c_can.c revision 1da394d889b4110bda954813ef32601c06118376
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* For the low buffers we clear the interrupt bit, but keep newdat */
118#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
119				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the high buffers we clear the interrupt bit and newdat */
123#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)
124
125/* IFx arbitration */
126#define IF_ARB_MSGVAL		BIT(15)
127#define IF_ARB_MSGXTD		BIT(14)
128#define IF_ARB_TRANSMIT		BIT(13)
129
130/* IFx message control */
131#define IF_MCONT_NEWDAT		BIT(15)
132#define IF_MCONT_MSGLST		BIT(14)
133#define IF_MCONT_INTPND		BIT(13)
134#define IF_MCONT_UMASK		BIT(12)
135#define IF_MCONT_TXIE		BIT(11)
136#define IF_MCONT_RXIE		BIT(10)
137#define IF_MCONT_RMTEN		BIT(9)
138#define IF_MCONT_TXRQST		BIT(8)
139#define IF_MCONT_EOB		BIT(7)
140#define IF_MCONT_DLC_MASK	0xf
141
142/*
143 * Use IF1 for RX and IF2 for TX
144 */
145#define IF_RX			0
146#define IF_TX			1
147
148/* status interrupt */
149#define STATUS_INTERRUPT	0x8000
150
151/* global interrupt masks */
152#define ENABLE_ALL_INTERRUPTS	1
153#define DISABLE_ALL_INTERRUPTS	0
154
155/* minimum timeout for checking BUSY status */
156#define MIN_TIMEOUT_VALUE	6
157
158/* Wait for ~1 sec for INIT bit */
159#define INIT_WAIT_MS		1000
160
161/* napi related */
162#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
163
164/* c_can lec values */
165enum c_can_lec_type {
166	LEC_NO_ERROR = 0,
167	LEC_STUFF_ERROR,
168	LEC_FORM_ERROR,
169	LEC_ACK_ERROR,
170	LEC_BIT1_ERROR,
171	LEC_BIT0_ERROR,
172	LEC_CRC_ERROR,
173	LEC_UNUSED,
174	LEC_MASK = LEC_UNUSED,
175};
176
177/*
178 * c_can error types:
179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
180 */
181enum c_can_bus_error_types {
182	C_CAN_NO_ERROR = 0,
183	C_CAN_BUS_OFF,
184	C_CAN_ERROR_WARNING,
185	C_CAN_ERROR_PASSIVE,
186};
187
188static const struct can_bittiming_const c_can_bittiming_const = {
189	.name = KBUILD_MODNAME,
190	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
191	.tseg1_max = 16,
192	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
193	.tseg2_max = 8,
194	.sjw_max = 4,
195	.brp_min = 1,
196	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
197	.brp_inc = 1,
198};
199
200static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
201{
202	if (priv->device)
203		pm_runtime_enable(priv->device);
204}
205
206static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
207{
208	if (priv->device)
209		pm_runtime_disable(priv->device);
210}
211
212static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
213{
214	if (priv->device)
215		pm_runtime_get_sync(priv->device);
216}
217
218static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
219{
220	if (priv->device)
221		pm_runtime_put_sync(priv->device);
222}
223
224static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
225{
226	if (priv->raminit)
227		priv->raminit(priv, enable);
228}
229
230static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
231{
232	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
233			C_CAN_MSG_OBJ_TX_FIRST;
234}
235
236static inline int get_tx_echo_msg_obj(int txecho)
237{
238	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
239}
240
241static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
242{
243	u32 val = priv->read_reg(priv, index);
244	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
245	return val;
246}
247
248static void c_can_enable_all_interrupts(struct c_can_priv *priv,
249						int enable)
250{
251	unsigned int cntrl_save = priv->read_reg(priv,
252						C_CAN_CTRL_REG);
253
254	if (enable)
255		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
256	else
257		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
258
259	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
260}
261
262static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
263{
264	int count = MIN_TIMEOUT_VALUE;
265
266	while (count && priv->read_reg(priv,
267				C_CAN_IFACE(COMREQ_REG, iface)) &
268				IF_COMR_BUSY) {
269		count--;
270		udelay(1);
271	}
272
273	if (!count)
274		return 1;
275
276	return 0;
277}
278
279static inline void c_can_object_get(struct net_device *dev,
280					int iface, int objno, int mask)
281{
282	struct c_can_priv *priv = netdev_priv(dev);
283
284	/*
285	 * As per specs, after writting the message object number in the
286	 * IF command request register the transfer b/w interface
287	 * register and message RAM must be complete in 6 CAN-CLK
288	 * period.
