mtdcore.c revision 9a78bc83b4c31f67202b7b0a77fa25da732f44a3
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006      Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39#include <linux/slab.h>
40
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/partitions.h>
43
44#include "mtdcore.h"
45
46/*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50static struct backing_dev_info mtd_bdi_unmappable = {
51	.capabilities	= BDI_CAP_MAP_COPY,
52};
53
54/*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59static struct backing_dev_info mtd_bdi_ro_mappable = {
60	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62};
63
64/*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69static struct backing_dev_info mtd_bdi_rw_mappable = {
70	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72			   BDI_CAP_WRITE_MAP),
73};
74
75static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76static int mtd_cls_resume(struct device *dev);
77
78static struct class mtd_class = {
79	.name = "mtd",
80	.owner = THIS_MODULE,
81	.suspend = mtd_cls_suspend,
82	.resume = mtd_cls_resume,
83};
84
85static DEFINE_IDR(mtd_idr);
86
87/* These are exported solely for the purpose of mtd_blkdevs.c. You
88   should not use them for _anything_ else */
89DEFINE_MUTEX(mtd_table_mutex);
90EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
92struct mtd_info *__mtd_next_device(int i)
93{
94	return idr_get_next(&mtd_idr, &i);
95}
96EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98static LIST_HEAD(mtd_notifiers);
99
100
101#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103/* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
106static void mtd_release(struct device *dev)
107{
108	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109	dev_t index = MTD_DEVT(mtd->index);
110
111	/* remove /dev/mtdXro node if needed */
112	if (index)
113		device_destroy(&mtd_class, index + 1);
114}
115
116static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117{
118	struct mtd_info *mtd = dev_get_drvdata(dev);
119
120	return mtd ? mtd_suspend(mtd) : 0;
121}
122
123static int mtd_cls_resume(struct device *dev)
124{
125	struct mtd_info *mtd = dev_get_drvdata(dev);
126
127	if (mtd)
128		mtd_resume(mtd);
129	return 0;
130}
131
132static ssize_t mtd_type_show(struct device *dev,
133		struct device_attribute *attr, char *buf)
134{
135	struct mtd_info *mtd = dev_get_drvdata(dev);
136	char *type;
137
138	switch (mtd->type) {
139	case MTD_ABSENT:
140		type = "absent";
141		break;
142	case MTD_RAM:
143		type = "ram";
144		break;
145	case MTD_ROM:
146		type = "rom";
147		break;
148	case MTD_NORFLASH:
149		type = "nor";
150		break;
151	case MTD_NANDFLASH:
152		type = "nand";
153		break;
154	case MTD_DATAFLASH:
155		type = "dataflash";
156		break;
157	case MTD_UBIVOLUME:
158		type = "ubi";
159		break;
160	case MTD_MLCNANDFLASH:
161		type = "mlc-nand";
162		break;
163	default:
164		type = "unknown";
165	}
166
167	return snprintf(buf, PAGE_SIZE, "%s\n", type);
168}
169static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170
171static ssize_t mtd_flags_show(struct device *dev,
172		struct device_attribute *attr, char *buf)
173{
174	struct mtd_info *mtd = dev_get_drvdata(dev);
175
176	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177
178}
179static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180
181static ssize_t mtd_size_show(struct device *dev,
182		struct device_attribute *attr, char *buf)
183{
184	struct mtd_info *mtd = dev_get_drvdata(dev);
185
186	return snprintf(buf, PAGE_SIZE, "%llu\n",
187		(unsigned long long)mtd->size);
188
189}
190static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191
192static ssize_t mtd_erasesize_show(struct device *dev,
193		struct device_attribute *attr, char *buf)
194{
195	struct mtd_info *mtd = dev_get_drvdata(dev);
196
197	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198
199}
200static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201
202static ssize_t mtd_writesize_show(struct device *dev,
203		struct device_attribute *attr, char *buf)
204{
205	struct mtd_info *mtd = dev_get_drvdata(dev);
206
207	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208
209}
210static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211
212static ssize_t mtd_subpagesize_show(struct device *dev,
213		struct device_attribute *attr, char *buf)
214{
215	struct mtd_info *mtd = dev_get_drvdata(dev);
216	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217
218	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219
220}
221static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222
223static ssize_t mtd_oobsize_show(struct device *dev,
224		struct device_attribute *attr, char *buf)
225{
226	struct mtd_info *mtd = dev_get_drvdata(dev);
