mtdcore.c revision c654345924f7cce87bb221b89db91cba890421ba
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006      Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/partitions.h>
42
43#include "mtdcore.h"
44/*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
48static struct backing_dev_info mtd_bdi_unmappable = {
49	.capabilities	= BDI_CAP_MAP_COPY,
50};
51
52/*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
57static struct backing_dev_info mtd_bdi_ro_mappable = {
58	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60};
61
62/*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
67static struct backing_dev_info mtd_bdi_rw_mappable = {
68	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70			   BDI_CAP_WRITE_MAP),
71};
72
73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74static int mtd_cls_resume(struct device *dev);
75
76static struct class mtd_class = {
77	.name = "mtd",
78	.owner = THIS_MODULE,
79	.suspend = mtd_cls_suspend,
80	.resume = mtd_cls_resume,
81};
82
83static DEFINE_IDR(mtd_idr);
84
85/* These are exported solely for the purpose of mtd_blkdevs.c. You
86   should not use them for _anything_ else */
87DEFINE_MUTEX(mtd_table_mutex);
88EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90struct mtd_info *__mtd_next_device(int i)
91{
92	return idr_get_next(&mtd_idr, &i);
93}
94EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96static LIST_HEAD(mtd_notifiers);
97
98
99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
110	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111	dev_t index = MTD_DEVT(mtd->index);
112
113	/* remove /dev/mtdXro node if needed */
114	if (index)
115		device_destroy(&mtd_class, index + 1);
116}
117
118static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119{
120	struct mtd_info *mtd = dev_get_drvdata(dev);
121
122	return mtd ? mtd_suspend(mtd) : 0;
123}
124
125static int mtd_cls_resume(struct device *dev)
126{
127	struct mtd_info *mtd = dev_get_drvdata(dev);
128
129	if (mtd)
130		mtd_resume(mtd);
131	return 0;
132}
133
134static ssize_t mtd_type_show(struct device *dev,
135		struct device_attribute *attr, char *buf)
136{
137	struct mtd_info *mtd = dev_get_drvdata(dev);
138	char *type;
139
140	switch (mtd->type) {
141	case MTD_ABSENT:
142		type = "absent";
143		break;
144	case MTD_RAM:
145		type = "ram";
146		break;
147	case MTD_ROM:
148		type = "rom";
149		break;
150	case MTD_NORFLASH:
151		type = "nor";
152		break;
153	case MTD_NANDFLASH:
154		type = "nand";
155		break;
156	case MTD_DATAFLASH:
157		type = "dataflash";
158		break;
159	case MTD_UBIVOLUME:
160		type = "ubi";
161		break;
162	default:
163		type = "unknown";
164	}
165
166	return snprintf(buf, PAGE_SIZE, "%s\n", type);
167}
168static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170static ssize_t mtd_flags_show(struct device *dev,
171		struct device_attribute *attr, char *buf)
172{
173	struct mtd_info *mtd = dev_get_drvdata(dev);
174
175	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177}
178static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180static ssize_t mtd_size_show(struct device *dev,
181		struct device_attribute *attr, char *buf)
182{
183	struct mtd_info *mtd = dev_get_drvdata(dev);
184
185	return snprintf(buf, PAGE_SIZE, "%llu\n",
186		(unsigned long long)mtd->size);
187
188}
189static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191static ssize_t mtd_erasesize_show(struct device *dev,
192		struct device_attribute *attr, char *buf)
193{
194	struct mtd_info *mtd = dev_get_drvdata(dev);
195
196	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198}
199static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201static ssize_t mtd_writesize_show(struct device *dev,
202		struct device_attribute *attr, char *buf)
203{
204	struct mtd_info *mtd = dev_get_drvdata(dev);
205
206	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208}
209static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
211static ssize_t mtd_subpagesize_show(struct device *dev,
212		struct device_attribute *attr, char *buf)
213{
214	struct mtd_info *mtd = dev_get_drvdata(dev);
215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219}
220static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
222static ssize_t mtd_oobsize_show(struct device *dev,
223		struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229}
230static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232static ssize_t mtd_numeraseregions_show(struct device *dev,