289	 */
290	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
291			IFX_WRITE_LOW_16BIT(mask));
292	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
293			IFX_WRITE_LOW_16BIT(objno));
294
295	if (c_can_msg_obj_is_busy(priv, iface))
296		netdev_err(dev, "timed out in object get\n");
297}
298
299static inline void c_can_object_put(struct net_device *dev,
300					int iface, int objno, int mask)
301{
302	struct c_can_priv *priv = netdev_priv(dev);
303
304	/*
305	 * As per specs, after writting the message object number in the
306	 * IF command request register the transfer b/w interface
307	 * register and message RAM must be complete in 6 CAN-CLK
308	 * period.
309	 */
310	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
311			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
312	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
313			IFX_WRITE_LOW_16BIT(objno));
314
315	if (c_can_msg_obj_is_busy(priv, iface))
316		netdev_err(dev, "timed out in object put\n");
317}
318
319static void c_can_write_msg_object(struct net_device *dev,
320			int iface, struct can_frame *frame, int objno)
321{
322	int i;
323	u16 flags = 0;
324	unsigned int id;
325	struct c_can_priv *priv = netdev_priv(dev);
326
327	if (!(frame->can_id & CAN_RTR_FLAG))
328		flags |= IF_ARB_TRANSMIT;
329
330	if (frame->can_id & CAN_EFF_FLAG) {
331		id = frame->can_id & CAN_EFF_MASK;
332		flags |= IF_ARB_MSGXTD;
333	} else
334		id = ((frame->can_id & CAN_SFF_MASK) << 18);
335
336	flags |= IF_ARB_MSGVAL;
337
338	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
339				IFX_WRITE_LOW_16BIT(id));
340	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
341				IFX_WRITE_HIGH_16BIT(id));
342
343	for (i = 0; i < frame->can_dlc; i += 2) {
344		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
345				frame->data[i] | (frame->data[i + 1] << 8));
346	}
347
348	/* enable interrupt for this message object */
349	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
350			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
351			frame->can_dlc);
352	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
353}
354
355static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
356						int iface,
357						int ctrl_mask)
358{
359	int i;
360	struct c_can_priv *priv = netdev_priv(dev);
361
362	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
363		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
364				ctrl_mask & ~IF_MCONT_NEWDAT);
365		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
366	}
367}
368
369static int c_can_handle_lost_msg_obj(struct net_device *dev,
370				     int iface, int objno, u32 ctrl)
371{
372	struct net_device_stats *stats = &dev->stats;
373	struct c_can_priv *priv = netdev_priv(dev);
374	struct can_frame *frame;
375	struct sk_buff *skb;
376
377	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
378	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
379	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
380
381	stats->rx_errors++;
382	stats->rx_over_errors++;
383
384	/* create an error msg */
385	skb = alloc_can_err_skb(dev, &frame);
386	if (unlikely(!skb))
387		return 0;
388
389	frame->can_id |= CAN_ERR_CRTL;
390	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
391
392	netif_receive_skb(skb);
393	return 1;
394}
395
396static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
397{
398	u16 flags, data;
399	int i;
400	unsigned int val;
401	struct c_can_priv *priv = netdev_priv(dev);
402	struct net_device_stats *stats = &dev->stats;
403	struct sk_buff *skb;
404	struct can_frame *frame;
405
406	skb = alloc_can_skb(dev, &frame);
407	if (!skb) {
408		stats->rx_dropped++;
409		return -ENOMEM;
410	}
411
412	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
413
414	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
415	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
416		(flags << 16);
417
418	if (flags & IF_ARB_MSGXTD)
419		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
420	else
421		frame->can_id = (val >> 18) & CAN_SFF_MASK;
422
423	if (flags & IF_ARB_TRANSMIT)
424		frame->can_id |= CAN_RTR_FLAG;
425	else {
426		for (i = 0; i < frame->can_dlc; i += 2) {
427			data = priv->read_reg(priv,
428				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
429			frame->data[i] = data;
430			frame->data[i + 1] = data >> 8;
431		}
432	}
433
434	stats->rx_packets++;
435	stats->rx_bytes += frame->can_dlc;
436
437	netif_receive_skb(skb);
438	return 0;
439}
440
441static void c_can_setup_receive_object(struct net_device *dev, int iface,
442					int objno, unsigned int mask,
443					unsigned int id, unsigned int mcont)
444{
445	struct c_can_priv *priv = netdev_priv(dev);
446
447	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
448			IFX_WRITE_LOW_16BIT(mask));
449
450	/* According to C_CAN documentation, the reserved bit
451	 * in IFx_MASK2 register is fixed 1
452	 */
453	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
454			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
455
456	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
457			IFX_WRITE_LOW_16BIT(id));
458	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
459			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
460
461	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
462	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
463
464	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
465			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
466}
467
468static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
469{
470	struct c_can_priv *priv = netdev_priv(dev);
471
472	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
473	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
474	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
475
476	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
477
478	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
479			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
480}
481
482static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
483{
484	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
485
486	/*
487	 * as transmission request register's bit n-1 corresponds to
488	 * message object n, we need to handle the same properly.