227
228	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229
230}
231static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232
233static ssize_t mtd_numeraseregions_show(struct device *dev,
234		struct device_attribute *attr, char *buf)
235{
236	struct mtd_info *mtd = dev_get_drvdata(dev);
237
238	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239
240}
241static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242	NULL);
243
244static ssize_t mtd_name_show(struct device *dev,
245		struct device_attribute *attr, char *buf)
246{
247	struct mtd_info *mtd = dev_get_drvdata(dev);
248
249	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250
251}
252static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253
254static ssize_t mtd_ecc_strength_show(struct device *dev,
255				     struct device_attribute *attr, char *buf)
256{
257	struct mtd_info *mtd = dev_get_drvdata(dev);
258
259	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260}
261static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262
263static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264					  struct device_attribute *attr,
265					  char *buf)
266{
267	struct mtd_info *mtd = dev_get_drvdata(dev);
268
269	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270}
271
272static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273					   struct device_attribute *attr,
274					   const char *buf, size_t count)
275{
276	struct mtd_info *mtd = dev_get_drvdata(dev);
277	unsigned int bitflip_threshold;
278	int retval;
279
280	retval = kstrtouint(buf, 0, &bitflip_threshold);
281	if (retval)
282		return retval;
283
284	mtd->bitflip_threshold = bitflip_threshold;
285	return count;
286}
287static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288		   mtd_bitflip_threshold_show,
289		   mtd_bitflip_threshold_store);
290
291static ssize_t mtd_ecc_step_size_show(struct device *dev,
292		struct device_attribute *attr, char *buf)
293{
294	struct mtd_info *mtd = dev_get_drvdata(dev);
295
296	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297
298}
299static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300
301static struct attribute *mtd_attrs[] = {
302	&dev_attr_type.attr,
303	&dev_attr_flags.attr,
304	&dev_attr_size.attr,
305	&dev_attr_erasesize.attr,
306	&dev_attr_writesize.attr,
307	&dev_attr_subpagesize.attr,
308	&dev_attr_oobsize.attr,
309	&dev_attr_numeraseregions.attr,
310	&dev_attr_name.attr,
311	&dev_attr_ecc_strength.attr,
312	&dev_attr_ecc_step_size.attr,
313	&dev_attr_bitflip_threshold.attr,
314	NULL,
315};
316ATTRIBUTE_GROUPS(mtd);
317
318static struct device_type mtd_devtype = {
319	.name		= "mtd",
320	.groups		= mtd_groups,
321	.release	= mtd_release,
322};
323
324/**
325 *	add_mtd_device - register an MTD device
326 *	@mtd: pointer to new MTD device info structure
327 *
328 *	Add a device to the list of MTD devices present in the system, and
329 *	notify each currently active MTD 'user' of its arrival. Returns
330 *	zero on success or 1 on failure, which currently will only happen
331 *	if there is insufficient memory or a sysfs error.
332 */
333
334int add_mtd_device(struct mtd_info *mtd)
335{
336	struct mtd_notifier *not;
337	int i, error;
338
339	if (!mtd->backing_dev_info) {
340		switch (mtd->type) {
341		case MTD_RAM:
342			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
343			break;
344		case MTD_ROM:
345			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
346			break;
347		default:
348			mtd->backing_dev_info = &mtd_bdi_unmappable;
349			break;
350		}
351	}
352
353	BUG_ON(mtd->writesize == 0);
354	mutex_lock(&mtd_table_mutex);
355
356	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
357	if (i < 0)
358		goto fail_locked;
359
360	mtd->index = i;
361	mtd->usecount = 0;
362
363	/* default value if not set by driver */
364	if (mtd->bitflip_threshold == 0)
365		mtd->bitflip_threshold = mtd->ecc_strength;
366
367	if (is_power_of_2(mtd->erasesize))
368		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
369	else
370		mtd->erasesize_shift = 0;
371
372	if (is_power_of_2(mtd->writesize))
373		mtd->writesize_shift = ffs(mtd->writesize) - 1;
374	else
375		mtd->writesize_shift = 0;
376
377	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
378	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
379
380	/* Some chips always power up locked. Unlock them now */
381	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
382		error = mtd_unlock(mtd, 0, mtd->size);
383		if (error && error != -EOPNOTSUPP)
384			printk(KERN_WARNING
385			       "%s: unlock failed, writes may not work\n",
386			       mtd->name);
387	}
388
389	/* Caller should have set dev.parent to match the
390	 * physical device.