233		struct device_attribute *attr, char *buf)
234{
235	struct mtd_info *mtd = dev_get_drvdata(dev);
236
237	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239}
240static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241	NULL);
242
243static ssize_t mtd_name_show(struct device *dev,
244		struct device_attribute *attr, char *buf)
245{
246	struct mtd_info *mtd = dev_get_drvdata(dev);
247
248	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250}
251static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
253static ssize_t mtd_ecc_strength_show(struct device *dev,
254				     struct device_attribute *attr, char *buf)
255{
256	struct mtd_info *mtd = dev_get_drvdata(dev);
257
258	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259}
260static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261
262static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263					  struct device_attribute *attr,
264					  char *buf)
265{
266	struct mtd_info *mtd = dev_get_drvdata(dev);
267
268	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269}
270
271static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272					   struct device_attribute *attr,
273					   const char *buf, size_t count)
274{
275	struct mtd_info *mtd = dev_get_drvdata(dev);
276	unsigned int bitflip_threshold;
277	int retval;
278
279	retval = kstrtouint(buf, 0, &bitflip_threshold);
280	if (retval)
281		return retval;
282
283	mtd->bitflip_threshold = bitflip_threshold;
284	return count;
285}
286static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287		   mtd_bitflip_threshold_show,
288		   mtd_bitflip_threshold_store);
289
290static struct attribute *mtd_attrs[] = {
291	&dev_attr_type.attr,
292	&dev_attr_flags.attr,
293	&dev_attr_size.attr,
294	&dev_attr_erasesize.attr,
295	&dev_attr_writesize.attr,
296	&dev_attr_subpagesize.attr,
297	&dev_attr_oobsize.attr,
298	&dev_attr_numeraseregions.attr,
299	&dev_attr_name.attr,
300	&dev_attr_ecc_strength.attr,
301	&dev_attr_bitflip_threshold.attr,
302	NULL,
303};
304
305static struct attribute_group mtd_group = {
306	.attrs		= mtd_attrs,
307};
308
309static const struct attribute_group *mtd_groups[] = {
310	&mtd_group,
311	NULL,
312};
313
314static struct device_type mtd_devtype = {
315	.name		= "mtd",
316	.groups		= mtd_groups,
317	.release	= mtd_release,
318};
319
320/**
321 *	add_mtd_device - register an MTD device
322 *	@mtd: pointer to new MTD device info structure
323 *
324 *	Add a device to the list of MTD devices present in the system, and
325 *	notify each currently active MTD 'user' of its arrival. Returns
326 *	zero on success or 1 on failure, which currently will only happen
327 *	if there is insufficient memory or a sysfs error.
328 */
329
330int add_mtd_device(struct mtd_info *mtd)
331{
332	struct mtd_notifier *not;
333	int i, error;
334
335	if (!mtd->backing_dev_info) {
336		switch (mtd->type) {
337		case MTD_RAM:
338			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339			break;
340		case MTD_ROM:
341			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342			break;
343		default:
344			mtd->backing_dev_info = &mtd_bdi_unmappable;
345			break;
346		}
347	}
348
349	BUG_ON(mtd->writesize == 0);
350	mutex_lock(&mtd_table_mutex);
351
352	do {
353		if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
354			goto fail_locked;
355		error = idr_get_new(&mtd_idr, mtd, &i);
356	} while (error == -EAGAIN);
357
358	if (error)
359		goto fail_locked;
360
361	mtd->index = i;
362	mtd->usecount = 0;
363
364	/* default value if not set by driver */
365	if (mtd->bitflip_threshold == 0)
366		mtd->bitflip_threshold = mtd->ecc_strength;
367
368	if (is_power_of_2(mtd->erasesize))
369		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
370	else
371		mtd->erasesize_shift = 0;
372
373	if (is_power_of_2(mtd->writesize))
374		mtd->writesize_shift = ffs(mtd->writesize) - 1;
375	else
376		mtd->writesize_shift = 0;
377
378	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
379	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
380
381	/* Some chips always power up locked. Unlock them now */
382	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
383		error = mtd_unlock(mtd, 0, mtd->size);
384		if (error && error != -EOPNOTSUPP)
385			printk(KERN_WARNING
386			       "%s: unlock failed, writes may not work\n",
387			       mtd->name);
388	}
389
390	/* Caller should have set dev.parent to match the
391	 * physical device.
