mtdcore.c revision f83c3838b9146b891d0405d3a83660e8f6aed02f
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006      Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/proc_fs.h>
36#include <linux/idr.h>
37#include <linux/backing-dev.h>
38#include <linux/gfp.h>
39#include <linux/slab.h>
40#include <linux/major.h>
41
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/partitions.h>
44
45#include "mtdcore.h"
46
47/*
48 * backing device capabilities for non-mappable devices (such as NAND flash)
49 * - permits private mappings, copies are taken of the data
50 */
51static struct backing_dev_info mtd_bdi_unmappable = {
52	.capabilities	= BDI_CAP_MAP_COPY,
53};
54
55/*
56 * backing device capabilities for R/O mappable devices (such as ROM)
57 * - permits private mappings, copies are taken of the data
58 * - permits non-writable shared mappings
59 */
60static struct backing_dev_info mtd_bdi_ro_mappable = {
61	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
62			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
63};
64
65/*
66 * backing device capabilities for writable mappable devices (such as RAM)
67 * - permits private mappings, copies are taken of the data
68 * - permits non-writable shared mappings
69 */
70static struct backing_dev_info mtd_bdi_rw_mappable = {
71	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
72			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
73			   BDI_CAP_WRITE_MAP),
74};
75
76static int mtd_cls_suspend(struct device *dev, pm_message_t state);
77static int mtd_cls_resume(struct device *dev);
78
79static struct class mtd_class = {
80	.name = "mtd",
81	.owner = THIS_MODULE,
82	.suspend = mtd_cls_suspend,
83	.resume = mtd_cls_resume,
84};
85
86static DEFINE_IDR(mtd_idr);
87
88/* These are exported solely for the purpose of mtd_blkdevs.c. You
89   should not use them for _anything_ else */
90DEFINE_MUTEX(mtd_table_mutex);
91EXPORT_SYMBOL_GPL(mtd_table_mutex);
92
93struct mtd_info *__mtd_next_device(int i)
94{
95	return idr_get_next(&mtd_idr, &i);
96}
97EXPORT_SYMBOL_GPL(__mtd_next_device);
98
99static LIST_HEAD(mtd_notifiers);
100
101
102#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
103
104/* REVISIT once MTD uses the driver model better, whoever allocates
105 * the mtd_info will probably want to use the release() hook...
106 */
107static void mtd_release(struct device *dev)
108{
109	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
110	dev_t index = MTD_DEVT(mtd->index);
111
112	/* remove /dev/mtdXro node if needed */
113	if (index)
114		device_destroy(&mtd_class, index + 1);
115}
116
117static int mtd_cls_suspend(struct device *dev, pm_message_t state)
118{
119	struct mtd_info *mtd = dev_get_drvdata(dev);
120
121	return mtd ? mtd_suspend(mtd) : 0;
122}
123
124static int mtd_cls_resume(struct device *dev)
125{
126	struct mtd_info *mtd = dev_get_drvdata(dev);
127
128	if (mtd)
129		mtd_resume(mtd);
130	return 0;
131}
132
133static ssize_t mtd_type_show(struct device *dev,
134		struct device_attribute *attr, char *buf)
135{
136	struct mtd_info *mtd = dev_get_drvdata(dev);
137	char *type;
138
139	switch (mtd->type) {
140	case MTD_ABSENT:
141		type = "absent";
142		break;
143	case MTD_RAM:
144		type = "ram";
145		break;
146	case MTD_ROM:
147		type = "rom";
148		break;
149	case MTD_NORFLASH:
150		type = "nor";
151		break;
152	case MTD_NANDFLASH:
153		type = "nand";
154		break;
155	case MTD_DATAFLASH:
156		type = "dataflash";
157		break;
158	case MTD_UBIVOLUME:
159		type = "ubi";
160		break;
161	case MTD_MLCNANDFLASH:
162		type = "mlc-nand";
163		break;
164	default:
165		type = "unknown";
166	}
167
168	return snprintf(buf, PAGE_SIZE, "%s\n", type);
169}
170static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
171
172static ssize_t mtd_flags_show(struct device *dev,
173		struct device_attribute *attr, char *buf)
174{
175	struct mtd_info *mtd = dev_get_drvdata(dev);
176
177	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
178
179}
180static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181
182static ssize_t mtd_size_show(struct device *dev,
183		struct device_attribute *attr, char *buf)
184{
185	struct mtd_info *mtd = dev_get_drvdata(dev);
186
187	return snprintf(buf, PAGE_SIZE, "%llu\n",
188		(unsigned long long)mtd->size);
189
190}
