c_can.c revision 097aec19689d8f2f76fd0c1becacf32801ae94c7
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* For the low buffers we clear the interrupt bit, but keep newdat */
118#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
119				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the high buffers we clear the interrupt bit and newdat */
123#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)
124
125/* IFx arbitration */
126#define IF_ARB_MSGVAL		BIT(15)
127#define IF_ARB_MSGXTD		BIT(14)
128#define IF_ARB_TRANSMIT		BIT(13)
129
130/* IFx message control */
131#define IF_MCONT_NEWDAT		BIT(15)
132#define IF_MCONT_MSGLST		BIT(14)
133#define IF_MCONT_INTPND		BIT(13)
134#define IF_MCONT_UMASK		BIT(12)
135#define IF_MCONT_TXIE		BIT(11)
136#define IF_MCONT_RXIE		BIT(10)
137#define IF_MCONT_RMTEN		BIT(9)
138#define IF_MCONT_TXRQST		BIT(8)
139#define IF_MCONT_EOB		BIT(7)
140#define IF_MCONT_DLC_MASK	0xf
141
142/*
143 * Use IF1 for RX and IF2 for TX
144 */
145#define IF_RX			0
146#define IF_TX			1
147
148/* status interrupt */
149#define STATUS_INTERRUPT	0x8000
150
151/* global interrupt masks */
152#define ENABLE_ALL_INTERRUPTS	1
153#define DISABLE_ALL_INTERRUPTS	0
154
155/* minimum timeout for checking BUSY status */
156#define MIN_TIMEOUT_VALUE	6
157
158/* Wait for ~1 sec for INIT bit */
159#define INIT_WAIT_MS		1000
160
161/* napi related */
162#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
163
164/* c_can lec values */
165enum c_can_lec_type {
166	LEC_NO_ERROR = 0,
167	LEC_STUFF_ERROR,
168	LEC_FORM_ERROR,
169	LEC_ACK_ERROR,
170	LEC_BIT1_ERROR,
171	LEC_BIT0_ERROR,
172	LEC_CRC_ERROR,
173	LEC_UNUSED,
174	LEC_MASK = LEC_UNUSED,
175};
176
177/*
178 * c_can error types:
179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
180 */
181enum c_can_bus_error_types {
182	C_CAN_NO_ERROR = 0,
183	C_CAN_BUS_OFF,
184	C_CAN_ERROR_WARNING,
185	C_CAN_ERROR_PASSIVE,
186};
187
188static const struct can_bittiming_const c_can_bittiming_const = {
189	.name = KBUILD_MODNAME,
190	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
191	.tseg1_max = 16,
192	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
193	.tseg2_max = 8,
194	.sjw_max = 4,
195	.brp_min = 1,
196	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
197	.brp_inc = 1,
198};
199
200static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
201{
202	if (priv->device)
203		pm_runtime_enable(priv->device);
204}
205
206static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
207{
208	if (priv->device)
209		pm_runtime_disable(priv->device);
210}
211
212static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
213{
214	if (priv->device)
215		pm_runtime_get_sync(priv->device);
216}
217
218static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
219{
220	if (priv->device)
221		pm_runtime_put_sync(priv->device);
222}
223
224static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
225{
226	if (priv->raminit)
227		priv->raminit(priv, enable);
228}
229
230static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
231{
232	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
233			C_CAN_MSG_OBJ_TX_FIRST;
234}
235
236static inline int get_tx_echo_msg_obj(int txecho)
237{
238	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
239}
240
241static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
242{
243	u32 val = priv->read_reg(priv, index);
244	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
245	return val;
246}
247
248static void c_can_enable_all_interrupts(struct c_can_priv *priv,
249						int enable)
250{
251	unsigned int cntrl_save = priv->read_reg(priv,
252						C_CAN_CTRL_REG);
253
254	if (enable)
255		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
256	else
257		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
258
259	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
260}
261
262static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
263{
264	int count = MIN_TIMEOUT_VALUE;
265
266	while (count && priv->read_reg(priv,
267				C_CAN_IFACE(COMREQ_REG, iface)) &
268				IF_COMR_BUSY) {
269		count--;
270		udelay(1);
271	}
272
273	if (!count)
274		return 1;
275
276	return 0;
277}
278
279static inline void c_can_object_get(struct net_device *dev,
280					int iface, int objno, int mask)
281{
282	struct c_can_priv *priv = netdev_priv(dev);
283
284	/*
285	 * As per specs, after writting the message object number in the
286	 * IF command request register the transfer b/w interface
287	 * register and message RAM must be complete in 6 CAN-CLK
288	 * period.
