mtdcore.c revision 8273a0c911d8e068297ef70aa7241ee78db4c712
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006      Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/partitions.h>
42
43#include "mtdcore.h"
44/*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
48static struct backing_dev_info mtd_bdi_unmappable = {
49	.capabilities	= BDI_CAP_MAP_COPY,
50};
51
52/*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
57static struct backing_dev_info mtd_bdi_ro_mappable = {
58	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60};
61
62/*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
67static struct backing_dev_info mtd_bdi_rw_mappable = {
68	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70			   BDI_CAP_WRITE_MAP),
71};
72
73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74static int mtd_cls_resume(struct device *dev);
75
76static struct class mtd_class = {
77	.name = "mtd",
78	.owner = THIS_MODULE,
79	.suspend = mtd_cls_suspend,
80	.resume = mtd_cls_resume,
81};
82
83static DEFINE_IDR(mtd_idr);
84
85/* These are exported solely for the purpose of mtd_blkdevs.c. You
86   should not use them for _anything_ else */
87DEFINE_MUTEX(mtd_table_mutex);
88EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90struct mtd_info *__mtd_next_device(int i)
91{
92	return idr_get_next(&mtd_idr, &i);
93}
94EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96static LIST_HEAD(mtd_notifiers);
97
98
99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
110	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111	dev_t index = MTD_DEVT(mtd->index);
112
113	/* remove /dev/mtdXro node if needed */
114	if (index)
115		device_destroy(&mtd_class, index + 1);
116}
117
118static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119{
120	struct mtd_info *mtd = dev_get_drvdata(dev);
121
122	return mtd ? mtd_suspend(mtd) : 0;
123}
124
125static int mtd_cls_resume(struct device *dev)
126{
127	struct mtd_info *mtd = dev_get_drvdata(dev);
128
129	if (mtd)
130		mtd_resume(mtd);
131	return 0;
132}
133
134static ssize_t mtd_type_show(struct device *dev,
135		struct device_attribute *attr, char *buf)
136{
137	struct mtd_info *mtd = dev_get_drvdata(dev);
138	char *type;
139
140	switch (mtd->type) {
141	case MTD_ABSENT:
142		type = "absent";
143		break;
144	case MTD_RAM:
145		type = "ram";
146		break;
147	case MTD_ROM:
148		type = "rom";
149		break;
150	case MTD_NORFLASH:
151		type = "nor";
152		break;
153	case MTD_NANDFLASH:
154		type = "nand";
155		break;
156	case MTD_DATAFLASH:
157		type = "dataflash";
158		break;
159	case MTD_UBIVOLUME:
160		type = "ubi";
161		break;
162	default:
163		type = "unknown";
164	}
165
166	return snprintf(buf, PAGE_SIZE, "%s\n", type);
167}
168static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170static ssize_t mtd_flags_show(struct device *dev,
171		struct device_attribute *attr, char *buf)
172{
173	struct mtd_info *mtd = dev_get_drvdata(dev);
174
175	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177}
178static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180static ssize_t mtd_size_show(struct device *dev,
181		struct device_attribute *attr, char *buf)
182{
183	struct mtd_info *mtd = dev_get_drvdata(dev);
184
185	return snprintf(buf, PAGE_SIZE, "%llu\n",
186		(unsigned long long)mtd->size);
187
188}
189static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191static ssize_t mtd_erasesize_show(struct device *dev,
192		struct device_attribute *attr, char *buf)
193{
194	struct mtd_info *mtd = dev_get_drvdata(dev);
195
196	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198}
199static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201static ssize_t mtd_writesize_show(struct device *dev,
202		struct device_attribute *attr, char *buf)
203{
204	struct mtd_info *mtd = dev_get_drvdata(dev);
205
206	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208}
209static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
211static ssize_t mtd_subpagesize_show(struct device *dev,
212		struct device_attribute *attr, char *buf)
213{
214	struct mtd_info *mtd = dev_get_drvdata(dev);
215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219}
220static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
222static ssize_t mtd_oobsize_show(struct device *dev,
223		struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229}
230static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232static ssize_t mtd_numeraseregions_show(struct device *dev,