391	 */
392	mtd->dev.type = &mtd_devtype;
393	mtd->dev.class = &mtd_class;
394	mtd->dev.devt = MTD_DEVT(i);
395	dev_set_name(&mtd->dev, "mtd%d", i);
396	dev_set_drvdata(&mtd->dev, mtd);
397	if (device_register(&mtd->dev) != 0)
398		goto fail_added;
399
400	if (MTD_DEVT(i))
401		device_create(&mtd_class, mtd->dev.parent,
402			      MTD_DEVT(i) + 1,
403			      NULL, "mtd%dro", i);
404
405	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
406	/* No need to get a refcount on the module containing
407	   the notifier, since we hold the mtd_table_mutex */
408	list_for_each_entry(not, &mtd_notifiers, list)
409		not->add(mtd);
410
411	mutex_unlock(&mtd_table_mutex);
412	/* We _know_ we aren't being removed, because
413	   our caller is still holding us here. So none
414	   of this try_ nonsense, and no bitching about it
415	   either. :) */
416	__module_get(THIS_MODULE);
417	return 0;
418
419fail_added:
420	idr_remove(&mtd_idr, i);
421fail_locked:
422	mutex_unlock(&mtd_table_mutex);
423	return 1;
424}
425
426/**
427 *	del_mtd_device - unregister an MTD device
428 *	@mtd: pointer to MTD device info structure
429 *
430 *	Remove a device from the list of MTD devices present in the system,
431 *	and notify each currently active MTD 'user' of its departure.
432 *	Returns zero on success or 1 on failure, which currently will happen
433 *	if the requested device does not appear to be present in the list.
434 */
435
436int del_mtd_device(struct mtd_info *mtd)
437{
438	int ret;
439	struct mtd_notifier *not;
440
441	mutex_lock(&mtd_table_mutex);
442
443	if (idr_find(&mtd_idr, mtd->index) != mtd) {
444		ret = -ENODEV;
445		goto out_error;
446	}
447
448	/* No need to get a refcount on the module containing
449		the notifier, since we hold the mtd_table_mutex */
450	list_for_each_entry(not, &mtd_notifiers, list)
451		not->remove(mtd);
452
453	if (mtd->usecount) {
454		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
455		       mtd->index, mtd->name, mtd->usecount);
456		ret = -EBUSY;
457	} else {
458		device_unregister(&mtd->dev);
459
460		idr_remove(&mtd_idr, mtd->index);
461
462		module_put(THIS_MODULE);
463		ret = 0;
464	}
465
466out_error:
467	mutex_unlock(&mtd_table_mutex);
468	return ret;
469}
470
471/**
472 * mtd_device_parse_register - parse partitions and register an MTD device.
473 *
474 * @mtd: the MTD device to register
475 * @types: the list of MTD partition probes to try, see
476 *         'parse_mtd_partitions()' for more information
477 * @parser_data: MTD partition parser-specific data
478 * @parts: fallback partition information to register, if parsing fails;
479 *         only valid if %nr_parts > %0
480 * @nr_parts: the number of partitions in parts, if zero then the full
481 *            MTD device is registered if no partition info is found
482 *
483 * This function aggregates MTD partitions parsing (done by
484 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
485 * basically follows the most common pattern found in many MTD drivers:
486 *
487 * * It first tries to probe partitions on MTD device @mtd using parsers
488 *   specified in @types (if @types is %NULL, then the default list of parsers
489 *   is used, see 'parse_mtd_partitions()' for more information). If none are
490 *   found this functions tries to fallback to information specified in
491 *   @parts/@nr_parts.
492 * * If any partitioning info was found, this function registers the found
493 *   partitions.
494 * * If no partitions were found this function just registers the MTD device
495 *   @mtd and exits.
496 *
497 * Returns zero in case of success and a negative error code in case of failure.