489	 */
490	if (val & (1 << (objno - 1)))
491		return 1;
492
493	return 0;
494}
495
496static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
497					struct net_device *dev)
498{
499	u32 msg_obj_no;
500	struct c_can_priv *priv = netdev_priv(dev);
501	struct can_frame *frame = (struct can_frame *)skb->data;
502
503	if (can_dropped_invalid_skb(dev, skb))
504		return NETDEV_TX_OK;
505
506	spin_lock_bh(&priv->xmit_lock);
507	msg_obj_no = get_tx_next_msg_obj(priv);
508
509	/* prepare message object for transmission */
510	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
511	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
512	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
513
514	/*
515	 * we have to stop the queue in case of a wrap around or
516	 * if the next TX message object is still in use
517	 */
518	priv->tx_next++;
519	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
520			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
521		netif_stop_queue(dev);
522	spin_unlock_bh(&priv->xmit_lock);
523
524	return NETDEV_TX_OK;
525}
526
527static int c_can_wait_for_ctrl_init(struct net_device *dev,
528				    struct c_can_priv *priv, u32 init)
529{
530	int retry = 0;
531
532	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
533		udelay(10);
534		if (retry++ > 1000) {
535			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
536			return -EIO;
537		}
538	}
539	return 0;
540}
541
542static int c_can_set_bittiming(struct net_device *dev)
543{
544	unsigned int reg_btr, reg_brpe, ctrl_save;
545	u8 brp, brpe, sjw, tseg1, tseg2;
546	u32 ten_bit_brp;
547	struct c_can_priv *priv = netdev_priv(dev);
548	const struct can_bittiming *bt = &priv->can.bittiming;
549	int res;
550
551	/* c_can provides a 6-bit brp and 4-bit brpe fields */
552	ten_bit_brp = bt->brp - 1;
553	brp = ten_bit_brp & BTR_BRP_MASK;
554	brpe = ten_bit_brp >> 6;
555
556	sjw = bt->sjw - 1;
557	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
558	tseg2 = bt->phase_seg2 - 1;
559	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
560			(tseg2 << BTR_TSEG2_SHIFT);
561	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
562
563	netdev_info(dev,
564		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
565
566	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
567	ctrl_save &= ~CONTROL_INIT;
568	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
569	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
570	if (res)
571		return res;
572
573	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
574	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
575	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
576
577	return c_can_wait_for_ctrl_init(dev, priv, 0);
578}
579
580/*
581 * Configure C_CAN message objects for Tx and Rx purposes:
582 * C_CAN provides a total of 32 message objects that can be configured
583 * either for Tx or Rx purposes. Here the first 16 message objects are used as
584 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
585 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
586 * See user guide document for further details on configuring message
587 * objects.