233		struct device_attribute *attr, char *buf)
234{
235	struct mtd_info *mtd = dev_get_drvdata(dev);
236
237	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239}
240static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241	NULL);
242
243static ssize_t mtd_name_show(struct device *dev,
244		struct device_attribute *attr, char *buf)
245{
246	struct mtd_info *mtd = dev_get_drvdata(dev);
247
248	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250}
251static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
253static struct attribute *mtd_attrs[] = {
254	&dev_attr_type.attr,
255	&dev_attr_flags.attr,
256	&dev_attr_size.attr,
257	&dev_attr_erasesize.attr,
258	&dev_attr_writesize.attr,
259	&dev_attr_subpagesize.attr,
260	&dev_attr_oobsize.attr,
261	&dev_attr_numeraseregions.attr,
262	&dev_attr_name.attr,
263	NULL,
264};
265
266static struct attribute_group mtd_group = {
267	.attrs		= mtd_attrs,
268};
269
270static const struct attribute_group *mtd_groups[] = {
271	&mtd_group,
272	NULL,
273};
274
275static struct device_type mtd_devtype = {
276	.name		= "mtd",
277	.groups		= mtd_groups,
278	.release	= mtd_release,
279};
280
281/**
282 *	add_mtd_device - register an MTD device
283 *	@mtd: pointer to new MTD device info structure
284 *
285 *	Add a device to the list of MTD devices present in the system, and
286 *	notify each currently active MTD 'user' of its arrival. Returns
287 *	zero on success or 1 on failure, which currently will only happen
288 *	if there is insufficient memory or a sysfs error.
289 */
290
291int add_mtd_device(struct mtd_info *mtd)
292{
293	struct mtd_notifier *not;
294	int i, error;
295
296	if (!mtd->backing_dev_info) {
297		switch (mtd->type) {
298		case MTD_RAM:
299			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
300			break;
301		case MTD_ROM:
302			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
303			break;
304		default:
305			mtd->backing_dev_info = &mtd_bdi_unmappable;
306			break;
307		}
308	}
309
310	BUG_ON(mtd->writesize == 0);
311	mutex_lock(&mtd_table_mutex);
312
313	do {
314		if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
315			goto fail_locked;
316		error = idr_get_new(&mtd_idr, mtd, &i);
317	} while (error == -EAGAIN);
318
319	if (error)
320		goto fail_locked;
321
322	mtd->index = i;
323	mtd->usecount = 0;
324
325	if (is_power_of_2(mtd->erasesize))
326		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
327	else
328		mtd->erasesize_shift = 0;
329
330	if (is_power_of_2(mtd->writesize))
331		mtd->writesize_shift = ffs(mtd->writesize) - 1;
332	else
333		mtd->writesize_shift = 0;
334
335	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
336	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
337
338	/* Some chips always power up locked. Unlock them now */
339	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
340		error = mtd_unlock(mtd, 0, mtd->size);
341		if (error && error != -EOPNOTSUPP)
342			printk(KERN_WARNING
343			       "%s: unlock failed, writes may not work\n",
344			       mtd->name);
345	}
346
347	/* Caller should have set dev.parent to match the
348	 * physical device.
349	 */
350	mtd->dev.type = &mtd_devtype;
351	mtd->dev.class = &mtd_class;
352	mtd->dev.devt = MTD_DEVT(i);
353	dev_set_name(&mtd->dev, "mtd%d", i);
354	dev_set_drvdata(&mtd->dev, mtd);
355	if (device_register(&mtd->dev) != 0)
356		goto fail_added;
357
358	if (MTD_DEVT(i))
359		device_create(&mtd_class, mtd->dev.parent,
360			      MTD_DEVT(i) + 1,
361			      NULL, "mtd%dro", i);
362
363	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
364	/* No need to get a refcount on the module containing
365	   the notifier, since we hold the mtd_table_mutex */
366	list_for_each_entry(not, &mtd_notifiers, list)
367		not->add(mtd);
368
369	mutex_unlock(&mtd_table_mutex);
370	/* We _know_ we aren't being removed, because
371	   our caller is still holding us here. So none
372	   of this try_ nonsense, and no bitching about it
373	   either. :) */
374	__module_get(THIS_MODULE);
375	return 0;
376
377fail_added:
378	idr_remove(&mtd_idr, i);
379fail_locked:
380	mutex_unlock(&mtd_table_mutex);
381	return 1;
382}
383
384/**
385 *	del_mtd_device - unregister an MTD device
386 *	@mtd: pointer to MTD device info structure
387 *
388 *	Remove a device from the list of MTD devices present in the system,
389 *	and notify each currently active MTD 'user' of its departure.