498 */
499int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
500			      struct mtd_part_parser_data *parser_data,
501			      const struct mtd_partition *parts,
502			      int nr_parts)
503{
504	int err;
505	struct mtd_partition *real_parts;
506
507	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
508	if (err <= 0 && nr_parts && parts) {
509		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
510				     GFP_KERNEL);
511		if (!real_parts)
512			err = -ENOMEM;
513		else
514			err = nr_parts;
515	}
516
517	if (err > 0) {
518		err = add_mtd_partitions(mtd, real_parts, err);
519		kfree(real_parts);
520	} else if (err == 0) {
521		err = add_mtd_device(mtd);
522		if (err == 1)
523			err = -ENODEV;
524	}
525
526	return err;
527}
528EXPORT_SYMBOL_GPL(mtd_device_parse_register);
529
530/**
531 * mtd_device_unregister - unregister an existing MTD device.
532 *
533 * @master: the MTD device to unregister.  This will unregister both the master
534 *          and any partitions if registered.
535 */
536int mtd_device_unregister(struct mtd_info *master)
537{
538	int err;
539
540	err = del_mtd_partitions(master);
541	if (err)
542		return err;
543
544	if (!device_is_registered(&master->dev))
545		return 0;
546
547	return del_mtd_device(master);
548}
549EXPORT_SYMBOL_GPL(mtd_device_unregister);
550
551/**
552 *	register_mtd_user - register a 'user' of MTD devices.
553 *	@new: pointer to notifier info structure
554 *
555 *	Registers a pair of callbacks function to be called upon addition
556 *	or removal of MTD devices. Causes the 'add' callback to be immediately
557 *	invoked for each MTD device currently present in the system.
558 */
559void register_mtd_user (struct mtd_notifier *new)
560{
561	struct mtd_info *mtd;
562
563	mutex_lock(&mtd_table_mutex);
564
565	list_add(&new->list, &mtd_notifiers);
566
567	__module_get(THIS_MODULE);
568
569	mtd_for_each_device(mtd)
570		new->add(mtd);
571
572	mutex_unlock(&mtd_table_mutex);
573}
574EXPORT_SYMBOL_GPL(register_mtd_user);
575
576/**
577 *	unregister_mtd_user - unregister a 'user' of MTD devices.
578 *	@old: pointer to notifier info structure
579 *
580 *	Removes a callback function pair from the list of 'users' to be
581 *	notified upon addition or removal of MTD devices. Causes the
582 *	'remove' callback to be immediately invoked for each MTD device
583 *	currently present in the system.
584 */
585int unregister_mtd_user (struct mtd_notifier *old)
586{
587	struct mtd_info *mtd;
588
589	mutex_lock(&mtd_table_mutex);
590
591	module_put(THIS_MODULE);
592
593	mtd_for_each_device(mtd)
594		old->remove(mtd);
595
596	list_del(&old->list);
597	mutex_unlock(&mtd_table_mutex);
598	return 0;
599}
600EXPORT_SYMBOL_GPL(unregister_mtd_user);
601
602/**
603 *	get_mtd_device - obtain a validated handle for an MTD device
604 *	@mtd: last known address of the required MTD device
605 *	@num: internal device number of the required MTD device
606 *
607 *	Given a number and NULL address, return the num'th entry in the device
608 *	table, if any.	Given an address and num == -1, search the device table
609 *	for a device with that address and return if it's still present. Given
610 *	both, return the num'th driver only if its address matches. Return
611 *	error code if not.
612 */
613struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
614{
615	struct mtd_info *ret = NULL, *other;
616	int err = -ENODEV;
617
618	mutex_lock(&mtd_table_mutex);
619
620	if (num == -1) {
621		mtd_for_each_device(other) {
622			if (other == mtd) {
623				ret = mtd;
624				break;
625			}
626		}
627	} else if (num >= 0) {
628		ret = idr_find(&mtd_idr, num);
629		if (mtd && mtd != ret)
630			ret = NULL;
631	}
632
633	if (!ret) {
634		ret = ERR_PTR(err);
635		goto out;
636	}
637
638	err = __get_mtd_device(ret);
639	if (err)
640		ret = ERR_PTR(err);
641out:
642	mutex_unlock(&mtd_table_mutex);
643	return ret;
644}
645EXPORT_SYMBOL_GPL(get_mtd_device);
646
647
648int __get_mtd_device(struct mtd_info *mtd)
649{
650	int err;
651
652	if (!try_module_get(mtd->owner))
653		return -ENODEV;
654
655	if (mtd->_get_device) {
656		err = mtd->_get_device(mtd);
657
658		if (err) {
659			module_put(mtd->owner);
660			return err;
661		}
662	}
663	mtd->usecount++;
664	return 0;
665}
666EXPORT_SYMBOL_GPL(__get_mtd_device);
667
668/**
669 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
670 *	device name
671 *	@name: MTD device name to open
672 *
673 * 	This function returns MTD device description structure in case of
674 * 	success and an error code in case of failure.