191static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194		struct device_attribute *attr, char *buf)
195{
196	struct mtd_info *mtd = dev_get_drvdata(dev);
197
198	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
199
200}
201static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
202
203static ssize_t mtd_writesize_show(struct device *dev,
204		struct device_attribute *attr, char *buf)
205{
206	struct mtd_info *mtd = dev_get_drvdata(dev);
207
208	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
209
210}
211static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
212
213static ssize_t mtd_subpagesize_show(struct device *dev,
214		struct device_attribute *attr, char *buf)
215{
216	struct mtd_info *mtd = dev_get_drvdata(dev);
217	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
218
219	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
220
221}
222static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
223
224static ssize_t mtd_oobsize_show(struct device *dev,
225		struct device_attribute *attr, char *buf)
226{
227	struct mtd_info *mtd = dev_get_drvdata(dev);
228
229	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
230
231}
232static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
233
234static ssize_t mtd_numeraseregions_show(struct device *dev,
235		struct device_attribute *attr, char *buf)
236{
237	struct mtd_info *mtd = dev_get_drvdata(dev);
238
239	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
240
241}
242static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
243	NULL);
244
245static ssize_t mtd_name_show(struct device *dev,
246		struct device_attribute *attr, char *buf)
247{
248	struct mtd_info *mtd = dev_get_drvdata(dev);
249
250	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
251
252}
253static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
254
255static ssize_t mtd_ecc_strength_show(struct device *dev,
256				     struct device_attribute *attr, char *buf)
257{
258	struct mtd_info *mtd = dev_get_drvdata(dev);
259
260	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
261}
262static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
263
264static ssize_t mtd_bitflip_threshold_show(struct device *dev,
265					  struct device_attribute *attr,
266					  char *buf)
267{
268	struct mtd_info *mtd = dev_get_drvdata(dev);
269
270	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
271}
272
273static ssize_t mtd_bitflip_threshold_store(struct device *dev,
274					   struct device_attribute *attr,
275					   const char *buf, size_t count)
276{
277	struct mtd_info *mtd = dev_get_drvdata(dev);
278	unsigned int bitflip_threshold;
279	int retval;
280
281	retval = kstrtouint(buf, 0, &bitflip_threshold);
282	if (retval)
283		return retval;
284
285	mtd->bitflip_threshold = bitflip_threshold;
286	return count;
287}
288static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
289		   mtd_bitflip_threshold_show,
290		   mtd_bitflip_threshold_store);
291
292static ssize_t mtd_ecc_step_size_show(struct device *dev,
293		struct device_attribute *attr, char *buf)
294{
295	struct mtd_info *mtd = dev_get_drvdata(dev);
296
297	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
298
299}
300static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
301
302static struct attribute *mtd_attrs[] = {
303	&dev_attr_type.attr,
304	&dev_attr_flags.attr,
305	&dev_attr_size.attr,
306	&dev_attr_erasesize.attr,
307	&dev_attr_writesize.attr,
308	&dev_attr_subpagesize.attr,
309	&dev_attr_oobsize.attr,
310	&dev_attr_numeraseregions.attr,
311	&dev_attr_name.attr,
312	&dev_attr_ecc_strength.attr,
313	&dev_attr_ecc_step_size.attr,
314	&dev_attr_bitflip_threshold.attr,
315	NULL,
316};
317
318static struct attribute_group mtd_group = {
319	.attrs		= mtd_attrs,
320};
321
322static const struct attribute_group *mtd_groups[] = {
323	&mtd_group,
324	NULL,
325};
326
327static struct device_type mtd_devtype = {
328	.name		= "mtd",
329	.groups		= mtd_groups,
330	.release	= mtd_release,
331};
332
333/**
334 *	add_mtd_device - register an MTD device
335 *	@mtd: pointer to new MTD device info structure
336 *
337 *	Add a device to the list of MTD devices present in the system, and
338 *	notify each currently active MTD 'user' of its arrival. Returns
339 *	zero on success or 1 on failure, which currently will only happen
340 *	if there is insufficient memory or a sysfs error.