392	 */
393	mtd->dev.type = &mtd_devtype;
394	mtd->dev.class = &mtd_class;
395	mtd->dev.devt = MTD_DEVT(i);
396	dev_set_name(&mtd->dev, "mtd%d", i);
397	dev_set_drvdata(&mtd->dev, mtd);
398	if (device_register(&mtd->dev) != 0)
399		goto fail_added;
400
401	if (MTD_DEVT(i))
402		device_create(&mtd_class, mtd->dev.parent,
403			      MTD_DEVT(i) + 1,
404			      NULL, "mtd%dro", i);
405
406	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
407	/* No need to get a refcount on the module containing
408	   the notifier, since we hold the mtd_table_mutex */
409	list_for_each_entry(not, &mtd_notifiers, list)
410		not->add(mtd);
411
412	mutex_unlock(&mtd_table_mutex);
413	/* We _know_ we aren't being removed, because
414	   our caller is still holding us here. So none
415	   of this try_ nonsense, and no bitching about it
416	   either. :) */
417	__module_get(THIS_MODULE);
418	return 0;
419
420fail_added:
421	idr_remove(&mtd_idr, i);
422fail_locked:
423	mutex_unlock(&mtd_table_mutex);
424	return 1;
425}
426
427/**
428 *	del_mtd_device - unregister an MTD device
429 *	@mtd: pointer to MTD device info structure
430 *
431 *	Remove a device from the list of MTD devices present in the system,
432 *	and notify each currently active MTD 'user' of its departure.
433 *	Returns zero on success or 1 on failure, which currently will happen
434 *	if the requested device does not appear to be present in the list.
435 */
436
437int del_mtd_device(struct mtd_info *mtd)
438{
439	int ret;
440	struct mtd_notifier *not;
441
442	mutex_lock(&mtd_table_mutex);
443
444	if (idr_find(&mtd_idr, mtd->index) != mtd) {
445		ret = -ENODEV;
446		goto out_error;
447	}
448
449	/* No need to get a refcount on the module containing
450		the notifier, since we hold the mtd_table_mutex */
451	list_for_each_entry(not, &mtd_notifiers, list)
452		not->remove(mtd);
453
454	if (mtd->usecount) {
455		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
456		       mtd->index, mtd->name, mtd->usecount);
457		ret = -EBUSY;
458	} else {
459		device_unregister(&mtd->dev);
460
461		idr_remove(&mtd_idr, mtd->index);
462
463		module_put(THIS_MODULE);
464		ret = 0;
465	}
466
467out_error:
468	mutex_unlock(&mtd_table_mutex);
469	return ret;
470}
471
472/**
473 * mtd_device_parse_register - parse partitions and register an MTD device.
474 *
475 * @mtd: the MTD device to register
476 * @types: the list of MTD partition probes to try, see
477 *         'parse_mtd_partitions()' for more information
478 * @parser_data: MTD partition parser-specific data
479 * @parts: fallback partition information to register, if parsing fails;
480 *         only valid if %nr_parts > %0
481 * @nr_parts: the number of partitions in parts, if zero then the full
482 *            MTD device is registered if no partition info is found
483 *
484 * This function aggregates MTD partitions parsing (done by
485 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
486 * basically follows the most common pattern found in many MTD drivers:
487 *
488 * * It first tries to probe partitions on MTD device @mtd using parsers
489 *   specified in @types (if @types is %NULL, then the default list of parsers
490 *   is used, see 'parse_mtd_partitions()' for more information). If none are
491 *   found this functions tries to fallback to information specified in
492 *   @parts/@nr_parts.
493 * * If any partitioning info was found, this function registers the found
494 *   partitions.
495 * * If no partitions were found this function just registers the MTD device
496 *   @mtd and exits.
497 *
498 * Returns zero in case of success and a negative error code in case of failure.