675 */
676struct mtd_info *get_mtd_device_nm(const char *name)
677{
678	int err = -ENODEV;
679	struct mtd_info *mtd = NULL, *other;
680
681	mutex_lock(&mtd_table_mutex);
682
683	mtd_for_each_device(other) {
684		if (!strcmp(name, other->name)) {
685			mtd = other;
686			break;
687		}
688	}
689
690	if (!mtd)
691		goto out_unlock;
692
693	err = __get_mtd_device(mtd);
694	if (err)
695		goto out_unlock;
696
697	mutex_unlock(&mtd_table_mutex);
698	return mtd;
699
700out_unlock:
701	mutex_unlock(&mtd_table_mutex);
702	return ERR_PTR(err);
703}
704EXPORT_SYMBOL_GPL(get_mtd_device_nm);
705
706void put_mtd_device(struct mtd_info *mtd)
707{
708	mutex_lock(&mtd_table_mutex);
709	__put_mtd_device(mtd);
710	mutex_unlock(&mtd_table_mutex);
711
712}
713EXPORT_SYMBOL_GPL(put_mtd_device);
714
715void __put_mtd_device(struct mtd_info *mtd)
716{
717	--mtd->usecount;
718	BUG_ON(mtd->usecount < 0);
719
720	if (mtd->_put_device)
721		mtd->_put_device(mtd);
722
723	module_put(mtd->owner);
724}
725EXPORT_SYMBOL_GPL(__put_mtd_device);
726
727/*
728 * Erase is an asynchronous operation.  Device drivers are supposed
729 * to call instr->callback() whenever the operation completes, even
730 * if it completes with a failure.
731 * Callers are supposed to pass a callback function and wait for it
732 * to be called before writing to the block.
733 */
734int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
735{
736	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
737		return -EINVAL;
738	if (!(mtd->flags & MTD_WRITEABLE))
739		return -EROFS;
740	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
741	if (!instr->len) {
742		instr->state = MTD_ERASE_DONE;
743		mtd_erase_callback(instr);
744		return 0;
745	}
746	return mtd->_erase(mtd, instr);
747}
748EXPORT_SYMBOL_GPL(mtd_erase);
749
750/*
751 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
752 */
753int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
754	      void **virt, resource_size_t *phys)
755{
756	*retlen = 0;
757	*virt = NULL;
758	if (phys)
759		*phys = 0;
760	if (!mtd->_point)
761		return -EOPNOTSUPP;
762	if (from < 0 || from > mtd->size || len > mtd->size - from)
763		return -EINVAL;
764	if (!len)
765		return 0;
766	return mtd->_point(mtd, from, len, retlen, virt, phys);
767}
768EXPORT_SYMBOL_GPL(mtd_point);
769
770/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
771int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
772{
773	if (!mtd->_point)
774		return -EOPNOTSUPP;
775	if (from < 0 || from > mtd->size || len > mtd->size - from)
776		return -EINVAL;
777	if (!len)
778		return 0;
779	return mtd->_unpoint(mtd, from, len);
780}
781EXPORT_SYMBOL_GPL(mtd_unpoint);
782
783/*
784 * Allow NOMMU mmap() to directly map the device (if not NULL)
785 * - return the address to which the offset maps
786 * - return -ENOSYS to indicate refusal to do the mapping
787 */
788unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
789				    unsigned long offset, unsigned long flags)
790{
791	if (!mtd->_get_unmapped_area)
792		return -EOPNOTSUPP;
793	if (offset > mtd->size || len > mtd->size - offset)
794		return -EINVAL;
795	return mtd->_get_unmapped_area(mtd, len, offset, flags);
796}
797EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
798
799int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
800	     u_char *buf)
801{
802	int ret_code;
803	*retlen = 0;
804	if (from < 0 || from > mtd->size || len > mtd->size - from)
805		return -EINVAL;
806	if (!len)
807		return 0;
808
809	/*
810	 * In the absence of an error, drivers return a non-negative integer
811	 * representing the maximum number of bitflips that were corrected on
812	 * any one ecc region (if applicable; zero otherwise).