289	 */
290	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
291			IFX_WRITE_LOW_16BIT(mask));
292	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
293			IFX_WRITE_LOW_16BIT(objno));
294
295	if (c_can_msg_obj_is_busy(priv, iface))
296		netdev_err(dev, "timed out in object get\n");
297}
298
299static inline void c_can_object_put(struct net_device *dev,
300					int iface, int objno, int mask)
301{
302	struct c_can_priv *priv = netdev_priv(dev);
303
304	/*
305	 * As per specs, after writting the message object number in the
306	 * IF command request register the transfer b/w interface
307	 * register and message RAM must be complete in 6 CAN-CLK
308	 * period.
309	 */
310	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
311			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
312	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
313			IFX_WRITE_LOW_16BIT(objno));
314
315	if (c_can_msg_obj_is_busy(priv, iface))
316		netdev_err(dev, "timed out in object put\n");
317}
318
319static void c_can_write_msg_object(struct net_device *dev,
320			int iface, struct can_frame *frame, int objno)
321{
322	int i;
323	u16 flags = 0;
324	unsigned int id;
325	struct c_can_priv *priv = netdev_priv(dev);
326
327	if (!(frame->can_id & CAN_RTR_FLAG))
328		flags |= IF_ARB_TRANSMIT;
329
330	if (frame->can_id & CAN_EFF_FLAG) {
331		id = frame->can_id & CAN_EFF_MASK;
332		flags |= IF_ARB_MSGXTD;
333	} else
334		id = ((frame->can_id & CAN_SFF_MASK) << 18);
335
336	flags |= IF_ARB_MSGVAL;
337
338	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
339				IFX_WRITE_LOW_16BIT(id));
340	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
341				IFX_WRITE_HIGH_16BIT(id));
342
343	for (i = 0; i < frame->can_dlc; i += 2) {
344		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
345				frame->data[i] | (frame->data[i + 1] << 8));
346	}
347
348	/* enable interrupt for this message object */
349	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
350			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
351			frame->can_dlc);
352	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
353}
354
355static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
356						int iface,
357						int ctrl_mask)
358{
359	int i;
360	struct c_can_priv *priv = netdev_priv(dev);
361
362	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
363		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
364				ctrl_mask & ~IF_MCONT_NEWDAT);
365		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
366	}
367}
368
369static int c_can_handle_lost_msg_obj(struct net_device *dev,
370				     int iface, int objno, u32 ctrl)
371{
372	struct net_device_stats *stats = &dev->stats;
373	struct c_can_priv *priv = netdev_priv(dev);
374	struct can_frame *frame;
375	struct sk_buff *skb;
376
377	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
378	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
379	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
380
381	/* create an error msg */
382	skb = alloc_can_err_skb(dev, &frame);
383	if (unlikely(!skb))
384		return 0;
385
386	frame->can_id |= CAN_ERR_CRTL;
387	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
388	stats->rx_errors++;
389	stats->rx_over_errors++;
390
391	netif_receive_skb(skb);
392	return 1;
393}
394
395static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
396{
397	u16 flags, data;
398	int i;
399	unsigned int val;
400	struct c_can_priv *priv = netdev_priv(dev);
401	struct net_device_stats *stats = &dev->stats;
402	struct sk_buff *skb;
403	struct can_frame *frame;
404
405	skb = alloc_can_skb(dev, &frame);
406	if (!skb) {
407		stats->rx_dropped++;
408		return -ENOMEM;
409	}
410
411	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
412
413	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
414	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
415		(flags << 16);
416
417	if (flags & IF_ARB_MSGXTD)
418		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
419	else
420		frame->can_id = (val >> 18) & CAN_SFF_MASK;
421
422	if (flags & IF_ARB_TRANSMIT)
423		frame->can_id |= CAN_RTR_FLAG;
424	else {
425		for (i = 0; i < frame->can_dlc; i += 2) {
426			data = priv->read_reg(priv,
427				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
428			frame->data[i] = data;
429			frame->data[i + 1] = data >> 8;
430		}
431	}
432
433	stats->rx_packets++;
434	stats->rx_bytes += frame->can_dlc;
435
436	netif_receive_skb(skb);
437	return 0;
438}
439
440static void c_can_setup_receive_object(struct net_device *dev, int iface,
441					int objno, unsigned int mask,
442					unsigned int id, unsigned int mcont)
443{
444	struct c_can_priv *priv = netdev_priv(dev);
445
446	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
447			IFX_WRITE_LOW_16BIT(mask));
448
449	/* According to C_CAN documentation, the reserved bit
450	 * in IFx_MASK2 register is fixed 1
451	 */
452	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
453			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
454
455	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
456			IFX_WRITE_LOW_16BIT(id));
457	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
458			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
459
460	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
461	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
462
463	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
464			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
465}
466
467static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
468{
469	struct c_can_priv *priv = netdev_priv(dev);
470
471	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
472	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
473	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
474
475	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
476
477	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
478			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
479}
480
481static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
482{
483	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
484
485	/*
486	 * as transmission request register's bit n-1 corresponds to
487	 * message object n, we need to handle the same properly.