390 *	Returns zero on success or 1 on failure, which currently will happen
391 *	if the requested device does not appear to be present in the list.
392 */
393
394int del_mtd_device(struct mtd_info *mtd)
395{
396	int ret;
397	struct mtd_notifier *not;
398
399	mutex_lock(&mtd_table_mutex);
400
401	if (idr_find(&mtd_idr, mtd->index) != mtd) {
402		ret = -ENODEV;
403		goto out_error;
404	}
405
406	/* No need to get a refcount on the module containing
407		the notifier, since we hold the mtd_table_mutex */
408	list_for_each_entry(not, &mtd_notifiers, list)
409		not->remove(mtd);
410
411	if (mtd->usecount) {
412		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
413		       mtd->index, mtd->name, mtd->usecount);
414		ret = -EBUSY;
415	} else {
416		device_unregister(&mtd->dev);
417
418		idr_remove(&mtd_idr, mtd->index);
419
420		module_put(THIS_MODULE);
421		ret = 0;
422	}
423
424out_error:
425	mutex_unlock(&mtd_table_mutex);
426	return ret;
427}
428
429/**
430 * mtd_device_parse_register - parse partitions and register an MTD device.
431 *
432 * @mtd: the MTD device to register
433 * @types: the list of MTD partition probes to try, see
434 *         'parse_mtd_partitions()' for more information
435 * @parser_data: MTD partition parser-specific data
436 * @parts: fallback partition information to register, if parsing fails;
437 *         only valid if %nr_parts > %0
438 * @nr_parts: the number of partitions in parts, if zero then the full
439 *            MTD device is registered if no partition info is found
440 *
441 * This function aggregates MTD partitions parsing (done by
442 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
443 * basically follows the most common pattern found in many MTD drivers:
444 *
445 * * It first tries to probe partitions on MTD device @mtd using parsers
446 *   specified in @types (if @types is %NULL, then the default list of parsers
447 *   is used, see 'parse_mtd_partitions()' for more information). If none are
448 *   found this functions tries to fallback to information specified in
449 *   @parts/@nr_parts.
450 * * If any partitioning info was found, this function registers the found
451 *   partitions.
452 * * If no partitions were found this function just registers the MTD device
453 *   @mtd and exits.
454 *
455 * Returns zero in case of success and a negative error code in case of failure.
456 */
457int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
458			      struct mtd_part_parser_data *parser_data,
459			      const struct mtd_partition *parts,
460			      int nr_parts)
461{
462	int err;
463	struct mtd_partition *real_parts;
464
465	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
466	if (err <= 0 && nr_parts && parts) {
467		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
468				     GFP_KERNEL);
469		if (!real_parts)
470			err = -ENOMEM;
471		else
472			err = nr_parts;
473	}
474
475	if (err > 0) {
476		err = add_mtd_partitions(mtd, real_parts, err);
477		kfree(real_parts);
478	} else if (err == 0) {
479		err = add_mtd_device(mtd);
480		if (err == 1)
481			err = -ENODEV;
482	}
483
484	return err;
485}
486EXPORT_SYMBOL_GPL(mtd_device_parse_register);
487
488/**
489 * mtd_device_unregister - unregister an existing MTD device.
490 *
491 * @master: the MTD device to unregister.  This will unregister both the master
492 *          and any partitions if registered.