588 */
589static void c_can_configure_msg_objects(struct net_device *dev)
590{
591	int i;
592
593	/* first invalidate all message objects */
594	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
595		c_can_inval_msg_object(dev, IF_RX, i);
596
597	/* setup receive message objects */
598	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
599		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
600			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
601
602	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
603			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
604}
605
606/*
607 * Configure C_CAN chip:
608 * - enable/disable auto-retransmission
609 * - set operating mode
610 * - configure message objects
611 */
612static int c_can_chip_config(struct net_device *dev)
613{
614	struct c_can_priv *priv = netdev_priv(dev);
615
616	/* enable automatic retransmission */
617	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
618
619	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
620	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
621		/* loopback + silent mode : useful for hot self-test */
622		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
623		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
624	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
625		/* loopback mode : useful for self-test function */
626		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
627		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
628	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
629		/* silent mode : bus-monitoring mode */
630		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
631		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
632	}
633
634	/* configure message objects */
635	c_can_configure_msg_objects(dev);
636
637	/* set a `lec` value so that we can check for updates later */
638	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
639
640	/* set bittiming params */
641	return c_can_set_bittiming(dev);
642}
643
644static int c_can_start(struct net_device *dev)
645{
646	struct c_can_priv *priv = netdev_priv(dev);
647	int err;
648
649	/* basic c_can configuration */
650	err = c_can_chip_config(dev);
651	if (err)
652		return err;
653
654	priv->can.state = CAN_STATE_ERROR_ACTIVE;
655
656	/* reset tx helper pointers */
657	priv->tx_next = priv->tx_echo = 0;
658
659	return 0;
660}
661
662static void c_can_stop(struct net_device *dev)
663{
664	struct c_can_priv *priv = netdev_priv(dev);
665
666	/* disable all interrupts */
667	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
668
669	/* set the state as STOPPED */
670	priv->can.state = CAN_STATE_STOPPED;
671}
672
673static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
674{
675	struct c_can_priv *priv = netdev_priv(dev);
676	int err;
677
678	switch (mode) {
679	case CAN_MODE_START:
680		err = c_can_start(dev);
681		if (err)
682			return err;
683		netif_wake_queue(dev);
684		/* enable status change, error and module interrupts */
685		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
686		break;
687	default:
688		return -EOPNOTSUPP;
689	}
690
691	return 0;
692}
693
694static int __c_can_get_berr_counter(const struct net_device *dev,
695				    struct can_berr_counter *bec)
696{
697	unsigned int reg_err_counter;
698	struct c_can_priv *priv = netdev_priv(dev);
699
700	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
701	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
702				ERR_CNT_REC_SHIFT;
703	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
704
705	return 0;
706}
707
708static int c_can_get_berr_counter(const struct net_device *dev,
709				  struct can_berr_counter *bec)
710{
711	struct c_can_priv *priv = netdev_priv(dev);
712	int err;
713
714	c_can_pm_runtime_get_sync(priv);
715	err = __c_can_get_berr_counter(dev, bec);
716	c_can_pm_runtime_put_sync(priv);
717
718	return err;
719}
720
721/*
722 * priv->tx_echo holds the number of the oldest can_frame put for
723 * transmission into the hardware, but not yet ACKed by the CAN tx
724 * complete IRQ.
725 *
726 * We iterate from priv->tx_echo to priv->tx_next and check if the
727 * packet has been transmitted, echo it back to the CAN framework.
728 * If we discover a not yet transmitted packet, stop looking for more.
729 */
730static void c_can_do_tx(struct net_device *dev)
731{
732	struct c_can_priv *priv = netdev_priv(dev);
733	struct net_device_stats *stats = &dev->stats;
734	u32 val, obj, pkts = 0, bytes = 0;
735
736	spin_lock_bh(&priv->xmit_lock);
737
738	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
739		obj = get_tx_echo_msg_obj(priv->tx_echo);
740		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
741
742		if (val & (1 << (obj - 1)))
743			break;
744
745		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
746		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
747		pkts++;
748		c_can_inval_msg_object(dev, IF_TX, obj);
749	}
750
751	/* restart queue if wrap-up or if queue stalled on last pkt */
752	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
753			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
754		netif_wake_queue(dev);
755
756	spin_unlock_bh(&priv->xmit_lock);
757
758	if (pkts) {
759		stats->tx_bytes += bytes;
760		stats->tx_packets += pkts;
761		can_led_event(dev, CAN_LED_EVENT_TX);
762	}
763}
764
765/*
766 * If we have a gap in the pending bits, that means we either
767 * raced with the hardware or failed to readout all upper
768 * objects in the last run due to quota limit.
769 */
770static u32 c_can_adjust_pending(u32 pend)
771{
772	u32 weight, lasts;
773
774	if (pend == RECEIVE_OBJECT_BITS)
775		return pend;
776
777	/*
778	 * If the last set bit is larger than the number of pending
779	 * bits we have a gap.
780	 */
781	weight = hweight32(pend);
782	lasts = fls(pend);
783
784	/* If the bits are linear, nothing to do */
785	if (lasts == weight)
786		return pend;
787
788	/*
789	 * Find the first set bit after the gap. We walk backwards
790	 * from the last set bit.