488	 */
489	if (val & (1 << (objno - 1)))
490		return 1;
491
492	return 0;
493}
494
495static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
496					struct net_device *dev)
497{
498	u32 msg_obj_no;
499	struct c_can_priv *priv = netdev_priv(dev);
500	struct can_frame *frame = (struct can_frame *)skb->data;
501
502	if (can_dropped_invalid_skb(dev, skb))
503		return NETDEV_TX_OK;
504
505	spin_lock_bh(&priv->xmit_lock);
506	msg_obj_no = get_tx_next_msg_obj(priv);
507
508	/* prepare message object for transmission */
509	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
510	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
511	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
512
513	/*
514	 * we have to stop the queue in case of a wrap around or
515	 * if the next TX message object is still in use
516	 */
517	priv->tx_next++;
518	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
519			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
520		netif_stop_queue(dev);
521	spin_unlock_bh(&priv->xmit_lock);
522
523	return NETDEV_TX_OK;
524}
525
526static int c_can_wait_for_ctrl_init(struct net_device *dev,
527				    struct c_can_priv *priv, u32 init)
528{
529	int retry = 0;
530
531	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
532		udelay(10);
533		if (retry++ > 1000) {
534			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
535			return -EIO;
536		}
537	}
538	return 0;
539}
540
541static int c_can_set_bittiming(struct net_device *dev)
542{
543	unsigned int reg_btr, reg_brpe, ctrl_save;
544	u8 brp, brpe, sjw, tseg1, tseg2;
545	u32 ten_bit_brp;
546	struct c_can_priv *priv = netdev_priv(dev);
547	const struct can_bittiming *bt = &priv->can.bittiming;
548	int res;
549
550	/* c_can provides a 6-bit brp and 4-bit brpe fields */
551	ten_bit_brp = bt->brp - 1;
552	brp = ten_bit_brp & BTR_BRP_MASK;
553	brpe = ten_bit_brp >> 6;
554
555	sjw = bt->sjw - 1;
556	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
557	tseg2 = bt->phase_seg2 - 1;
558	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
559			(tseg2 << BTR_TSEG2_SHIFT);
560	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
561
562	netdev_info(dev,
563		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
564
565	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
566	ctrl_save &= ~CONTROL_INIT;
567	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
568	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
569	if (res)
570		return res;
571
572	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
573	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
574	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
575
576	return c_can_wait_for_ctrl_init(dev, priv, 0);
577}
578
579/*
580 * Configure C_CAN message objects for Tx and Rx purposes:
581 * C_CAN provides a total of 32 message objects that can be configured
582 * either for Tx or Rx purposes. Here the first 16 message objects are used as
583 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
584 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
585 * See user guide document for further details on configuring message
586 * objects.