813	 */
814	ret_code = mtd->_read(mtd, from, len, retlen, buf);
815	if (unlikely(ret_code < 0))
816		return ret_code;
817	if (mtd->ecc_strength == 0)
818		return 0;	/* device lacks ecc */
819	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
820}
821EXPORT_SYMBOL_GPL(mtd_read);
822
823int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
824	      const u_char *buf)
825{
826	*retlen = 0;
827	if (to < 0 || to > mtd->size || len > mtd->size - to)
828		return -EINVAL;
829	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
830		return -EROFS;
831	if (!len)
832		return 0;
833	return mtd->_write(mtd, to, len, retlen, buf);
834}
835EXPORT_SYMBOL_GPL(mtd_write);
836
837/*
838 * In blackbox flight recorder like scenarios we want to make successful writes
839 * in interrupt context. panic_write() is only intended to be called when its
840 * known the kernel is about to panic and we need the write to succeed. Since
841 * the kernel is not going to be running for much longer, this function can
842 * break locks and delay to ensure the write succeeds (but not sleep).
843 */
844int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
845		    const u_char *buf)
846{
847	*retlen = 0;
848	if (!mtd->_panic_write)
849		return -EOPNOTSUPP;
850	if (to < 0 || to > mtd->size || len > mtd->size - to)
851		return -EINVAL;
852	if (!(mtd->flags & MTD_WRITEABLE))
853		return -EROFS;
854	if (!len)
855		return 0;
856	return mtd->_panic_write(mtd, to, len, retlen, buf);
857}
858EXPORT_SYMBOL_GPL(mtd_panic_write);
859
860int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
861{
862	int ret_code;
863	ops->retlen = ops->oobretlen = 0;
864	if (!mtd->_read_oob)
865		return -EOPNOTSUPP;
866	/*
867	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
868	 * similar to mtd->_read(), returning a non-negative integer
869	 * representing max bitflips. In other cases, mtd->_read_oob() may
870	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
871	 */
872	ret_code = mtd->_read_oob(mtd, from, ops);
873	if (unlikely(ret_code < 0))
874		return ret_code;
875	if (mtd->ecc_strength == 0)
876		return 0;	/* device lacks ecc */
877	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
878}
879EXPORT_SYMBOL_GPL(mtd_read_oob);
880
881/*
882 * Method to access the protection register area, present in some flash
883 * devices. The user data is one time programmable but the factory data is read
884 * only.
885 */
886int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
887			   struct otp_info *buf)
888{
889	if (!mtd->_get_fact_prot_info)
890		return -EOPNOTSUPP;
891	if (!len)
892		return 0;
893	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
894}
895EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
896
897int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
898			   size_t *retlen, u_char *buf)
899{
900	*retlen = 0;
901	if (!mtd->_read_fact_prot_reg)
902		return -EOPNOTSUPP;
903	if (!len)
904		return 0;
905	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
906}
907EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
908
909int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
910			   struct otp_info *buf)
911{
912	if (!mtd->_get_user_prot_info)
913		return -EOPNOTSUPP;
914	if (!len)
915		return 0;
916	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
917}
918EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
919
920int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
921			   size_t *retlen, u_char *buf)
922{
923	*retlen = 0;
924	if (!mtd->_read_user_prot_reg)
925		return -EOPNOTSUPP;
926	if (!len)
927		return 0;
928	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
929}
930EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
931
932int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
933			    size_t *retlen, u_char *buf)
934{
935	int ret;
936
937	*retlen = 0;
938	if (!mtd->_write_user_prot_reg)
939		return -EOPNOTSUPP;
940	if (!len)
941		return 0;
942	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
943	if (ret)
944		return ret;
945
946	/*
947	 * If no data could be written at all, we are out of memory and
948	 * must return -ENOSPC.