341 */
342
343int add_mtd_device(struct mtd_info *mtd)
344{
345	struct mtd_notifier *not;
346	int i, error;
347
348	if (!mtd->backing_dev_info) {
349		switch (mtd->type) {
350		case MTD_RAM:
351			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
352			break;
353		case MTD_ROM:
354			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
355			break;
356		default:
357			mtd->backing_dev_info = &mtd_bdi_unmappable;
358			break;
359		}
360	}
361
362	BUG_ON(mtd->writesize == 0);
363	mutex_lock(&mtd_table_mutex);
364
365	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
366	if (i < 0)
367		goto fail_locked;
368
369	mtd->index = i;
370	mtd->usecount = 0;
371
372	/* default value if not set by driver */
373	if (mtd->bitflip_threshold == 0)
374		mtd->bitflip_threshold = mtd->ecc_strength;
375
376	if (is_power_of_2(mtd->erasesize))
377		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
378	else
379		mtd->erasesize_shift = 0;
380
381	if (is_power_of_2(mtd->writesize))
382		mtd->writesize_shift = ffs(mtd->writesize) - 1;
383	else
384		mtd->writesize_shift = 0;
385
386	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
387	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
388
389	/* Some chips always power up locked. Unlock them now */
390	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
391		error = mtd_unlock(mtd, 0, mtd->size);
392		if (error && error != -EOPNOTSUPP)
393			printk(KERN_WARNING
394			       "%s: unlock failed, writes may not work\n",
395			       mtd->name);
396	}
397
398	/* Caller should have set dev.parent to match the
399	 * physical device.
400	 */
401	mtd->dev.type = &mtd_devtype;
402	mtd->dev.class = &mtd_class;
403	mtd->dev.devt = MTD_DEVT(i);
404	dev_set_name(&mtd->dev, "mtd%d", i);
405	dev_set_drvdata(&mtd->dev, mtd);
406	if (device_register(&mtd->dev) != 0)
407		goto fail_added;
408
409	if (MTD_DEVT(i))
410		device_create(&mtd_class, mtd->dev.parent,
411			      MTD_DEVT(i) + 1,
412			      NULL, "mtd%dro", i);
413
414	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
415	/* No need to get a refcount on the module containing
416	   the notifier, since we hold the mtd_table_mutex */
417	list_for_each_entry(not, &mtd_notifiers, list)
418		not->add(mtd);
419
420	mutex_unlock(&mtd_table_mutex);
421	/* We _know_ we aren't being removed, because
422	   our caller is still holding us here. So none
423	   of this try_ nonsense, and no bitching about it
424	   either. :) */
425	__module_get(THIS_MODULE);
426	return 0;
427
428fail_added:
429	idr_remove(&mtd_idr, i);
430fail_locked:
431	mutex_unlock(&mtd_table_mutex);
432	return 1;
433}
434
435/**
436 *	del_mtd_device - unregister an MTD device
437 *	@mtd: pointer to MTD device info structure
438 *
439 *	Remove a device from the list of MTD devices present in the system,
440 *	and notify each currently active MTD 'user' of its departure.
441 *	Returns zero on success or 1 on failure, which currently will happen
442 *	if the requested device does not appear to be present in the list.
443 */
444
445int del_mtd_device(struct mtd_info *mtd)
446{
447	int ret;
448	struct mtd_notifier *not;
449
450	mutex_lock(&mtd_table_mutex);
451
452	if (idr_find(&mtd_idr, mtd->index) != mtd) {
453		ret = -ENODEV;
454		goto out_error;
455	}
456
457	/* No need to get a refcount on the module containing
458		the notifier, since we hold the mtd_table_mutex */
459	list_for_each_entry(not, &mtd_notifiers, list)
460		not->remove(mtd);
461
462	if (mtd->usecount) {
463		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
464		       mtd->index, mtd->name, mtd->usecount);
465		ret = -EBUSY;
466	} else {
467		device_unregister(&mtd->dev);
468
469		idr_remove(&mtd_idr, mtd->index);
470
471		module_put(THIS_MODULE);
472		ret = 0;
473	}
474
475out_error:
476	mutex_unlock(&mtd_table_mutex);
477	return ret;
478}
479
480/**
481 * mtd_device_parse_register - parse partitions and register an MTD device.