587 */
588static void c_can_configure_msg_objects(struct net_device *dev)
589{
590	int i;
591
592	/* first invalidate all message objects */
593	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
594		c_can_inval_msg_object(dev, IF_RX, i);
595
596	/* setup receive message objects */
597	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
598		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
599			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
600
601	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
602			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
603}
604
605/*
606 * Configure C_CAN chip:
607 * - enable/disable auto-retransmission
608 * - set operating mode
609 * - configure message objects
610 */
611static int c_can_chip_config(struct net_device *dev)
612{
613	struct c_can_priv *priv = netdev_priv(dev);
614
615	/* enable automatic retransmission */
616	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
617
618	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
619	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
620		/* loopback + silent mode : useful for hot self-test */
621		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
622		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
623	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
624		/* loopback mode : useful for self-test function */
625		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
626		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
627	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
628		/* silent mode : bus-monitoring mode */
629		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
630		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
631	}
632
633	/* configure message objects */
634	c_can_configure_msg_objects(dev);
635
636	/* set a `lec` value so that we can check for updates later */
637	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
638
639	/* set bittiming params */
640	return c_can_set_bittiming(dev);
641}
642
643static int c_can_start(struct net_device *dev)
644{
645	struct c_can_priv *priv = netdev_priv(dev);
646	int err;
647
648	/* basic c_can configuration */
649	err = c_can_chip_config(dev);
650	if (err)
651		return err;
652
653	priv->can.state = CAN_STATE_ERROR_ACTIVE;
654
655	/* reset tx helper pointers */
656	priv->tx_next = priv->tx_echo = 0;
657
658	return 0;
659}
660
661static void c_can_stop(struct net_device *dev)
662{
663	struct c_can_priv *priv = netdev_priv(dev);
664
665	/* disable all interrupts */
666	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
667
668	/* set the state as STOPPED */
669	priv->can.state = CAN_STATE_STOPPED;
670}
671
672static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
673{
674	struct c_can_priv *priv = netdev_priv(dev);
675	int err;
676
677	switch (mode) {
678	case CAN_MODE_START:
679		err = c_can_start(dev);
680		if (err)
681			return err;
682		netif_wake_queue(dev);
683		/* enable status change, error and module interrupts */
684		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
685		break;
686	default:
687		return -EOPNOTSUPP;
688	}
689
690	return 0;
691}
692
693static int __c_can_get_berr_counter(const struct net_device *dev,
694				    struct can_berr_counter *bec)
695{
696	unsigned int reg_err_counter;
697	struct c_can_priv *priv = netdev_priv(dev);
698
699	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
700	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
701				ERR_CNT_REC_SHIFT;
702	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
703
704	return 0;
705}
706
707static int c_can_get_berr_counter(const struct net_device *dev,
708				  struct can_berr_counter *bec)
709{
710	struct c_can_priv *priv = netdev_priv(dev);
711	int err;
712
713	c_can_pm_runtime_get_sync(priv);
714	err = __c_can_get_berr_counter(dev, bec);
715	c_can_pm_runtime_put_sync(priv);
716
717	return err;
718}
719
720/*
721 * priv->tx_echo holds the number of the oldest can_frame put for
722 * transmission into the hardware, but not yet ACKed by the CAN tx
723 * complete IRQ.
724 *
725 * We iterate from priv->tx_echo to priv->tx_next and check if the
726 * packet has been transmitted, echo it back to the CAN framework.
727 * If we discover a not yet transmitted packet, stop looking for more.
728 */
729static void c_can_do_tx(struct net_device *dev)
730{
731	struct c_can_priv *priv = netdev_priv(dev);
732	struct net_device_stats *stats = &dev->stats;
733	u32 val, obj, pkts = 0, bytes = 0;
734
735	spin_lock_bh(&priv->xmit_lock);
736
737	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
738		obj = get_tx_echo_msg_obj(priv->tx_echo);
739		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
740
741		if (val & (1 << (obj - 1)))
742			break;
743
744		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
745		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
746		pkts++;
747		c_can_inval_msg_object(dev, IF_TX, obj);
748	}
749
750	/* restart queue if wrap-up or if queue stalled on last pkt */
751	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
752			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
753		netif_wake_queue(dev);
754
755	spin_unlock_bh(&priv->xmit_lock);
756
757	if (pkts) {
758		stats->tx_bytes += bytes;
759		stats->tx_packets += pkts;
760		can_led_event(dev, CAN_LED_EVENT_TX);
761	}
762}
763
764/*
765 * If we have a gap in the pending bits, that means we either
766 * raced with the hardware or failed to readout all upper
767 * objects in the last run due to quota limit.
768 */
769static u32 c_can_adjust_pending(u32 pend)
770{
771	u32 weight, lasts;
772
773	if (pend == RECEIVE_OBJECT_BITS)
774		return pend;
775
776	/*
777	 * If the last set bit is larger than the number of pending
778	 * bits we have a gap.
779	 */
780	weight = hweight32(pend);
781	lasts = fls(pend);
782
783	/* If the bits are linear, nothing to do */
784	if (lasts == weight)
785		return pend;
786
787	/*
788	 * Find the first set bit after the gap. We walk backwards
789	 * from the last set bit.