791	 */
792	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
793
794	return pend & ~((1 << lasts) - 1);
795}
796
797static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
798			      u32 pend, int quota)
799{
800	u32 pkts = 0, ctrl, obj, mcmd;
801
802	while ((obj = ffs(pend)) && quota > 0) {
803		pend &= ~BIT(obj - 1);
804
805		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
806			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
807
808		c_can_object_get(dev, IF_RX, obj, mcmd);
809		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
810
811		if (ctrl & IF_MCONT_MSGLST) {
812			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
813
814			pkts += n;
815			quota -= n;
816			continue;
817		}
818
819		/*
820		 * This really should not happen, but this covers some
821		 * odd HW behaviour. Do not remove that unless you
822		 * want to brick your machine.
823		 */
824		if (!(ctrl & IF_MCONT_NEWDAT))
825			continue;
826
827		/* read the data from the message object */
828		c_can_read_msg_object(dev, IF_RX, ctrl);
829
830		if (obj == C_CAN_MSG_RX_LOW_LAST)
831			/* activate all lower message objects */
832			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);
833
834		pkts++;
835		quota--;
836	}
837
838	return pkts;
839}
840
841/*
842 * theory of operation:
843 *
844 * c_can core saves a received CAN message into the first free message
845 * object it finds free (starting with the lowest). Bits NEWDAT and
846 * INTPND are set for this message object indicating that a new message
847 * has arrived. To work-around this issue, we keep two groups of message
848 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
849 *
850 * To ensure in-order frame reception we use the following
851 * approach while re-activating a message object to receive further
852 * frames:
853 * - if the current message object number is lower than
854 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
855 *   the INTPND bit.
856 * - if the current message object number is equal to
857 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
858 *   receive message objects.
859 * - if the current message object number is greater than
860 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
861 *   only this message object.
862 */
863static int c_can_do_rx_poll(struct net_device *dev, int quota)
864{
865	struct c_can_priv *priv = netdev_priv(dev);
866	u32 pkts = 0, pend = 0, toread, n;
867
868	/*
869	 * It is faster to read only one 16bit register. This is only possible
870	 * for a maximum number of 16 objects.
871	 */
872	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
873			"Implementation does not support more message objects than 16");
874
875	while (quota > 0) {
876		if (!pend) {
877			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
878			if (!pend)
879				break;
880			/*
881			 * If the pending field has a gap, handle the
882			 * bits above the gap first.
883			 */
884			toread = c_can_adjust_pending(pend);
885		} else {
886			toread = pend;
887		}
888		/* Remove the bits from pend */
889		pend &= ~toread;
890		/* Read the objects */
891		n = c_can_read_objects(dev, priv, toread, quota);
892		pkts += n;
893		quota -= n;
894	}
895
896	if (pkts)
897		can_led_event(dev, CAN_LED_EVENT_RX);
898
899	return pkts;
900}
901
902static int c_can_handle_state_change(struct net_device *dev,
903				enum c_can_bus_error_types error_type)
904{
905	unsigned int reg_err_counter;
906	unsigned int rx_err_passive;
907	struct c_can_priv *priv = netdev_priv(dev);
908	struct net_device_stats *stats = &dev->stats;
909	struct can_frame *cf;
910	struct sk_buff *skb;
911	struct can_berr_counter bec;
912
913	switch (error_type) {
914	case C_CAN_ERROR_WARNING:
915		/* error warning state */
916		priv->can.can_stats.error_warning++;
917		priv->can.state = CAN_STATE_ERROR_WARNING;
918		break;
919	case C_CAN_ERROR_PASSIVE:
920		/* error passive state */
921		priv->can.can_stats.error_passive++;
922		priv->can.state = CAN_STATE_ERROR_PASSIVE;
923		break;
924	case C_CAN_BUS_OFF:
925		/* bus-off state */
926		priv->can.state = CAN_STATE_BUS_OFF;
927		can_bus_off(dev);
928		break;
929	default:
930		break;
931	}
932
933	/* propagate the error condition to the CAN stack */
934	skb = alloc_can_err_skb(dev, &cf);
935	if (unlikely(!skb))
936		return 0;
937
938	__c_can_get_berr_counter(dev, &bec);
939	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
940	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
941				ERR_CNT_RP_SHIFT;
942
943	switch (error_type) {
944	case C_CAN_ERROR_WARNING:
945		/* error warning state */
946		cf->can_id |= CAN_ERR_CRTL;
947		cf->data[1] = (bec.txerr > bec.rxerr) ?