493 */
494int mtd_device_unregister(struct mtd_info *master)
495{
496	int err;
497
498	err = del_mtd_partitions(master);
499	if (err)
500		return err;
501
502	if (!device_is_registered(&master->dev))
503		return 0;
504
505	return del_mtd_device(master);
506}
507EXPORT_SYMBOL_GPL(mtd_device_unregister);
508
509/**
510 *	register_mtd_user - register a 'user' of MTD devices.
511 *	@new: pointer to notifier info structure
512 *
513 *	Registers a pair of callbacks function to be called upon addition
514 *	or removal of MTD devices. Causes the 'add' callback to be immediately
515 *	invoked for each MTD device currently present in the system.
516 */
517void register_mtd_user (struct mtd_notifier *new)
518{
519	struct mtd_info *mtd;
520
521	mutex_lock(&mtd_table_mutex);
522
523	list_add(&new->list, &mtd_notifiers);
524
525	__module_get(THIS_MODULE);
526
527	mtd_for_each_device(mtd)
528		new->add(mtd);
529
530	mutex_unlock(&mtd_table_mutex);
531}
532EXPORT_SYMBOL_GPL(register_mtd_user);
533
534/**
535 *	unregister_mtd_user - unregister a 'user' of MTD devices.
536 *	@old: pointer to notifier info structure
537 *
538 *	Removes a callback function pair from the list of 'users' to be
539 *	notified upon addition or removal of MTD devices. Causes the
540 *	'remove' callback to be immediately invoked for each MTD device
541 *	currently present in the system.
542 */
543int unregister_mtd_user (struct mtd_notifier *old)
544{
545	struct mtd_info *mtd;
546
547	mutex_lock(&mtd_table_mutex);
548
549	module_put(THIS_MODULE);
550
551	mtd_for_each_device(mtd)
552		old->remove(mtd);
553
554	list_del(&old->list);
555	mutex_unlock(&mtd_table_mutex);
556	return 0;
557}
558EXPORT_SYMBOL_GPL(unregister_mtd_user);
559
560/**
561 *	get_mtd_device - obtain a validated handle for an MTD device
562 *	@mtd: last known address of the required MTD device
563 *	@num: internal device number of the required MTD device
564 *
565 *	Given a number and NULL address, return the num'th entry in the device
566 *	table, if any.	Given an address and num == -1, search the device table
567 *	for a device with that address and return if it's still present. Given
568 *	both, return the num'th driver only if its address matches. Return
569 *	error code if not.
570 */
571struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
572{
573	struct mtd_info *ret = NULL, *other;
574	int err = -ENODEV;
575
576	mutex_lock(&mtd_table_mutex);
577
578	if (num == -1) {
579		mtd_for_each_device(other) {
580			if (other == mtd) {
581				ret = mtd;
582				break;
583			}
584		}
585	} else if (num >= 0) {
586		ret = idr_find(&mtd_idr, num);
587		if (mtd && mtd != ret)
588			ret = NULL;
589	}
590
591	if (!ret) {
592		ret = ERR_PTR(err);
593		goto out;
594	}
595
596	err = __get_mtd_device(ret);
597	if (err)
598		ret = ERR_PTR(err);
599out:
600	mutex_unlock(&mtd_table_mutex);
601	return ret;
602}
603EXPORT_SYMBOL_GPL(get_mtd_device);
604
605
606int __get_mtd_device(struct mtd_info *mtd)
607{
608	int err;
609
610	if (!try_module_get(mtd->owner))
611		return -ENODEV;
612
613	if (mtd->_get_device) {
614		err = mtd->_get_device(mtd);
615
616		if (err) {
617			module_put(mtd->owner);
618			return err;
619		}
620	}
621	mtd->usecount++;
622	return 0;
623}
624EXPORT_SYMBOL_GPL(__get_mtd_device);
625
626/**
627 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
628 *	device name
629 *	@name: MTD device name to open
630 *
631 * 	This function returns MTD device description structure in case of
632 * 	success and an error code in case of failure.