790	 */
791	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
792
793	return pend & ~((1 << lasts) - 1);
794}
795
796static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
797			      u32 pend, int quota)
798{
799	u32 pkts = 0, ctrl, obj, mcmd;
800
801	while ((obj = ffs(pend)) && quota > 0) {
802		pend &= ~BIT(obj - 1);
803
804		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
805			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
806
807		c_can_object_get(dev, IF_RX, obj, mcmd);
808		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
809
810		if (ctrl & IF_MCONT_MSGLST) {
811			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
812
813			pkts += n;
814			quota -= n;
815			continue;
816		}
817
818		/*
819		 * This really should not happen, but this covers some
820		 * odd HW behaviour. Do not remove that unless you
821		 * want to brick your machine.
822		 */
823		if (!(ctrl & IF_MCONT_NEWDAT))
824			continue;
825
826		/* read the data from the message object */
827		c_can_read_msg_object(dev, IF_RX, ctrl);
828
829		if (obj == C_CAN_MSG_RX_LOW_LAST)
830			/* activate all lower message objects */
831			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);
832
833		pkts++;
834		quota--;
835	}
836
837	return pkts;
838}
839
840/*
841 * theory of operation:
842 *
843 * c_can core saves a received CAN message into the first free message
844 * object it finds free (starting with the lowest). Bits NEWDAT and
845 * INTPND are set for this message object indicating that a new message
846 * has arrived. To work-around this issue, we keep two groups of message
847 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
848 *
849 * To ensure in-order frame reception we use the following
850 * approach while re-activating a message object to receive further
851 * frames:
852 * - if the current message object number is lower than
853 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
854 *   the INTPND bit.
855 * - if the current message object number is equal to
856 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
857 *   receive message objects.
858 * - if the current message object number is greater than
859 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
860 *   only this message object.
861 */
862static int c_can_do_rx_poll(struct net_device *dev, int quota)
863{
864	struct c_can_priv *priv = netdev_priv(dev);
865	u32 pkts = 0, pend = 0, toread, n;
866
867	/*
868	 * It is faster to read only one 16bit register. This is only possible
869	 * for a maximum number of 16 objects.
870	 */
871	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
872			"Implementation does not support more message objects than 16");
873
874	while (quota > 0) {
875		if (!pend) {
876			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
877			if (!pend)
878				break;
879			/*
880			 * If the pending field has a gap, handle the
881			 * bits above the gap first.
882			 */
883			toread = c_can_adjust_pending(pend);
884		} else {
885			toread = pend;
886		}
887		/* Remove the bits from pend */
888		pend &= ~toread;
889		/* Read the objects */
890		n = c_can_read_objects(dev, priv, toread, quota);
891		pkts += n;
892		quota -= n;
893	}
894
895	if (pkts)
896		can_led_event(dev, CAN_LED_EVENT_RX);
897
898	return pkts;
899}
900
901static int c_can_handle_state_change(struct net_device *dev,
902				enum c_can_bus_error_types error_type)
903{
904	unsigned int reg_err_counter;
905	unsigned int rx_err_passive;
906	struct c_can_priv *priv = netdev_priv(dev);
907	struct net_device_stats *stats = &dev->stats;
908	struct can_frame *cf;
909	struct sk_buff *skb;
910	struct can_berr_counter bec;
911
912	switch (error_type) {
913	case C_CAN_ERROR_WARNING:
914		/* error warning state */
915		priv->can.can_stats.error_warning++;
916		priv->can.state = CAN_STATE_ERROR_WARNING;
917		break;
918	case C_CAN_ERROR_PASSIVE:
919		/* error passive state */
920		priv->can.can_stats.error_passive++;
921		priv->can.state = CAN_STATE_ERROR_PASSIVE;
922		break;
923	case C_CAN_BUS_OFF:
924		/* bus-off state */
925		priv->can.state = CAN_STATE_BUS_OFF;
926		can_bus_off(dev);
927		break;
928	default:
929		break;
930	}
931
932	/* propagate the error condition to the CAN stack */
933	skb = alloc_can_err_skb(dev, &cf);
934	if (unlikely(!skb))
935		return 0;
936
937	__c_can_get_berr_counter(dev, &bec);
938	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
939	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
940				ERR_CNT_RP_SHIFT;
941
942	switch (error_type) {
943	case C_CAN_ERROR_WARNING:
944		/* error warning state */
945		cf->can_id |= CAN_ERR_CRTL;
946		cf->data[1] = (bec.txerr > bec.rxerr) ?