948			CAN_ERR_CRTL_TX_WARNING :
949			CAN_ERR_CRTL_RX_WARNING;
950		cf->data[6] = bec.txerr;
951		cf->data[7] = bec.rxerr;
952
953		break;
954	case C_CAN_ERROR_PASSIVE:
955		/* error passive state */
956		cf->can_id |= CAN_ERR_CRTL;
957		if (rx_err_passive)
958			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
959		if (bec.txerr > 127)
960			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
961
962		cf->data[6] = bec.txerr;
963		cf->data[7] = bec.rxerr;
964		break;
965	case C_CAN_BUS_OFF:
966		/* bus-off state */
967		cf->can_id |= CAN_ERR_BUSOFF;
968		can_bus_off(dev);
969		break;
970	default:
971		break;
972	}
973
974	stats->rx_packets++;
975	stats->rx_bytes += cf->can_dlc;
976	netif_receive_skb(skb);
977
978	return 1;
979}
980
981static int c_can_handle_bus_err(struct net_device *dev,
982				enum c_can_lec_type lec_type)
983{
984	struct c_can_priv *priv = netdev_priv(dev);
985	struct net_device_stats *stats = &dev->stats;
986	struct can_frame *cf;
987	struct sk_buff *skb;
988
989	/*
990	 * early exit if no lec update or no error.
991	 * no lec update means that no CAN bus event has been detected
992	 * since CPU wrote 0x7 value to status reg.
993	 */
994	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
995		return 0;
996
997	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
998		return 0;
999
1000	/* common for all type of bus errors */
1001	priv->can.can_stats.bus_error++;
1002	stats->rx_errors++;
1003
1004	/* propagate the error condition to the CAN stack */
1005	skb = alloc_can_err_skb(dev, &cf);
1006	if (unlikely(!skb))
1007		return 0;
1008
1009	/*
1010	 * check for 'last error code' which tells us the
1011	 * type of the last error to occur on the CAN bus
1012	 */
1013	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1014	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1015
1016	switch (lec_type) {
1017	case LEC_STUFF_ERROR:
1018		netdev_dbg(dev, "stuff error\n");
1019		cf->data[2] |= CAN_ERR_PROT_STUFF;
1020		break;
1021	case LEC_FORM_ERROR:
1022		netdev_dbg(dev, "form error\n");
1023		cf->data[2] |= CAN_ERR_PROT_FORM;
1024		break;
1025	case LEC_ACK_ERROR:
1026		netdev_dbg(dev, "ack error\n");
1027		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1028				CAN_ERR_PROT_LOC_ACK_DEL);
1029		break;
1030	case LEC_BIT1_ERROR:
1031		netdev_dbg(dev, "bit1 error\n");
1032		cf->data[2] |= CAN_ERR_PROT_BIT1;
1033		break;
1034	case LEC_BIT0_ERROR:
1035		netdev_dbg(dev, "bit0 error\n");
1036		cf->data[2] |= CAN_ERR_PROT_BIT0;
1037		break;
1038	case LEC_CRC_ERROR:
1039		netdev_dbg(dev, "CRC error\n");
1040		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1041				CAN_ERR_PROT_LOC_CRC_DEL);
1042		break;
1043	default:
1044		break;
1045	}
1046
1047	/* set a `lec` value so that we can check for updates later */
1048	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1049
1050	stats->rx_packets++;
1051	stats->rx_bytes += cf->can_dlc;
1052	netif_receive_skb(skb);
1053	return 1;
1054}
1055
1056static int c_can_poll(struct napi_struct *napi, int quota)
1057{
1058	u16 irqstatus;
1059	int work_done = 0;
1060	struct net_device *dev = napi->dev;
1061	struct c_can_priv *priv = netdev_priv(dev);
1062
1063	irqstatus = priv->irqstatus;
1064	if (!irqstatus)
1065		goto end;
1066
1067	/* status events have the highest priority */
1068	if (irqstatus == STATUS_INTERRUPT) {
1069		priv->current_status = priv->read_reg(priv,
1070					C_CAN_STS_REG);
1071
1072		/* handle Tx/Rx events */
1073		if (priv->current_status & STATUS_TXOK)
1074			priv->write_reg(priv, C_CAN_STS_REG,
1075					priv->current_status & ~STATUS_TXOK);
1076
1077		if (priv->current_status & STATUS_RXOK)
1078			priv->write_reg(priv, C_CAN_STS_REG,
1079					priv->current_status & ~STATUS_RXOK);
1080
1081		/* handle state changes */
1082		if ((priv->current_status & STATUS_EWARN) &&
1083				(!(priv->last_status & STATUS_EWARN))) {
1084			netdev_dbg(dev, "entered error warning state\n");
1085			work_done += c_can_handle_state_change(dev,
1086						C_CAN_ERROR_WARNING);
1087		}