633 */
634struct mtd_info *get_mtd_device_nm(const char *name)
635{
636	int err = -ENODEV;
637	struct mtd_info *mtd = NULL, *other;
638
639	mutex_lock(&mtd_table_mutex);
640
641	mtd_for_each_device(other) {
642		if (!strcmp(name, other->name)) {
643			mtd = other;
644			break;
645		}
646	}
647
648	if (!mtd)
649		goto out_unlock;
650
651	err = __get_mtd_device(mtd);
652	if (err)
653		goto out_unlock;
654
655	mutex_unlock(&mtd_table_mutex);
656	return mtd;
657
658out_unlock:
659	mutex_unlock(&mtd_table_mutex);
660	return ERR_PTR(err);
661}
662EXPORT_SYMBOL_GPL(get_mtd_device_nm);
663
664void put_mtd_device(struct mtd_info *mtd)
665{
666	mutex_lock(&mtd_table_mutex);
667	__put_mtd_device(mtd);
668	mutex_unlock(&mtd_table_mutex);
669
670}
671EXPORT_SYMBOL_GPL(put_mtd_device);
672
673void __put_mtd_device(struct mtd_info *mtd)
674{
675	--mtd->usecount;
676	BUG_ON(mtd->usecount < 0);
677
678	if (mtd->_put_device)
679		mtd->_put_device(mtd);
680
681	module_put(mtd->owner);
682}
683EXPORT_SYMBOL_GPL(__put_mtd_device);
684
685/*
686 * Erase is an asynchronous operation.  Device drivers are supposed
687 * to call instr->callback() whenever the operation completes, even
688 * if it completes with a failure.
689 * Callers are supposed to pass a callback function and wait for it
690 * to be called before writing to the block.
691 */
692int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
693{
694	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695		return -EINVAL;
696	return mtd->_erase(mtd, instr);
697}
698EXPORT_SYMBOL_GPL(mtd_erase);
699
700/*
701 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
702 */
703int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
704	      void **virt, resource_size_t *phys)
705{
706	*retlen = 0;
707	if (!mtd->_point)
708		return -EOPNOTSUPP;
709	if (from < 0 || from > mtd->size || len > mtd->size - from)
710		return -EINVAL;
711	return mtd->_point(mtd, from, len, retlen, virt, phys);
712}
713EXPORT_SYMBOL_GPL(mtd_point);
714
715/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
716int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
717{
718	if (!mtd->_point)
719		return -EOPNOTSUPP;
720	if (from < 0 || from > mtd->size || len > mtd->size - from)
721		return -EINVAL;
722	return mtd->_unpoint(mtd, from, len);
723}
724EXPORT_SYMBOL_GPL(mtd_unpoint);
725
726/*
727 * Allow NOMMU mmap() to directly map the device (if not NULL)
728 * - return the address to which the offset maps
729 * - return -ENOSYS to indicate refusal to do the mapping
730 */
731unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
732				    unsigned long offset, unsigned long flags)
733{
734	if (!mtd->_get_unmapped_area)
735		return -EOPNOTSUPP;
736	if (offset > mtd->size || len > mtd->size - offset)
737		return -EINVAL;
738	return mtd->_get_unmapped_area(mtd, len, offset, flags);
739}
740EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
741
742int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
743	     u_char *buf)
744{
745	if (from < 0 || from > mtd->size || len > mtd->size - from)
746		return -EINVAL;
747	return mtd->_read(mtd, from, len, retlen, buf);
748}
749EXPORT_SYMBOL_GPL(mtd_read);
750
751int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
752	      const u_char *buf)
753{
754	*retlen = 0;
755	if (!mtd->_write)
756		return -EROFS;
757	if (to < 0 || to > mtd->size || len > mtd->size - to)
758		return -EINVAL;
759	return mtd->_write(mtd, to, len, retlen, buf);
760}
761EXPORT_SYMBOL_GPL(mtd_write);
762
763/*
764 * In blackbox flight recorder like scenarios we want to make successful writes
765 * in interrupt context. panic_write() is only intended to be called when its
766 * known the kernel is about to panic and we need the write to succeed. Since
767 * the kernel is not going to be running for much longer, this function can
768 * break locks and delay to ensure the write succeeds (but not sleep).