499 */
500int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
501			      struct mtd_part_parser_data *parser_data,
502			      const struct mtd_partition *parts,
503			      int nr_parts)
504{
505	int err;
506	struct mtd_partition *real_parts;
507
508	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
509	if (err <= 0 && nr_parts && parts) {
510		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
511				     GFP_KERNEL);
512		if (!real_parts)
513			err = -ENOMEM;
514		else
515			err = nr_parts;
516	}
517
518	if (err > 0) {
519		err = add_mtd_partitions(mtd, real_parts, err);
520		kfree(real_parts);
521	} else if (err == 0) {
522		err = add_mtd_device(mtd);
523		if (err == 1)
524			err = -ENODEV;
525	}
526
527	return err;
528}
529EXPORT_SYMBOL_GPL(mtd_device_parse_register);
530
531/**
532 * mtd_device_unregister - unregister an existing MTD device.
533 *
534 * @master: the MTD device to unregister.  This will unregister both the master
535 *          and any partitions if registered.
536 */
537int mtd_device_unregister(struct mtd_info *master)
538{
539	int err;
540
541	err = del_mtd_partitions(master);
542	if (err)
543		return err;
544
545	if (!device_is_registered(&master->dev))
546		return 0;
547
548	return del_mtd_device(master);
549}
550EXPORT_SYMBOL_GPL(mtd_device_unregister);
551
552/**
553 *	register_mtd_user - register a 'user' of MTD devices.
554 *	@new: pointer to notifier info structure
555 *
556 *	Registers a pair of callbacks function to be called upon addition
557 *	or removal of MTD devices. Causes the 'add' callback to be immediately
558 *	invoked for each MTD device currently present in the system.
559 */
560void register_mtd_user (struct mtd_notifier *new)
561{
562	struct mtd_info *mtd;
563
564	mutex_lock(&mtd_table_mutex);
565
566	list_add(&new->list, &mtd_notifiers);
567
568	__module_get(THIS_MODULE);
569
570	mtd_for_each_device(mtd)
571		new->add(mtd);
572
573	mutex_unlock(&mtd_table_mutex);
574}
575EXPORT_SYMBOL_GPL(register_mtd_user);
576
577/**
578 *	unregister_mtd_user - unregister a 'user' of MTD devices.
579 *	@old: pointer to notifier info structure
580 *
581 *	Removes a callback function pair from the list of 'users' to be
582 *	notified upon addition or removal of MTD devices. Causes the
583 *	'remove' callback to be immediately invoked for each MTD device
584 *	currently present in the system.
585 */
586int unregister_mtd_user (struct mtd_notifier *old)
587{
588	struct mtd_info *mtd;
589
590	mutex_lock(&mtd_table_mutex);
591
592	module_put(THIS_MODULE);
593
594	mtd_for_each_device(mtd)
595		old->remove(mtd);
596
597	list_del(&old->list);
598	mutex_unlock(&mtd_table_mutex);
599	return 0;
600}
601EXPORT_SYMBOL_GPL(unregister_mtd_user);
602
603/**
604 *	get_mtd_device - obtain a validated handle for an MTD device
605 *	@mtd: last known address of the required MTD device
606 *	@num: internal device number of the required MTD device
607 *
608 *	Given a number and NULL address, return the num'th entry in the device
609 *	table, if any.	Given an address and num == -1, search the device table
610 *	for a device with that address and return if it's still present. Given
611 *	both, return the num'th driver only if its address matches. Return
612 *	error code if not.
