi_ro_mappable);
1211	bdi_destroy(&mtd_bdi_rw_mappable);
1212}
1213
1214module_init(init_mtd);
1215module_exit(cleanup_mtd);
1216
1217MODULE_LICENSE("GPL");
1218MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1219MODULE_DESCRIPTION("Core MTD registration and access routines");
1220