947			CAN_ERR_CRTL_TX_WARNING :
948			CAN_ERR_CRTL_RX_WARNING;
949		cf->data[6] = bec.txerr;
950		cf->data[7] = bec.rxerr;
951
952		break;
953	case C_CAN_ERROR_PASSIVE:
954		/* error passive state */
955		cf->can_id |= CAN_ERR_CRTL;
956		if (rx_err_passive)
957			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
958		if (bec.txerr > 127)
959			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
960
961		cf->data[6] = bec.txerr;
962		cf->data[7] = bec.rxerr;
963		break;
964	case C_CAN_BUS_OFF:
965		/* bus-off state */
966		cf->can_id |= CAN_ERR_BUSOFF;
967		can_bus_off(dev);
968		break;
969	default:
970		break;
971	}
972
973	stats->rx_packets++;
974	stats->rx_bytes += cf->can_dlc;
975	netif_receive_skb(skb);
976
977	return 1;
978}
979
980static int c_can_handle_bus_err(struct net_device *dev,
981				enum c_can_lec_type lec_type)
982{
983	struct c_can_priv *priv = netdev_priv(dev);
984	struct net_device_stats *stats = &dev->stats;
985	struct can_frame *cf;
986	struct sk_buff *skb;
987
988	/*
989	 * early exit if no lec update or no error.
990	 * no lec update means that no CAN bus event has been detected
991	 * since CPU wrote 0x7 value to status reg.
992	 */
993	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
994		return 0;
995
996	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
997		return 0;
998
999	/* propagate the error condition to the CAN stack */
1000	skb = alloc_can_err_skb(dev, &cf);
1001	if (unlikely(!skb))
1002		return 0;
1003
1004	/*
1005	 * check for 'last error code' which tells us the
1006	 * type of the last error to occur on the CAN bus
1007	 */
1008
1009	/* common for all type of bus errors */
1010	priv->can.can_stats.bus_error++;
1011	stats->rx_errors++;
1012	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1013	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1014
1015	switch (lec_type) {
1016	case LEC_STUFF_ERROR:
1017		netdev_dbg(dev, "stuff error\n");
1018		cf->data[2] |= CAN_ERR_PROT_STUFF;
1019		break;
1020	case LEC_FORM_ERROR:
1021		netdev_dbg(dev, "form error\n");
1022		cf->data[2] |= CAN_ERR_PROT_FORM;
1023		break;
1024	case LEC_ACK_ERROR:
1025		netdev_dbg(dev, "ack error\n");
1026		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1027				CAN_ERR_PROT_LOC_ACK_DEL);
1028		break;
1029	case LEC_BIT1_ERROR:
1030		netdev_dbg(dev, "bit1 error\n");
1031		cf->data[2] |= CAN_ERR_PROT_BIT1;
1032		break;
1033	case LEC_BIT0_ERROR:
1034		netdev_dbg(dev, "bit0 error\n");
1035		cf->data[2] |= CAN_ERR_PROT_BIT0;
1036		break;
1037	case LEC_CRC_ERROR:
1038		netdev_dbg(dev, "CRC error\n");
1039		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1040				CAN_ERR_PROT_LOC_CRC_DEL);
1041		break;
1042	default:
1043		break;
1044	}
1045
1046	/* set a `lec` value so that we can check for updates later */
1047	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1048
1049	stats->rx_packets++;
1050	stats->rx_bytes += cf->can_dlc;
1051	netif_receive_skb(skb);
1052	return 1;
1053}
1054
1055static int c_can_poll(struct napi_struct *napi, int quota)
1056{
1057	u16 irqstatus;
1058	int work_done = 0;
1059	struct net_device *dev = napi->dev;
1060	struct c_can_priv *priv = netdev_priv(dev);
1061
1062	irqstatus = priv->irqstatus;
1063	if (!irqstatus)
1064		goto end;
1065
1066	/* status events have the highest priority */
1067	if (irqstatus == STATUS_INTERRUPT) {
1068		priv->current_status = priv->read_reg(priv,
1069					C_CAN_STS_REG);
1070
1071		/* handle Tx/Rx events */
1072		if (priv->current_status & STATUS_TXOK)
1073			priv->write_reg(priv, C_CAN_STS_REG,
1074					priv->current_status & ~STATUS_TXOK);
1075
1076		if (priv->current_status & STATUS_RXOK)
1077			priv->write_reg(priv, C_CAN_STS_REG,
1078					priv->current_status & ~STATUS_RXOK);
1079
1080		/* handle state changes */
1081		if ((priv->current_status & STATUS_EWARN) &&
1082				(!(priv->last_status & STATUS_EWARN))) {
1083			netdev_dbg(dev, "entered error warning state\n");
1084			work_done += c_can_handle_state_change(dev,
1085						C_CAN_ERROR_WARNING);
1086		}