949	 */
950	return (*retlen) ? 0 : -ENOSPC;
951}
952EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
953
954int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
955{
956	if (!mtd->_lock_user_prot_reg)
957		return -EOPNOTSUPP;
958	if (!len)
959		return 0;
960	return mtd->_lock_user_prot_reg(mtd, from, len);
961}
962EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
963
964/* Chip-supported device locking */
965int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
966{
967	if (!mtd->_lock)
968		return -EOPNOTSUPP;
969	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
970		return -EINVAL;
971	if (!len)
972		return 0;
973	return mtd->_lock(mtd, ofs, len);
974}
975EXPORT_SYMBOL_GPL(mtd_lock);
976
977int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
978{
979	if (!mtd->_unlock)
980		return -EOPNOTSUPP;
981	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
982		return -EINVAL;
983	if (!len)
984		return 0;
985	return mtd->_unlock(mtd, ofs, len);
986}
987EXPORT_SYMBOL_GPL(mtd_unlock);
988
989int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
990{
991	if (!mtd->_is_locked)
992		return -EOPNOTSUPP;
993	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
994		return -EINVAL;
995	if (!len)
996		return 0;
997	return mtd->_is_locked(mtd, ofs, len);
998}
999EXPORT_SYMBOL_GPL(mtd_is_locked);
1000
1001int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1002{
1003	if (!mtd->_block_isbad)
1004		return 0;
1005	if (ofs < 0 || ofs > mtd->size)
1006		return -EINVAL;
1007	return mtd->_block_isbad(mtd, ofs);
1008}
1009EXPORT_SYMBOL_GPL(mtd_block_isbad);
1010
1011int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1012{
1013	if (!mtd->_block_markbad)
1014		return -EOPNOTSUPP;
1015	if (ofs < 0 || ofs > mtd->size)
1016		return -EINVAL;
1017	if (!(mtd->flags & MTD_WRITEABLE))
1018		return -EROFS;
1019	return mtd->_block_markbad(mtd, ofs);
1020}
1021EXPORT_SYMBOL_GPL(mtd_block_markbad);
1022
1023/*
1024 * default_mtd_writev - the default writev method
1025 * @mtd: mtd device description object pointer
1026 * @vecs: the vectors to write
1027 * @count: count of vectors in @vecs
1028 * @to: the MTD device offset to write to
1029 * @retlen: on exit contains the count of bytes written to the MTD device.
1030 *
1031 * This function returns zero in case of success and a negative error code in
1032 * case of failure.
1033 */
1034static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1035			      unsigned long count, loff_t to, size_t *retlen)
1036{
1037	unsigned long i;
1038	size_t totlen = 0, thislen;
1039	int ret = 0;
1040
1041	for (i = 0; i < count; i++) {
1042		if (!vecs[i].iov_len)
1043			continue;
1044		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1045				vecs[i].iov_base);
1046		totlen += thislen;
1047		if (ret || thislen != vecs[i].iov_len)
1048			break;
1049		to += vecs[i].iov_len;
1050	}
1051	*retlen = totlen;
1052	return ret;
1053}
1054
1055/*
1056 * mtd_writev - the vector-based MTD write method
1057 * @mtd: mtd device description object pointer
1058 * @vecs: the vectors to write
1059 * @count: count of vectors in @vecs
1060 * @to: the MTD device offset to write to
1061 * @retlen: on exit contains the count of bytes written to the MTD device.
1062 *
1063 * This function returns zero in case of success and a negative error code in
1064 * case of failure.
1065 */
1066int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1067	       unsigned long count, loff_t to, size_t *retlen)
1068{
1069	*retlen = 0;
1070	if (!(mtd->flags & MTD_WRITEABLE))
1071		return -EROFS;
1072	if (!mtd->_writev)
1073		return default_mtd_writev(mtd, vecs, count, to, retlen);
1074	return mtd->_writev(mtd, vecs, count, to, retlen);
1075}
1076EXPORT_SYMBOL_GPL(mtd_writev);
1077
1078/**
1079 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080 * @mtd: mtd device description object pointer
1081 * @size: a pointer to the ideal or maximum size of the allocation, points
1082 *        to the actual allocation size on success.