613 */
614struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
615{
616	struct mtd_info *ret = NULL, *other;
617	int err = -ENODEV;
618
619	mutex_lock(&mtd_table_mutex);
620
621	if (num == -1) {
622		mtd_for_each_device(other) {
623			if (other == mtd) {
624				ret = mtd;
625				break;
626			}
627		}
628	} else if (num >= 0) {
629		ret = idr_find(&mtd_idr, num);
630		if (mtd && mtd != ret)
631			ret = NULL;
632	}
633
634	if (!ret) {
635		ret = ERR_PTR(err);
636		goto out;
637	}
638
639	err = __get_mtd_device(ret);
640	if (err)
641		ret = ERR_PTR(err);
642out:
643	mutex_unlock(&mtd_table_mutex);
644	return ret;
645}
646EXPORT_SYMBOL_GPL(get_mtd_device);
647
648
649int __get_mtd_device(struct mtd_info *mtd)
650{
651	int err;
652
653	if (!try_module_get(mtd->owner))
654		return -ENODEV;
655
656	if (mtd->_get_device) {
657		err = mtd->_get_device(mtd);
658
659		if (err) {
660			module_put(mtd->owner);
661			return err;
662		}
663	}
664	mtd->usecount++;
665	return 0;
666}
667EXPORT_SYMBOL_GPL(__get_mtd_device);
668
669/**
670 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
671 *	device name
672 *	@name: MTD device name to open
673 *
674 * 	This function returns MTD device description structure in case of
675 * 	success and an error code in case of failure.
676 */
677struct mtd_info *get_mtd_device_nm(const char *name)
678{
679	int err = -ENODEV;
680	struct mtd_info *mtd = NULL, *other;
681
682	mutex_lock(&mtd_table_mutex);
683
684	mtd_for_each_device(other) {
685		if (!strcmp(name, other->name)) {
686			mtd = other;
687			break;
688		}
689	}
690
691	if (!mtd)
692		goto out_unlock;
693
694	err = __get_mtd_device(mtd);
695	if (err)
696		goto out_unlock;
697
698	mutex_unlock(&mtd_table_mutex);
699	return mtd;
700
701out_unlock:
702	mutex_unlock(&mtd_table_mutex);
703	return ERR_PTR(err);
704}
705EXPORT_SYMBOL_GPL(get_mtd_device_nm);
706
707void put_mtd_device(struct mtd_info *mtd)
708{
709	mutex_lock(&mtd_table_mutex);
710	__put_mtd_device(mtd);
711	mutex_unlock(&mtd_table_mutex);
712
713}
714EXPORT_SYMBOL_GPL(put_mtd_device);
715
716void __put_mtd_device(struct mtd_info *mtd)
717{
718	--mtd->usecount;
719	BUG_ON(mtd->usecount < 0);
720
721	if (mtd->_put_device)
722		mtd->_put_device(mtd);
723
724	module_put(mtd->owner);
725}
726EXPORT_SYMBOL_GPL(__put_mtd_device);
727
728/*
729 * Erase is an asynchronous operation.  Device drivers are supposed
730 * to call instr->callback() whenever the operation completes, even
731 * if it completes with a failure.
732 * Callers are supposed to pass a callback function and wait for it
733 * to be called before writing to the block.
734 */
735int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
736{
737	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
738		return -EINVAL;
739	if (!(mtd->flags & MTD_WRITEABLE))
740		return -EROFS;
741	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
742	if (!instr->len) {
743		instr->state = MTD_ERASE_DONE;
744		mtd_erase_callback(instr);
745		return 0;
746	}
747	return mtd->_erase(mtd, instr);
748}
749EXPORT_SYMBOL_GPL(mtd_erase);
750
751/*
752 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
753 */
754int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
755	      void **virt, resource_size_t *phys)
756{
757	*retlen = 0;
758	*virt = NULL;
759	if (phys)
760		*phys = 0;
761	if (!mtd->_point)
762		return -EOPNOTSUPP;
763	if (from < 0 || from > mtd->size || len > mtd->size - from)
764		return -EINVAL;
765	if (!len)
766		return 0;
767	return mtd->_point(mtd, from, len, retlen, virt, phys);
768}
769EXPORT_SYMBOL_GPL(mtd_point);
770
771/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
772int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
773{
774	if (!mtd->_point)
775		return -EOPNOTSUPP;
776	if (from < 0 || from > mtd->size || len > mtd->size - from)
777		return -EINVAL;
778	if (!len)
779		return 0;
780	return mtd->_unpoint(mtd, from, len);
781}
782EXPORT_SYMBOL_GPL(mtd_unpoint);
783
784/*
785 * Allow NOMMU mmap() to directly map the device (if not NULL)
786 * - return the address to which the offset maps
787 * - return -ENOSYS to indicate refusal to do the mapping
788 */
789unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
790				    unsigned long offset, unsigned long flags)
791{
792	if (!mtd->_get_unmapped_area)
793		return -EOPNOTSUPP;
794	if (offset > mtd->size || len > mtd->size - offset)
795		return -EINVAL;
796	return mtd->_get_unmapped_area(mtd, len, offset, flags);
797}
798EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
799
800int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
801	     u_char *buf)
802{
803	int ret_code;
804	*retlen = 0;
805	if (from < 0 || from > mtd->size || len > mtd->size - from)
806		return -EINVAL;
807	if (!len)
808		return 0;
809
810	/*
811	 * In the absence of an error, drivers return a non-negative integer
812	 * representing the maximum number of bitflips that were corrected on
813	 * any one ecc region (if applicable; zero otherwise).