482 *
483 * @mtd: the MTD device to register
484 * @types: the list of MTD partition probes to try, see
485 *         'parse_mtd_partitions()' for more information
486 * @parser_data: MTD partition parser-specific data
487 * @parts: fallback partition information to register, if parsing fails;
488 *         only valid if %nr_parts > %0
489 * @nr_parts: the number of partitions in parts, if zero then the full
490 *            MTD device is registered if no partition info is found
491 *
492 * This function aggregates MTD partitions parsing (done by
493 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
494 * basically follows the most common pattern found in many MTD drivers:
495 *
496 * * It first tries to probe partitions on MTD device @mtd using parsers
497 *   specified in @types (if @types is %NULL, then the default list of parsers
498 *   is used, see 'parse_mtd_partitions()' for more information). If none are
499 *   found this functions tries to fallback to information specified in
500 *   @parts/@nr_parts.
501 * * If any partitioning info was found, this function registers the found
502 *   partitions.
503 * * If no partitions were found this function just registers the MTD device
504 *   @mtd and exits.
505 *
506 * Returns zero in case of success and a negative error code in case of failure.
507 */
508int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
509			      struct mtd_part_parser_data *parser_data,
510			      const struct mtd_partition *parts,
511			      int nr_parts)
512{
513	int err;
514	struct mtd_partition *real_parts;
515
516	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
517	if (err <= 0 && nr_parts && parts) {
518		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
519				     GFP_KERNEL);
520		if (!real_parts)
521			err = -ENOMEM;
522		else
523			err = nr_parts;
524	}
525
526	if (err > 0) {
527		err = add_mtd_partitions(mtd, real_parts, err);
528		kfree(real_parts);
529	} else if (err == 0) {
530		err = add_mtd_device(mtd);
531		if (err == 1)
532			err = -ENODEV;
533	}
534
535	return err;
536}
537EXPORT_SYMBOL_GPL(mtd_device_parse_register);
538
539/**
540 * mtd_device_unregister - unregister an existing MTD device.
541 *
542 * @master: the MTD device to unregister.  This will unregister both the master
543 *          and any partitions if registered.
544 */
545int mtd_device_unregister(struct mtd_info *master)
546{
547	int err;
548
549	err = del_mtd_partitions(master);
550	if (err)
551		return err;
552
553	if (!device_is_registered(&master->dev))
554		return 0;
555
556	return del_mtd_device(master);
557}
558EXPORT_SYMBOL_GPL(mtd_device_unregister);
559
560/**
561 *	register_mtd_user - register a 'user' of MTD devices.
562 *	@new: pointer to notifier info structure
563 *
564 *	Registers a pair of callbacks function to be called upon addition
565 *	or removal of MTD devices. Causes the 'add' callback to be immediately
566 *	invoked for each MTD device currently present in the system.
567 */
568void register_mtd_user (struct mtd_notifier *new)
569{
570	struct mtd_info *mtd;
571
572	mutex_lock(&mtd_table_mutex);
573
574	list_add(&new->list, &mtd_notifiers);
575
576	__module_get(THIS_MODULE);
577
578	mtd_for_each_device(mtd)
579		new->add(mtd);
580
581	mutex_unlock(&mtd_table_mutex);
582}
583EXPORT_SYMBOL_GPL(register_mtd_user);
584
585/**
586 *	unregister_mtd_user - unregister a 'user' of MTD devices.
587 *	@old: pointer to notifier info structure
588 *
589 *	Removes a callback function pair from the list of 'users' to be
590 *	notified upon addition or removal of MTD devices. Causes the
591 *	'remove' callback to be immediately invoked for each MTD device
592 *	currently present in the system.
593 */
594int unregister_mtd_user (struct mtd_notifier *old)
595{
596	struct mtd_info *mtd;
597
598	mutex_lock(&mtd_table_mutex);
599
600	module_put(THIS_MODULE);
601
602	mtd_for_each_device(mtd)
603		old->remove(mtd);
604
605	list_del(&old->list);
606	mutex_unlock(&mtd_table_mutex);
607	return 0;
608}
609EXPORT_SYMBOL_GPL(unregister_mtd_user);
610
611/**
612 *	get_mtd_device - obtain a validated handle for an MTD device
613 *	@mtd: last known address of the required MTD device
614 *	@num: internal device number of the required MTD device
615 *
616 *	Given a number and NULL address, return the num'th entry in the device
617 *	table, if any.	Given an address and num == -1, search the device table
618 *	for a device with that address and return if it's still present. Given
619 *	both, return the num'th driver only if its address matches. Return
620 *	error code if not.