769 */
770int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
771		    const u_char *buf)
772{
773	*retlen = 0;
774	if (!mtd->_panic_write)
775		return -EOPNOTSUPP;
776	if (to < 0 || to > mtd->size || len > mtd->size - to)
777		return -EINVAL;
778	return mtd->_panic_write(mtd, to, len, retlen, buf);
779}
780EXPORT_SYMBOL_GPL(mtd_panic_write);
781
782/* Chip-supported device locking */
783int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
784{
785	if (!mtd->_lock)
786		return -EOPNOTSUPP;
787	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
788		return -EINVAL;
789	return mtd->_lock(mtd, ofs, len);
790}
791EXPORT_SYMBOL_GPL(mtd_lock);
792
793int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
794{
795	if (!mtd->_unlock)
796		return -EOPNOTSUPP;
797	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
798		return -EINVAL;
799	return mtd->_unlock(mtd, ofs, len);
800}
801EXPORT_SYMBOL_GPL(mtd_unlock);
802
803int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
804{
805	if (!mtd->_is_locked)
806		return -EOPNOTSUPP;
807	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
808		return -EINVAL;
809	return mtd->_is_locked(mtd, ofs, len);
810}
811EXPORT_SYMBOL_GPL(mtd_is_locked);
812
813int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
814{
815	if (!mtd->_block_isbad)
816		return 0;
817	if (ofs < 0 || ofs > mtd->size)
818		return -EINVAL;
819	return mtd->_block_isbad(mtd, ofs);
820}
821EXPORT_SYMBOL_GPL(mtd_block_isbad);
822
823int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
824{
825	if (!mtd->_block_markbad)
826		return -EOPNOTSUPP;
827	if (ofs < 0 || ofs > mtd->size)
828		return -EINVAL;
829	return mtd->_block_markbad(mtd, ofs);
830}
831EXPORT_SYMBOL_GPL(mtd_block_markbad);
832
833/*
834 * default_mtd_writev - the default writev method
835 * @mtd: mtd device description object pointer
836 * @vecs: the vectors to write
837 * @count: count of vectors in @vecs
838 * @to: the MTD device offset to write to
839 * @retlen: on exit contains the count of bytes written to the MTD device.
840 *
841 * This function returns zero in case of success and a negative error code in
842 * case of failure.
843 */
844static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
845			      unsigned long count, loff_t to, size_t *retlen)
846{
847	unsigned long i;
848	size_t totlen = 0, thislen;
849	int ret = 0;
850
851	for (i = 0; i < count; i++) {
852		if (!vecs[i].iov_len)
853			continue;
854		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
855				vecs[i].iov_base);
856		totlen += thislen;
857		if (ret || thislen != vecs[i].iov_len)
858			break;
859		to += vecs[i].iov_len;
860	}
861	*retlen = totlen;
862	return ret;
863}
864
865/*
866 * mtd_writev - the vector-based MTD write method
867 * @mtd: mtd device description object pointer
868 * @vecs: the vectors to write
869 * @count: count of vectors in @vecs
870 * @to: the MTD device offset to write to
871 * @retlen: on exit contains the count of bytes written to the MTD device.
872 *
873 * This function returns zero in case of success and a negative error code in
874 * case of failure.
875 */
876int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
877	       unsigned long count, loff_t to, size_t *retlen)
878{
879	*retlen = 0;
880	if (!mtd->_writev)
881		return default_mtd_writev(mtd, vecs, count, to, retlen);
882	return mtd->_writev(mtd, vecs, count, to, retlen);
883}
884EXPORT_SYMBOL_GPL(mtd_writev);
885
886/**
887 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
888 * @mtd: mtd device description object pointer
889 * @size: a pointer to the ideal or maximum size of the allocation, points
890 *        to the actual allocation size on success.