814	 */
815	ret_code = mtd->_read(mtd, from, len, retlen, buf);
816	if (unlikely(ret_code < 0))
817		return ret_code;
818	if (mtd->ecc_strength == 0)
819		return 0;	/* device lacks ecc */
820	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
821}
822EXPORT_SYMBOL_GPL(mtd_read);
823
824int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
825	      const u_char *buf)
826{
827	*retlen = 0;
828	if (to < 0 || to > mtd->size || len > mtd->size - to)
829		return -EINVAL;
830	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
831		return -EROFS;
832	if (!len)
833		return 0;
834	return mtd->_write(mtd, to, len, retlen, buf);
835}
836EXPORT_SYMBOL_GPL(mtd_write);
837
838/*
839 * In blackbox flight recorder like scenarios we want to make successful writes
840 * in interrupt context. panic_write() is only intended to be called when its
841 * known the kernel is about to panic and we need the write to succeed. Since
842 * the kernel is not going to be running for much longer, this function can
843 * break locks and delay to ensure the write succeeds (but not sleep).
844 */
845int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
846		    const u_char *buf)
847{
848	*retlen = 0;
849	if (!mtd->_panic_write)
850		return -EOPNOTSUPP;
851	if (to < 0 || to > mtd->size || len > mtd->size - to)
852		return -EINVAL;
853	if (!(mtd->flags & MTD_WRITEABLE))
854		return -EROFS;
855	if (!len)
856		return 0;
857	return mtd->_panic_write(mtd, to, len, retlen, buf);
858}
859EXPORT_SYMBOL_GPL(mtd_panic_write);
860
861/*
862 * Method to access the protection register area, present in some flash
863 * devices. The user data is one time programmable but the factory data is read
864 * only.
865 */
866int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
867			   size_t len)
868{
869	if (!mtd->_get_fact_prot_info)
870		return -EOPNOTSUPP;
871	if (!len)
872		return 0;
873	return mtd->_get_fact_prot_info(mtd, buf, len);
874}
875EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
876
877int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
878			   size_t *retlen, u_char *buf)
879{
880	*retlen = 0;
881	if (!mtd->_read_fact_prot_reg)
882		return -EOPNOTSUPP;
883	if (!len)
884		return 0;
885	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
886}
887EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
888
889int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
890			   size_t len)
891{
892	if (!mtd->_get_user_prot_info)
893		return -EOPNOTSUPP;
894	if (!len)
895		return 0;
896	return mtd->_get_user_prot_info(mtd, buf, len);
897}
898EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
899
900int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
901			   size_t *retlen, u_char *buf)
902{
903	*retlen = 0;
904	if (!mtd->_read_user_prot_reg)
905		return -EOPNOTSUPP;
906	if (!len)
907		return 0;
908	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
909}
910EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
911
912int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
913			    size_t *retlen, u_char *buf)
914{
915	*retlen = 0;
916	if (!mtd->_write_user_prot_reg)
917		return -EOPNOTSUPP;
918	if (!len)
919		return 0;
920	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
921}
922EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
923
924int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
925{
926	if (!mtd->_lock_user_prot_reg)
927		return -EOPNOTSUPP;
928	if (!len)
929		return 0;
930	return mtd->_lock_user_prot_reg(mtd, from, len);
931}
932EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
933
934/* Chip-supported device locking */
935int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
936{
937	if (!mtd->_lock)
938		return -EOPNOTSUPP;
939	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
940		return -EINVAL;