1088		if ((priv->current_status & STATUS_EPASS) &&
1089				(!(priv->last_status & STATUS_EPASS))) {
1090			netdev_dbg(dev, "entered error passive state\n");
1091			work_done += c_can_handle_state_change(dev,
1092						C_CAN_ERROR_PASSIVE);
1093		}
1094		if ((priv->current_status & STATUS_BOFF) &&
1095				(!(priv->last_status & STATUS_BOFF))) {
1096			netdev_dbg(dev, "entered bus off state\n");
1097			work_done += c_can_handle_state_change(dev,
1098						C_CAN_BUS_OFF);
1099			goto end;
1100		}
1101
1102		/* handle bus recovery events */
1103		if ((!(priv->current_status & STATUS_BOFF)) &&
1104				(priv->last_status & STATUS_BOFF)) {
1105			netdev_dbg(dev, "left bus off state\n");
1106			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1107		}
1108		if ((!(priv->current_status & STATUS_EPASS)) &&
1109				(priv->last_status & STATUS_EPASS)) {
1110			netdev_dbg(dev, "left error passive state\n");
1111			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1112		}
1113
1114		priv->last_status = priv->current_status;
1115
1116		/* handle lec errors on the bus */
1117		work_done += c_can_handle_bus_err(dev,
1118					priv->current_status & LEC_MASK);
1119	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1120			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1121		/* handle events corresponding to receive message objects */
1122		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1123	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1124			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1125		/* handle events corresponding to transmit message objects */
1126		c_can_do_tx(dev);
1127	}
1128
1129end:
1130	if (work_done < quota) {
1131		napi_complete(napi);
1132		/* enable all IRQs if we are not in bus off state */
1133		if (priv->can.state != CAN_STATE_BUS_OFF)
1134			c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1135	}
1136
1137	return work_done;
1138}
1139
1140static irqreturn_t c_can_isr(int irq, void *dev_id)
1141{
1142	struct net_device *dev = (struct net_device *)dev_id;
1143	struct c_can_priv *priv = netdev_priv(dev);
1144
1145	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1146	if (!priv->irqstatus)
1147		return IRQ_NONE;
1148
1149	/* disable all interrupts and schedule the NAPI */
1150	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1151	napi_schedule(&priv->napi);
1152
1153	return IRQ_HANDLED;
1154}
1155
1156static int c_can_open(struct net_device *dev)
1157{
1158	int err;
1159	struct c_can_priv *priv = netdev_priv(dev);
1160
1161	c_can_pm_runtime_get_sync(priv);
1162	c_can_reset_ram(priv, true);
1163
1164	/* open the can device */
1165	err = open_candev(dev);
1166	if (err) {
1167		netdev_err(dev, "failed to open can device\n");
1168		goto exit_open_fail;
1169	}
1170
1171	/* register interrupt handler */
1172	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1173				dev);
1174	if (err < 0) {
1175		netdev_err(dev, "failed to request interrupt\n");
1176		goto exit_irq_fail;
1177	}
1178
1179	/* start the c_can controller */
1180	err = c_can_start(dev);
1181	if (err)
1182		goto exit_start_fail;
1183
1184	can_led_event(dev, CAN_LED_EVENT_OPEN);
1185
1186	napi_enable(&priv->napi);
1187	/* enable status change, error and module interrupts */
1188	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1189	netif_start_queue(dev);
1190
1191	return 0;
1192
1193exit_start_fail:
1194	free_irq(dev->irq, dev);
1195exit_irq_fail:
1196	close_candev(dev);
1197exit_open_fail:
1198	c_can_reset_ram(priv, false);
1199	c_can_pm_runtime_put_sync(priv);
1200	return err;
1201}
1202
1203static int c_can_close(struct net_device *dev)
1204{
1205	struct c_can_priv *priv = netdev_priv(dev);
1206
1207	netif_stop_queue(dev);
1208	napi_disable(&priv->napi);
1209	c_can_stop(dev);
1210	free_irq(dev->irq, dev);
1211	close_candev(dev);
1212
1213	c_can_reset_ram(priv, false);
1214	c_can_pm_runtime_put_sync(priv);
1215
1216	can_led_event(dev, CAN_LED_EVENT_STOP);
1217
1218	return 0;
1219}
1220
1221struct net_device *alloc_c_can_dev(void)
1222{
1223	struct net_device *dev;
1224	struct c_can_priv *priv;