621 */
622struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
623{
624	struct mtd_info *ret = NULL, *other;
625	int err = -ENODEV;
626
627	mutex_lock(&mtd_table_mutex);
628
629	if (num == -1) {
630		mtd_for_each_device(other) {
631			if (other == mtd) {
632				ret = mtd;
633				break;
634			}
635		}
636	} else if (num >= 0) {
637		ret = idr_find(&mtd_idr, num);
638		if (mtd && mtd != ret)
639			ret = NULL;
640	}
641
642	if (!ret) {
643		ret = ERR_PTR(err);
644		goto out;
645	}
646
647	err = __get_mtd_device(ret);
648	if (err)
649		ret = ERR_PTR(err);
650out:
651	mutex_unlock(&mtd_table_mutex);
652	return ret;
653}
654EXPORT_SYMBOL_GPL(get_mtd_device);
655
656
657int __get_mtd_device(struct mtd_info *mtd)
658{
659	int err;
660
661	if (!try_module_get(mtd->owner))
662		return -ENODEV;
663
664	if (mtd->_get_device) {
665		err = mtd->_get_device(mtd);
666
667		if (err) {
668			module_put(mtd->owner);
669			return err;
670		}
671	}
672	mtd->usecount++;
673	return 0;
674}
675EXPORT_SYMBOL_GPL(__get_mtd_device);
676
677/**
678 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
679 *	device name
680 *	@name: MTD device name to open
681 *
682 * 	This function returns MTD device description structure in case of
683 * 	success and an error code in case of failure.
684 */
685struct mtd_info *get_mtd_device_nm(const char *name)
686{
687	int err = -ENODEV;
688	struct mtd_info *mtd = NULL, *other;
689
690	mutex_lock(&mtd_table_mutex);
691
692	mtd_for_each_device(other) {
693		if (!strcmp(name, other->name)) {
694			mtd = other;
695			break;
696		}
697	}
698
699	if (!mtd)
700		goto out_unlock;
701
702	err = __get_mtd_device(mtd);
703	if (err)
704		goto out_unlock;
705
706	mutex_unlock(&mtd_table_mutex);
707	return mtd;
708
709out_unlock:
710	mutex_unlock(&mtd_table_mutex);
711	return ERR_PTR(err);
712}
713EXPORT_SYMBOL_GPL(get_mtd_device_nm);
714
715void put_mtd_device(struct mtd_info *mtd)
716{
717	mutex_lock(&mtd_table_mutex);
718	__put_mtd_device(mtd);
719	mutex_unlock(&mtd_table_mutex);
720
721}
722EXPORT_SYMBOL_GPL(put_mtd_device);
723
724void __put_mtd_device(struct mtd_info *mtd)
725{
726	--mtd->usecount;
727	BUG_ON(mtd->usecount < 0);
728
729	if (mtd->_put_device)
730		mtd->_put_device(mtd);
731
732	module_put(mtd->owner);
733}
734EXPORT_SYMBOL_GPL(__put_mtd_device);
735
736/*
737 * Erase is an asynchronous operation.  Device drivers are supposed
738 * to call instr->callback() whenever the operation completes, even
739 * if it completes with a failure.
740 * Callers are supposed to pass a callback function and wait for it
741 * to be called before writing to the block.
742 */
743int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
744{
745	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
746		return -EINVAL;
747	if (!(mtd->flags & MTD_WRITEABLE))
748		return -EROFS;
749	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
750	if (!instr->len) {
751		instr->state = MTD_ERASE_DONE;
752		mtd_erase_callback(instr);
753		return 0;
754	}
755	return mtd->_erase(mtd, instr);
756}
757EXPORT_SYMBOL_GPL(mtd_erase);
758
759/*
760 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
761 */
762int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
763	      void **virt, resource_size_t *phys)
764{
765	*retlen = 0;
766	*virt = NULL;
767	if (phys)
768		*phys = 0;
769	if (!mtd->_point)
770		return -EOPNOTSUPP;
771	if (from < 0 || from > mtd->size || len > mtd->size - from)
772		return -EINVAL;
773	if (!len)
774		return 0;
775	return mtd->_point(mtd, from, len, retlen, virt, phys);
776}
777EXPORT_SYMBOL_GPL(mtd_point);
778
779/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
780int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
781{
782	if (!mtd->_point)
783		return -EOPNOTSUPP;
784	if (from < 0 || from > mtd->size || len > mtd->size - from)
785		return -EINVAL;
786	if (!len)
787		return 0;
788	return mtd->_unpoint(mtd, from, len);
789}
790EXPORT_SYMBOL_GPL(mtd_unpoint);
791
792/*
793 * Allow NOMMU mmap() to directly map the device (if not NULL)
794 * - return the address to which the offset maps
795 * - return -ENOSYS to indicate refusal to do the mapping
796 */
797unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
798				    unsigned long offset, unsigned long flags)
799{
800	if (!mtd->_get_unmapped_area)
801		return -EOPNOTSUPP;
802	if (offset > mtd->size || len > mtd->size - offset)
803		return -EINVAL;
804	return mtd->_get_unmapped_area(mtd, len, offset, flags);
805}
806EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
807
808int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
809	     u_char *buf)
810{
811	int ret_code;
812	*retlen = 0;
813	if (from < 0 || from > mtd->size || len > mtd->size - from)
814		return -EINVAL;
815	if (!len)
816		return 0;
817
818	/*
819	 * In the absence of an error, drivers return a non-negative integer
820	 * representing the maximum number of bitflips that were corrected on
821	 * any one ecc region (if applicable; zero otherwise).