941	if (!len)
942		return 0;
943	return mtd->_lock(mtd, ofs, len);
944}
945EXPORT_SYMBOL_GPL(mtd_lock);
946
947int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
948{
949	if (!mtd->_unlock)
950		return -EOPNOTSUPP;
951	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
952		return -EINVAL;
953	if (!len)
954		return 0;
955	return mtd->_unlock(mtd, ofs, len);
956}
957EXPORT_SYMBOL_GPL(mtd_unlock);
958
959int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
960{
961	if (!mtd->_is_locked)
962		return -EOPNOTSUPP;
963	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
964		return -EINVAL;
965	if (!len)
966		return 0;
967	return mtd->_is_locked(mtd, ofs, len);
968}
969EXPORT_SYMBOL_GPL(mtd_is_locked);
970
971int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
972{
973	if (!mtd->_block_isbad)
974		return 0;
975	if (ofs < 0 || ofs > mtd->size)
976		return -EINVAL;
977	return mtd->_block_isbad(mtd, ofs);
978}
979EXPORT_SYMBOL_GPL(mtd_block_isbad);
980
981int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
982{
983	if (!mtd->_block_markbad)
984		return -EOPNOTSUPP;
985	if (ofs < 0 || ofs > mtd->size)
986		return -EINVAL;
987	if (!(mtd->flags & MTD_WRITEABLE))
988		return -EROFS;
989	return mtd->_block_markbad(mtd, ofs);
990}
991EXPORT_SYMBOL_GPL(mtd_block_markbad);
992
993/*
994 * default_mtd_writev - the default writev method
995 * @mtd: mtd device description object pointer
996 * @vecs: the vectors to write
997 * @count: count of vectors in @vecs
998 * @to: the MTD device offset to write to
999 * @retlen: on exit contains the count of bytes written to the MTD device.
1000 *
1001 * This function returns zero in case of success and a negative error code in
1002 * case of failure.
1003 */
1004static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1005			      unsigned long count, loff_t to, size_t *retlen)
1006{
1007	unsigned long i;
1008	size_t totlen = 0, thislen;
1009	int ret = 0;
1010
1011	for (i = 0; i < count; i++) {
1012		if (!vecs[i].iov_len)
1013			continue;
1014		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1015				vecs[i].iov_base);
1016		totlen += thislen;
1017		if (ret || thislen != vecs[i].iov_len)
1018			break;
1019		to += vecs[i].iov_len;
1020	}
1021	*retlen = totlen;
1022	return ret;
1023}
1024
1025/*
1026 * mtd_writev - the vector-based MTD write method
1027 * @mtd: mtd device description object pointer
1028 * @vecs: the vectors to write
1029 * @count: count of vectors in @vecs
1030 * @to: the MTD device offset to write to
1031 * @retlen: on exit contains the count of bytes written to the MTD device.
1032 *
1033 * This function returns zero in case of success and a negative error code in
1034 * case of failure.
1035 */
1036int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1037	       unsigned long count, loff_t to, size_t *retlen)
1038{
1039	*retlen = 0;
1040	if (!(mtd->flags & MTD_WRITEABLE))
1041		return -EROFS;
1042	if (!mtd->_writev)
1043		return default_mtd_writev(mtd, vecs, count, to, retlen);
1044	return mtd->_writev(mtd, vecs, count, to, retlen);
1045}
1046EXPORT_SYMBOL_GPL(mtd_writev);
1047
1048/**
1049 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1050 * @mtd: mtd device description object pointer
1051 * @size: a pointer to the ideal or maximum size of the allocation, points
1052 *        to the actual allocation size on success.
1053 *
1054 * This routine attempts to allocate a contiguous kernel buffer up to
1055 * the specified size, backing off the size of the request exponentially
1056 * until the request succeeds or until the allocation size falls below
1057 * the system page size. This attempts to make sure it does not adversely
1058 * impact system performance, so when allocating more than one page, we
1059 * ask the memory allocator to avoid re-trying.