1087		if ((priv->current_status & STATUS_EPASS) &&
1088				(!(priv->last_status & STATUS_EPASS))) {
1089			netdev_dbg(dev, "entered error passive state\n");
1090			work_done += c_can_handle_state_change(dev,
1091						C_CAN_ERROR_PASSIVE);
1092		}
1093		if ((priv->current_status & STATUS_BOFF) &&
1094				(!(priv->last_status & STATUS_BOFF))) {
1095			netdev_dbg(dev, "entered bus off state\n");
1096			work_done += c_can_handle_state_change(dev,
1097						C_CAN_BUS_OFF);
1098			goto end;
1099		}
1100
1101		/* handle bus recovery events */
1102		if ((!(priv->current_status & STATUS_BOFF)) &&
1103				(priv->last_status & STATUS_BOFF)) {
1104			netdev_dbg(dev, "left bus off state\n");
1105			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1106		}
1107		if ((!(priv->current_status & STATUS_EPASS)) &&
1108				(priv->last_status & STATUS_EPASS)) {
1109			netdev_dbg(dev, "left error passive state\n");
1110			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1111		}
1112
1113		priv->last_status = priv->current_status;
1114
1115		/* handle lec errors on the bus */
1116		work_done += c_can_handle_bus_err(dev,
1117					priv->current_status & LEC_MASK);
1118	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1119			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1120		/* handle events corresponding to receive message objects */
1121		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1122	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1123			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1124		/* handle events corresponding to transmit message objects */
1125		c_can_do_tx(dev);
1126	}
1127
1128end:
1129	if (work_done < quota) {
1130		napi_complete(napi);
1131		/* enable all IRQs if we are not in bus off state */
1132		if (priv->can.state != CAN_STATE_BUS_OFF)
1133			c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1134	}
1135
1136	return work_done;
1137}
1138
1139static irqreturn_t c_can_isr(int irq, void *dev_id)
1140{
1141	struct net_device *dev = (struct net_device *)dev_id;
1142	struct c_can_priv *priv = netdev_priv(dev);
1143
1144	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1145	if (!priv->irqstatus)
1146		return IRQ_NONE;
1147
1148	/* disable all interrupts and schedule the NAPI */
1149	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1150	napi_schedule(&priv->napi);
1151
1152	return IRQ_HANDLED;
1153}
1154
1155static int c_can_open(struct net_device *dev)
1156{
1157	int err;
1158	struct c_can_priv *priv = netdev_priv(dev);
1159
1160	c_can_pm_runtime_get_sync(priv);
1161	c_can_reset_ram(priv, true);
1162
1163	/* open the can device */
1164	err = open_candev(dev);
1165	if (err) {
1166		netdev_err(dev, "failed to open can device\n");
1167		goto exit_open_fail;
1168	}
1169
1170	/* register interrupt handler */
1171	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1172				dev);
1173	if (err < 0) {
1174		netdev_err(dev, "failed to request interrupt\n");
1175		goto exit_irq_fail;
1176	}
1177
1178	/* start the c_can controller */
1179	err = c_can_start(dev);
1180	if (err)
1181		goto exit_start_fail;
1182
1183	can_led_event(dev, CAN_LED_EVENT_OPEN);
1184
1185	napi_enable(&priv->napi);
1186	/* enable status change, error and module interrupts */
1187	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1188	netif_start_queue(dev);
1189
1190	return 0;
1191
1192exit_start_fail:
1193	free_irq(dev->irq, dev);
1194exit_irq_fail:
1195	close_candev(dev);
1196exit_open_fail:
1197	c_can_reset_ram(priv, false);
1198	c_can_pm_runtime_put_sync(priv);
1199	return err;
1200}
1201
1202static int c_can_close(struct net_device *dev)
1203{
1204	struct c_can_priv *priv = netdev_priv(dev);
1205
1206	netif_stop_queue(dev);
1207	napi_disable(&priv->napi);
1208	c_can_stop(dev);
1209	free_irq(dev->irq, dev);
1210	close_candev(dev);
1211
1212	c_can_reset_ram(priv, false);
1213	c_can_pm_runtime_put_sync(priv);
1214
1215	can_led_event(dev, CAN_LED_EVENT_STOP);
1216
1217	return 0;
1218}
1219
1220struct net_device *alloc_c_can_dev(void)
1221{
1222	struct net_device *dev;
1223	struct c_can_priv *priv;