822	 */
823	ret_code = mtd->_read(mtd, from, len, retlen, buf);
824	if (unlikely(ret_code < 0))
825		return ret_code;
826	if (mtd->ecc_strength == 0)
827		return 0;	/* device lacks ecc */
828	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
829}
830EXPORT_SYMBOL_GPL(mtd_read);
831
832int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
833	      const u_char *buf)
834{
835	*retlen = 0;
836	if (to < 0 || to > mtd->size || len > mtd->size - to)
837		return -EINVAL;
838	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
839		return -EROFS;
840	if (!len)
841		return 0;
842	return mtd->_write(mtd, to, len, retlen, buf);
843}
844EXPORT_SYMBOL_GPL(mtd_write);
845
846/*
847 * In blackbox flight recorder like scenarios we want to make successful writes
848 * in interrupt context. panic_write() is only intended to be called when its
849 * known the kernel is about to panic and we need the write to succeed. Since
850 * the kernel is not going to be running for much longer, this function can
851 * break locks and delay to ensure the write succeeds (but not sleep).
852 */
853int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
854		    const u_char *buf)
855{
856	*retlen = 0;
857	if (!mtd->_panic_write)
858		return -EOPNOTSUPP;
859	if (to < 0 || to > mtd->size || len > mtd->size - to)
860		return -EINVAL;
861	if (!(mtd->flags & MTD_WRITEABLE))
862		return -EROFS;
863	if (!len)
864		return 0;
865	return mtd->_panic_write(mtd, to, len, retlen, buf);
866}
867EXPORT_SYMBOL_GPL(mtd_panic_write);
868
869int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
870{
871	int ret_code;
872	ops->retlen = ops->oobretlen = 0;
873	if (!mtd->_read_oob)
874		return -EOPNOTSUPP;
875	/*
876	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
877	 * similar to mtd->_read(), returning a non-negative integer
878	 * representing max bitflips. In other cases, mtd->_read_oob() may
879	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
880	 */
881	ret_code = mtd->_read_oob(mtd, from, ops);
882	if (unlikely(ret_code < 0))
883		return ret_code;
884	if (mtd->ecc_strength == 0)
885		return 0;	/* device lacks ecc */
886	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
887}
888EXPORT_SYMBOL_GPL(mtd_read_oob);
889
890/*
891 * Method to access the protection register area, present in some flash
892 * devices. The user data is one time programmable but the factory data is read
893 * only.