1083 *
1084 * This routine attempts to allocate a contiguous kernel buffer up to
1085 * the specified size, backing off the size of the request exponentially
1086 * until the request succeeds or until the allocation size falls below
1087 * the system page size. This attempts to make sure it does not adversely
1088 * impact system performance, so when allocating more than one page, we
1089 * ask the memory allocator to avoid re-trying, swapping, writing back
1090 * or performing I/O.
1091 *
1092 * Note, this function also makes sure that the allocated buffer is aligned to
1093 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1094 *
1095 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096 * to handle smaller (i.e. degraded) buffer allocations under low- or
1097 * fragmented-memory situations where such reduced allocations, from a
1098 * requested ideal, are allowed.
1099 *
1100 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1101 */
1102void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1103{
1104	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1105		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1106	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1107	void *kbuf;
1108
1109	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1110
1111	while (*size > min_alloc) {
1112		kbuf = kmalloc(*size, flags);
1113		if (kbuf)
1114			return kbuf;
1115
1116		*size >>= 1;
1117		*size = ALIGN(*size, mtd->writesize);
1118	}
1119
1120	/*
1121	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1123	 */
1124	return kmalloc(*size, GFP_KERNEL);
1125}
1126EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1127
1128#ifdef CONFIG_PROC_FS
1129
1130/*====================================================================*/
1131/* Support for /proc/mtd */
1132
1133static int mtd_proc_show(struct seq_file *m, void *v)
1134{
1135	struct mtd_info *mtd;
1136
1137	seq_puts(m, "dev:    size   erasesize  name\n");
1138	mutex_lock(&mtd_table_mutex);
1139	mtd_for_each_device(mtd) {
1140		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141			   mtd->index, (unsigned long long)mtd->size,
1142			   mtd->erasesize, mtd->name);
1143	}
1144	mutex_unlock(&mtd_table_mutex);
1145	return 0;
1146}
1147
1148static int mtd_proc_open(struct inode *inode, struct file *file)
1149{
1150	return single_open(file, mtd_proc_show, NULL);
1151}
1152
1153static const struct file_operations mtd_proc_ops = {
1154	.open		= mtd_proc_open,
1155	.read		= seq_read,
1156	.llseek		= seq_lseek,
1157	.release	= single_release,
1158};
1159#endif /* CONFIG_PROC_FS */
1160
1161/*====================================================================*/
1162/* Init code */
1163
1164static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1165{
1166	int ret;
1167
1168	ret = bdi_init(bdi);
1169	if (!ret)
1170		ret = bdi_register(bdi, NULL, "%s", name);
1171
1172	if (ret)
1173		bdi_destroy(bdi);
1174
1175	return ret;
1176}
1177
1178static struct proc_dir_entry *proc_mtd;
1179
1180static int __init init_mtd(void)
1181{
1182	int ret;
1183
1184	ret = class_register(&mtd_class);
1185	if (ret)
1186		goto err_reg;
1187
1188	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1189	if (ret)
1190		goto err_bdi1;
1191
1192	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1193	if (ret)
1194		goto err_bdi2;
1195
1196	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1197	if (ret)
1198		goto err_bdi3;
1199
1200	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1201
1202	ret = init_mtdchar();
1203	if (ret)
1204		goto out_procfs;
1205
1206	return 0;
1207
1208out_procfs:
1209	if (proc_mtd)
1210		remove_proc_entry("mtd", NULL);
1211err_bdi3:
1212	bdi_destroy(&mtd_bdi_ro_mappable);
1213err_bdi2:
1214	bdi_destroy(&mtd_bdi_unmappable);
1215err_bdi1:
1216	class_unregister(&mtd_class);
1217err_reg:
1218	pr_err("Error registering mtd class or bdi: %d\n", ret);
1219	return ret;
1220}
1221
1222static void __exit cleanup_mtd(void)
1223{
1224	cleanup_mtdchar();
1225	if (proc_mtd)
1226		remove_proc_entry("mtd", NULL);
1227	class_unregister(&mtd_class);
1228	bdi_destroy(&mtd_bdi_unmappable);
1229	bdi_destroy(&mtd_bdi_ro_mappable);
1230	bdi_destroy(&mtd_bdi_rw_mappable);
1231}
1232
1233module_init(init_mtd);
1234module_exit(cleanup_mtd);
1235
1236MODULE_LICENSE("GPL");
1237MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238MODULE_DESCRIPTION("Core MTD registration and access routines");
1239