1224
1225	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1226	if (!dev)
1227		return NULL;
1228
1229	priv = netdev_priv(dev);
1230	spin_lock_init(&priv->xmit_lock);
1231	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1232
1233	priv->dev = dev;
1234	priv->can.bittiming_const = &c_can_bittiming_const;
1235	priv->can.do_set_mode = c_can_set_mode;
1236	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1237	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1238					CAN_CTRLMODE_LISTENONLY |
1239					CAN_CTRLMODE_BERR_REPORTING;
1240
1241	return dev;
1242}
1243EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1244
1245#ifdef CONFIG_PM
1246int c_can_power_down(struct net_device *dev)
1247{
1248	u32 val;
1249	unsigned long time_out;
1250	struct c_can_priv *priv = netdev_priv(dev);
1251
1252	if (!(dev->flags & IFF_UP))
1253		return 0;
1254
1255	WARN_ON(priv->type != BOSCH_D_CAN);
1256
1257	/* set PDR value so the device goes to power down mode */
1258	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1259	val |= CONTROL_EX_PDR;
1260	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1261
1262	/* Wait for the PDA bit to get set */
1263	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1264	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1265				time_after(time_out, jiffies))
1266		cpu_relax();
1267
1268	if (time_after(jiffies, time_out))
1269		return -ETIMEDOUT;
1270
1271	c_can_stop(dev);
1272
1273	c_can_reset_ram(priv, false);
1274	c_can_pm_runtime_put_sync(priv);
1275
1276	return 0;
1277}
1278EXPORT_SYMBOL_GPL(c_can_power_down);
1279
1280int c_can_power_up(struct net_device *dev)
1281{
1282	u32 val;
1283	unsigned long time_out;
1284	struct c_can_priv *priv = netdev_priv(dev);
1285	int ret;
1286
1287	if (!(dev->flags & IFF_UP))
1288		return 0;
1289
1290	WARN_ON(priv->type != BOSCH_D_CAN);
1291
1292	c_can_pm_runtime_get_sync(priv);
1293	c_can_reset_ram(priv, true);
1294
1295	/* Clear PDR and INIT bits */
1296	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1297	val &= ~CONTROL_EX_PDR;
1298	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1299	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1300	val &= ~CONTROL_INIT;
1301	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1302
1303	/* Wait for the PDA bit to get clear */
1304	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1305	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1306				time_after(time_out, jiffies))
1307		cpu_relax();
1308
1309	if (time_after(jiffies, time_out))
1310		return -ETIMEDOUT;
1311
1312	ret = c_can_start(dev);
1313	if (!ret)
1314		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1315
1316	return ret;
1317}
1318EXPORT_SYMBOL_GPL(c_can_power_up);
1319#endif
1320
1321void free_c_can_dev(struct net_device *dev)
1322{
1323	struct c_can_priv *priv = netdev_priv(dev);
1324
1325	netif_napi_del(&priv->napi);
1326	free_candev(dev);
1327}
1328EXPORT_SYMBOL_GPL(free_c_can_dev);
1329
1330static const struct net_device_ops c_can_netdev_ops = {
1331	.ndo_open = c_can_open,
1332	.ndo_stop = c_can_close,
1333	.ndo_start_xmit = c_can_start_xmit,
1334	.ndo_change_mtu = can_change_mtu,
1335};
1336
1337int register_c_can_dev(struct net_device *dev)
1338{
1339	struct c_can_priv *priv = netdev_priv(dev);
1340	int err;
1341
1342	c_can_pm_runtime_enable(priv);
1343
1344	dev->flags |= IFF_ECHO;	/* we support local echo */
1345	dev->netdev_ops = &c_can_netdev_ops;
1346
1347	err = register_candev(dev);
1348	if (err)
1349		c_can_pm_runtime_disable(priv);
1350	else
1351		devm_can_led_init(dev);
1352
1353	return err;
1354}
1355EXPORT_SYMBOL_GPL(register_c_can_dev);
1356
1357void unregister_c_can_dev(struct net_device *dev)
1358{
1359	struct c_can_priv *priv = netdev_priv(dev);
1360
1361	unregister_candev(dev);
1362
1363	c_can_pm_runtime_disable(priv);
1364}
1365EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1366
1367MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1368MODULE_LICENSE("GPL v2");
1369MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1370