894 */
895int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
896			   size_t len)
897{
898	if (!mtd->_get_fact_prot_info)
899		return -EOPNOTSUPP;
900	if (!len)
901		return 0;
902	return mtd->_get_fact_prot_info(mtd, buf, len);
903}
904EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
905
906int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
907			   size_t *retlen, u_char *buf)
908{
909	*retlen = 0;
910	if (!mtd->_read_fact_prot_reg)
911		return -EOPNOTSUPP;
912	if (!len)
913		return 0;
914	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
915}
916EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
917
918int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
919			   size_t len)
920{
921	if (!mtd->_get_user_prot_info)
922		return -EOPNOTSUPP;
923	if (!len)
924		return 0;
925	return mtd->_get_user_prot_info(mtd, buf, len);
926}
927EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
928
929int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
930			   size_t *retlen, u_char *buf)
931{
932	*retlen = 0;
933	if (!mtd->_read_user_prot_reg)
934		return -EOPNOTSUPP;
935	if (!len)
936		return 0;
937	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
938}
939EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
940
941int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
942			    size_t *retlen, u_char *buf)
943{
944	*retlen = 0;
945	if (!mtd->_write_user_prot_reg)
946		return -EOPNOTSUPP;
947	if (!len)
948		return 0;
949	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
950}
951EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
952
953int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
954{
955	if (!mtd->_lock_user_prot_reg)
956		return -EOPNOTSUPP;
957	if (!len)
958		return 0;
959	return mtd->_lock_user_prot_reg(mtd, from, len);
960}
961EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
962
963/* Chip-supported device locking */
964int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
965{
966	if (!mtd->_lock)
967		return -EOPNOTSUPP;
968	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
969		return -EINVAL;
970	if (!len)
971		return 0;
972	return mtd->_lock(mtd, ofs, len);
973}
974EXPORT_SYMBOL_GPL(mtd_lock);
975
976int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
977{
978	if (!mtd->_unlock)
979		return -EOPNOTSUPP;
980	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
981		return -EINVAL;
982	if (!len)
983		return 0;
984	return mtd->_unlock(mtd, ofs, len);
985}
986EXPORT_SYMBOL_GPL(mtd_unlock);
987
988int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
989{
990	if (!mtd->_is_locked)
991		return -EOPNOTSUPP;
992	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
993		return -EINVAL;
994	if (!len)
995		return 0;
996	return mtd->_is_locked(mtd, ofs, len);
997}
998EXPORT_SYMBOL_GPL(mtd_is_locked);
999
1000int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1001{
1002	if (!mtd->_block_isbad)
1003		return 0;
1004	if (ofs < 0 || ofs > mtd->size)
1005		return -EINVAL;
1006	return mtd->_block_isbad(mtd, ofs);
1007}
1008EXPORT_SYMBOL_GPL(mtd_block_isbad);
1009
1010int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1011{
1012	if (!mtd->_block_markbad)
1013		return -EOPNOTSUPP;
1014	if (ofs < 0 || ofs > mtd->size)
1015		return -EINVAL;
1016	if (!(mtd->flags & MTD_WRITEABLE))
1017		return -EROFS;
1018	return mtd->_block_markbad(mtd, ofs);
1019}
1020EXPORT_SYMBOL_GPL(mtd_block_markbad);
1021
1022/*
1023 * default_mtd_writev - the default writev method
1024 * @mtd: mtd device description object pointer
1025 * @vecs: the vectors to write
1026 * @count: count of vectors in @vecs
1027 * @to: the MTD device offset to write to
1028 * @retlen: on exit contains the count of bytes written to the MTD device.
1029 *
1030 * This function returns zero in case of success and a negative error code in
1031 * case of failure.
1032 */
1033static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1034			      unsigned long count, loff_t to, size_t *retlen)
1035{
1036	unsigned long i;
1037	size_t totlen = 0, thislen;
1038	int ret = 0;
1039
1040	for (i = 0; i < count; i++) {
1041		if (!vecs[i].iov_len)
1042			continue;
1043		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1044				vecs[i].iov_base);
1045		totlen += thislen;
1046		if (ret || thislen != vecs[i].iov_len)
1047			break;
1048		to += vecs[i].iov_len;
1049	}
1050	*retlen = totlen;
1051	return ret;
1052}
1053
1054/*
1055 * mtd_writev - the vector-based MTD write method
1056 * @mtd: mtd device description object pointer
1057 * @vecs: the vectors to write
1058 * @count: count of vectors in @vecs
1059 * @to: the MTD device offset to write to
1060 * @retlen: on exit contains the count of bytes written to the MTD device.
1061 *
1062 * This function returns zero in case of success and a negative error code in
1063 * case of failure.
1064 */
1065int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1066	       unsigned long count, loff_t to, size_t *retlen)
1067{
1068	*retlen = 0;
1069	if (!(mtd->flags & MTD_WRITEABLE))
1070		return -EROFS;
1071	if (!mtd->_writev)
1072		return default_mtd_writev(mtd, vecs, count, to, retlen);
1073	return mtd->_writev(mtd, vecs, count, to, retlen);
1074}
1075EXPORT_SYMBOL_GPL(mtd_writev);
1076
1077/**
1078 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1079 * @mtd: mtd device description object pointer
1080 * @size: a pointer to the ideal or maximum size of the allocation, points
1081 *        to the actual allocation size on success.