891 *
892 * This routine attempts to allocate a contiguous kernel buffer up to
893 * the specified size, backing off the size of the request exponentially
894 * until the request succeeds or until the allocation size falls below
895 * the system page size. This attempts to make sure it does not adversely
896 * impact system performance, so when allocating more than one page, we
897 * ask the memory allocator to avoid re-trying, swapping, writing back
898 * or performing I/O.
899 *
900 * Note, this function also makes sure that the allocated buffer is aligned to
901 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
902 *
903 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
904 * to handle smaller (i.e. degraded) buffer allocations under low- or
905 * fragmented-memory situations where such reduced allocations, from a
906 * requested ideal, are allowed.
907 *
908 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
909 */
910void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
911{
912	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
913		       __GFP_NORETRY | __GFP_NO_KSWAPD;
914	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
915	void *kbuf;
916
917	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
918
919	while (*size > min_alloc) {
920		kbuf = kmalloc(*size, flags);
921		if (kbuf)
922			return kbuf;
923
924		*size >>= 1;
925		*size = ALIGN(*size, mtd->writesize);
926	}
927
928	/*
929	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
930	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
931	 */
932	return kmalloc(*size, GFP_KERNEL);
933}
934EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
935
936#ifdef CONFIG_PROC_FS
937
938/*====================================================================*/
939/* Support for /proc/mtd */
940
941static struct proc_dir_entry *proc_mtd;
942
943static int mtd_proc_show(struct seq_file *m, void *v)
944{
945	struct mtd_info *mtd;
946
947	seq_puts(m, "dev:    size   erasesize  name\n");
948	mutex_lock(&mtd_table_mutex);
949	mtd_for_each_device(mtd) {
950		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
951			   mtd->index, (unsigned long long)mtd->size,
952			   mtd->erasesize, mtd->name);
953	}
954	mutex_unlock(&mtd_table_mutex);
955	return 0;
956}
957
958static int mtd_proc_open(struct inode *inode, struct file *file)
959{
960	return single_open(file, mtd_proc_show, NULL);
961}
962
963static const struct file_operations mtd_proc_ops = {
964	.open		= mtd_proc_open,
965	.read		= seq_read,
966	.llseek		= seq_lseek,
967	.release	= single_release,
968};
969#endif /* CONFIG_PROC_FS */
970
971/*====================================================================*/
972/* Init code */
973
974static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
975{
976	int ret;
977
978	ret = bdi_init(bdi);
979	if (!ret)
980		ret = bdi_register(bdi, NULL, name);
981
982	if (ret)
983		bdi_destroy(bdi);
984
985	return ret;
986}
987
988static int __init init_mtd(void)
989{
990	int ret;
991
992	ret = class_register(&mtd_class);
993	if (ret)
994		goto err_reg;
995
996	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
997	if (ret)
998		goto err_bdi1;
999
1000	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1001	if (ret)
1002		goto err_bdi2;
1003
1004	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1005	if (ret)
1006		goto err_bdi3;
1007
1008#ifdef CONFIG_PROC_FS
1009	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1010#endif /* CONFIG_PROC_FS */
1011	return 0;
1012
1013err_bdi3:
1014	bdi_destroy(&mtd_bdi_ro_mappable);
1015err_bdi2:
1016	bdi_destroy(&mtd_bdi_unmappable);
1017err_bdi1:
1018	class_unregister(&mtd_class);
1019err_reg:
1020	pr_err("Error registering mtd class or bdi: %d\n", ret);
1021	return ret;
1022}
1023
1024static void __exit cleanup_mtd(void)
1025{
1026#ifdef CONFIG_PROC_FS
1027	if (proc_mtd)
1028		remove_proc_entry( "mtd", NULL);
1029#endif /* CONFIG_PROC_FS */
1030	class_unregister(&mtd_class);
1031	bdi_destroy(&mtd_bdi_unmappable);
1032	bdi_destroy(&mtd_bdi_ro_mappable);
1033	bdi_destroy(&mtd_bdi_rw_mappable);
1034}
1035
1036module_init(init_mtd);
1037module_exit(cleanup_mtd);
1038
1039MODULE_LICENSE("GPL");
1040MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1041MODULE_DESCRIPTION("Core MTD registration and access routines");
1042