1225
1226	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1227	if (!dev)
1228		return NULL;
1229
1230	priv = netdev_priv(dev);
1231	spin_lock_init(&priv->xmit_lock);
1232	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1233
1234	priv->dev = dev;
1235	priv->can.bittiming_const = &c_can_bittiming_const;
1236	priv->can.do_set_mode = c_can_set_mode;
1237	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1238	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1239					CAN_CTRLMODE_LISTENONLY |
1240					CAN_CTRLMODE_BERR_REPORTING;
1241
1242	return dev;
1243}
1244EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1245
1246#ifdef CONFIG_PM
1247int c_can_power_down(struct net_device *dev)
1248{
1249	u32 val;
1250	unsigned long time_out;
1251	struct c_can_priv *priv = netdev_priv(dev);
1252
1253	if (!(dev->flags & IFF_UP))
1254		return 0;
1255
1256	WARN_ON(priv->type != BOSCH_D_CAN);
1257
1258	/* set PDR value so the device goes to power down mode */
1259	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1260	val |= CONTROL_EX_PDR;
1261	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1262
1263	/* Wait for the PDA bit to get set */
1264	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1265	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1266				time_after(time_out, jiffies))
1267		cpu_relax();
1268
1269	if (time_after(jiffies, time_out))
1270		return -ETIMEDOUT;
1271
1272	c_can_stop(dev);
1273
1274	c_can_reset_ram(priv, false);
1275	c_can_pm_runtime_put_sync(priv);
1276
1277	return 0;
1278}
1279EXPORT_SYMBOL_GPL(c_can_power_down);
1280
1281int c_can_power_up(struct net_device *dev)
1282{
1283	u32 val;
1284	unsigned long time_out;
1285	struct c_can_priv *priv = netdev_priv(dev);
1286	int ret;
1287
1288	if (!(dev->flags & IFF_UP))
1289		return 0;
1290
1291	WARN_ON(priv->type != BOSCH_D_CAN);
1292
1293	c_can_pm_runtime_get_sync(priv);
1294	c_can_reset_ram(priv, true);
1295
1296	/* Clear PDR and INIT bits */
1297	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1298	val &= ~CONTROL_EX_PDR;
1299	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1300	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1301	val &= ~CONTROL_INIT;
1302	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1303
1304	/* Wait for the PDA bit to get clear */
1305	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1306	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1307				time_after(time_out, jiffies))
1308		cpu_relax();
1309
1310	if (time_after(jiffies, time_out))
1311		return -ETIMEDOUT;
1312
1313	ret = c_can_start(dev);
1314	if (!ret)
1315		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1316
1317	return ret;
1318}
1319EXPORT_SYMBOL_GPL(c_can_power_up);
1320#endif
1321
1322void free_c_can_dev(struct net_device *dev)
1323{
1324	struct c_can_priv *priv = netdev_priv(dev);
1325
1326	netif_napi_del(&priv->napi);
1327	free_candev(dev);
1328}
1329EXPORT_SYMBOL_GPL(free_c_can_dev);
1330
1331static const struct net_device_ops c_can_netdev_ops = {
1332	.ndo_open = c_can_open,
1333	.ndo_stop = c_can_close,
1334	.ndo_start_xmit = c_can_start_xmit,
1335	.ndo_change_mtu = can_change_mtu,
1336};
1337
1338int register_c_can_dev(struct net_device *dev)
1339{
1340	struct c_can_priv *priv = netdev_priv(dev);
1341	int err;
1342
1343	c_can_pm_runtime_enable(priv);
1344
1345	dev->flags |= IFF_ECHO;	/* we support local echo */
1346	dev->netdev_ops = &c_can_netdev_ops;
1347
1348	err = register_candev(dev);
1349	if (err)
1350		c_can_pm_runtime_disable(priv);
1351	else
1352		devm_can_led_init(dev);
1353
1354	return err;
1355}
1356EXPORT_SYMBOL_GPL(register_c_can_dev);
1357
1358void unregister_c_can_dev(struct net_device *dev)
1359{
1360	struct c_can_priv *priv = netdev_priv(dev);
1361
1362	unregister_candev(dev);
1363
1364	c_can_pm_runtime_disable(priv);
1365}
1366EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1367
1368MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1369MODULE_LICENSE("GPL v2");
1370MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1371