1060 *
1061 * Note, this function also makes sure that the allocated buffer is aligned to
1062 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1063 *
1064 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1065 * to handle smaller (i.e. degraded) buffer allocations under low- or
1066 * fragmented-memory situations where such reduced allocations, from a
1067 * requested ideal, are allowed.
1068 *
1069 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1070 */
1071void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1072{
1073	gfp_t flags = __GFP_NOWARN | __GFP_WAIT | __GFP_NORETRY;
1074	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1075	void *kbuf;
1076
1077	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1078
1079	while (*size > min_alloc) {
1080		kbuf = kmalloc(*size, flags);
1081		if (kbuf)
1082			return kbuf;
1083
1084		*size >>= 1;
1085		*size = ALIGN(*size, mtd->writesize);
1086	}
1087
1088	/*
1089	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1090	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1091	 */
1092	return kmalloc(*size, GFP_KERNEL);
1093}
1094EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1095
1096#ifdef CONFIG_PROC_FS
1097
1098/*====================================================================*/
1099/* Support for /proc/mtd */
1100
1101static struct proc_dir_entry *proc_mtd;
1102
1103static int mtd_proc_show(struct seq_file *m, void *v)
1104{
1105	struct mtd_info *mtd;
1106
1107	seq_puts(m, "dev:    size   erasesize  name\n");
1108	mutex_lock(&mtd_table_mutex);
1109	mtd_for_each_device(mtd) {
1110		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1111			   mtd->index, (unsigned long long)mtd->size,
1112			   mtd->erasesize, mtd->name);
1113	}
1114	mutex_unlock(&mtd_table_mutex);
1115	return 0;
1116}
1117
1118static int mtd_proc_open(struct inode *inode, struct file *file)
1119{
1120	return single_open(file, mtd_proc_show, NULL);
1121}
1122
1123static const struct file_operations mtd_proc_ops = {
1124	.open		= mtd_proc_open,
1125	.read		= seq_read,
1126	.llseek		= seq_lseek,
1127	.release	= single_release,
1128};
1129#endif /* CONFIG_PROC_FS */
1130
1131/*====================================================================*/
1132/* Init code */
1133
1134static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1135{
1136	int ret;
1137
1138	ret = bdi_init(bdi);
1139	if (!ret)
1140		ret = bdi_register(bdi, NULL, name);
1141
1142	if (ret)
1143		bdi_destroy(bdi);
1144
1145	return ret;
1146}
1147
1148static int __init init_mtd(void)
1149{
1150	int ret;
1151
1152	ret = class_register(&mtd_class);
1153	if (ret)
1154		goto err_reg;
1155
1156	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1157	if (ret)
1158		goto err_bdi1;
1159
1160	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1161	if (ret)
1162		goto err_bdi2;
1163
1164	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1165	if (ret)
1166		goto err_bdi3;
1167
1168#ifdef CONFIG_PROC_FS
1169	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1170#endif /* CONFIG_PROC_FS */
1171	return 0;
1172
1173err_bdi3:
1174	bdi_destroy(&mtd_bdi_ro_mappable);
1175err_bdi2:
1176	bdi_destroy(&mtd_bdi_unmappable);
1177err_bdi1:
1178	class_unregister(&mtd_class);
1179err_reg:
1180	pr_err("Error registering mtd class or bdi: %d\n", ret);
1181	return ret;
1182}
1183
1184static void __exit cleanup_mtd(void)
1185{
1186#ifdef CONFIG_PROC_FS
1187	if (proc_mtd)
1188		remove_proc_entry( "mtd", NULL);
1189#endif /* CONFIG_PROC_FS */
1190	class_unregister(&mtd_class);
1191	bdi_destroy(&mtd_bdi_unmappable);
1192	bdi_destroy(&mtd_bdi_ro_mappable);
1193	bdi_destroy(&mtd_bdi_rw_mappable);
1194}
1195
1196module_init(init_mtd);
1197module_exit(cleanup_mtd);
1198
1199MODULE_LICENSE("GPL");
1200MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1201MODULE_DESCRIPTION("Core MTD registration and access routines");
1202