1082 *
1083 * This routine attempts to allocate a contiguous kernel buffer up to
1084 * the specified size, backing off the size of the request exponentially
1085 * until the request succeeds or until the allocation size falls below
1086 * the system page size. This attempts to make sure it does not adversely
1087 * impact system performance, so when allocating more than one page, we
1088 * ask the memory allocator to avoid re-trying, swapping, writing back
1089 * or performing I/O.
1090 *
1091 * Note, this function also makes sure that the allocated buffer is aligned to
1092 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1093 *
1094 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1095 * to handle smaller (i.e. degraded) buffer allocations under low- or
1096 * fragmented-memory situations where such reduced allocations, from a
1097 * requested ideal, are allowed.
1098 *
1099 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1100 */
1101void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1102{
1103	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1104		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1105	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1106	void *kbuf;
1107
1108	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1109
1110	while (*size > min_alloc) {
1111		kbuf = kmalloc(*size, flags);
1112		if (kbuf)
1113			return kbuf;
1114
1115		*size >>= 1;
1116		*size = ALIGN(*size, mtd->writesize);
1117	}
1118
1119	/*
1120	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1121	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1122	 */
1123	return kmalloc(*size, GFP_KERNEL);
1124}
1125EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1126
1127#ifdef CONFIG_PROC_FS
1128
1129/*====================================================================*/
1130/* Support for /proc/mtd */
1131
1132static int mtd_proc_show(struct seq_file *m, void *v)
1133{
1134	struct mtd_info *mtd;
1135
1136	seq_puts(m, "dev:    size   erasesize  name\n");
1137	mutex_lock(&mtd_table_mutex);
1138	mtd_for_each_device(mtd) {
1139		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1140			   mtd->index, (unsigned long long)mtd->size,
1141			   mtd->erasesize, mtd->name);
1142	}
1143	mutex_unlock(&mtd_table_mutex);
1144	return 0;
1145}
1146
1147static int mtd_proc_open(struct inode *inode, struct file *file)
1148{
1149	return single_open(file, mtd_proc_show, NULL);
1150}
1151
1152static const struct file_operations mtd_proc_ops = {
1153	.open		= mtd_proc_open,
1154	.read		= seq_read,
1155	.llseek		= seq_lseek,
1156	.release	= single_release,
1157};
1158#endif /* CONFIG_PROC_FS */
1159
1160/*====================================================================*/
1161/* Init code */
1162
1163static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1164{
1165	int ret;
1166
1167	ret = bdi_init(bdi);
1168	if (!ret)
1169		ret = bdi_register(bdi, NULL, "%s", name);
1170
1171	if (ret)
1172		bdi_destroy(bdi);
1173
1174	return ret;
1175}
1176
1177static struct proc_dir_entry *proc_mtd;
1178
1179static int __init init_mtd(void)
1180{
1181	int ret;
1182
1183	ret = class_register(&mtd_class);
1184	if (ret)
1185		goto err_reg;
1186
1187	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1188	if (ret)
1189		goto err_bdi1;
1190
1191	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1192	if (ret)
1193		goto err_bdi2;
1194
1195	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1196	if (ret)
1197		goto err_bdi3;
1198
1199	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1200
1201	ret = init_mtdchar();
1202	if (ret)
1203		goto out_procfs;
1204
1205	return 0;
1206
1207out_procfs:
1208	if (proc_mtd)
1209		remove_proc_entry("mtd", NULL);
1210err_bdi3:
1211	bdi_destroy(&mtd_bdi_ro_mappable);
1212err_bdi2:
1213	bdi_destroy(&mtd_bdi_unmappable);
1214err_bdi1:
1215	class_unregister(&mtd_class);
1216err_reg:
1217	pr_err("Error registering mtd class or bdi: %d\n", ret);
1218	return ret;
1219}
1220
1221static void __exit cleanup_mtd(void)
1222{
1223	cleanup_mtdchar();
1224	if (proc_mtd)
1225		remove_proc_entry("mtd", NULL);
1226	class_unregister(&mtd_class);
1227	bdi_destroy(&mtd_bdi_unmappable);
1228	bdi_destroy(&mtd_bdi_ro_mappable);
1229	bdi_destroy(&mtd_bdi_rw_mappable);
1230}
1231
1232module_init(init_mtd);
1233module_exit(cleanup_mtd);
1234
1235MODULE_LICENSE("GPL");
1236MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1237MODULE_DESCRIPTION("Core MTD registration and access routines");
1238