c_can.c revision 2bd3bc4e8472424f1a6009825397639a8968920a
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42
43#include "c_can.h"
44
45/* Number of interface registers */
46#define IF_ENUM_REG_LEN		11
47#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
48
49/* control extension register D_CAN specific */
50#define CONTROL_EX_PDR		BIT(8)
51
52/* control register */
53#define CONTROL_TEST		BIT(7)
54#define CONTROL_CCE		BIT(6)
55#define CONTROL_DISABLE_AR	BIT(5)
56#define CONTROL_ENABLE_AR	(0 << 5)
57#define CONTROL_EIE		BIT(3)
58#define CONTROL_SIE		BIT(2)
59#define CONTROL_IE		BIT(1)
60#define CONTROL_INIT		BIT(0)
61
62/* test register */
63#define TEST_RX			BIT(7)
64#define TEST_TX1		BIT(6)
65#define TEST_TX2		BIT(5)
66#define TEST_LBACK		BIT(4)
67#define TEST_SILENT		BIT(3)
68#define TEST_BASIC		BIT(2)
69
70/* status register */
71#define STATUS_PDA		BIT(10)
72#define STATUS_BOFF		BIT(7)
73#define STATUS_EWARN		BIT(6)
74#define STATUS_EPASS		BIT(5)
75#define STATUS_RXOK		BIT(4)
76#define STATUS_TXOK		BIT(3)
77
78/* error counter register */
79#define ERR_CNT_TEC_MASK	0xff
80#define ERR_CNT_TEC_SHIFT	0
81#define ERR_CNT_REC_SHIFT	8
82#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
83#define ERR_CNT_RP_SHIFT	15
84#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
85
86/* bit-timing register */
87#define BTR_BRP_MASK		0x3f
88#define BTR_BRP_SHIFT		0
89#define BTR_SJW_SHIFT		6
90#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
91#define BTR_TSEG1_SHIFT		8
92#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
93#define BTR_TSEG2_SHIFT		12
94#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
95
96/* brp extension register */
97#define BRP_EXT_BRPE_MASK	0x0f
98#define BRP_EXT_BRPE_SHIFT	0
99
100/* IFx command request */
101#define IF_COMR_BUSY		BIT(15)
102
103/* IFx command mask */
104#define IF_COMM_WR		BIT(7)
105#define IF_COMM_MASK		BIT(6)
106#define IF_COMM_ARB		BIT(5)
107#define IF_COMM_CONTROL		BIT(4)
108#define IF_COMM_CLR_INT_PND	BIT(3)
109#define IF_COMM_TXRQST		BIT(2)
110#define IF_COMM_DATAA		BIT(1)
111#define IF_COMM_DATAB		BIT(0)
112#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
113				IF_COMM_CONTROL | IF_COMM_TXRQST | \
114				IF_COMM_DATAA | IF_COMM_DATAB)
115
116/* IFx arbitration */
117#define IF_ARB_MSGVAL		BIT(15)
118#define IF_ARB_MSGXTD		BIT(14)
119#define IF_ARB_TRANSMIT		BIT(13)
120
121/* IFx message control */
122#define IF_MCONT_NEWDAT		BIT(15)
123#define IF_MCONT_MSGLST		BIT(14)
124#define IF_MCONT_CLR_MSGLST	(0 << 14)
125#define IF_MCONT_INTPND		BIT(13)
126#define IF_MCONT_UMASK		BIT(12)
127#define IF_MCONT_TXIE		BIT(11)
128#define IF_MCONT_RXIE		BIT(10)
129#define IF_MCONT_RMTEN		BIT(9)
130#define IF_MCONT_TXRQST		BIT(8)
131#define IF_MCONT_EOB		BIT(7)
132#define IF_MCONT_DLC_MASK	0xf
133
134/*
135 * IFx register masks:
136 * allow easy operation on 16-bit registers when the
137 * argument is 32-bit instead
138 */
139#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
140#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
141
142/* message object split */
143#define C_CAN_NO_OF_OBJECTS	32
144#define C_CAN_MSG_OBJ_RX_NUM	16
145#define C_CAN_MSG_OBJ_TX_NUM	16
146
147#define C_CAN_MSG_OBJ_RX_FIRST	1
148#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
149				C_CAN_MSG_OBJ_RX_NUM - 1)
150
151#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
152#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
153				C_CAN_MSG_OBJ_TX_NUM - 1)
154
155#define C_CAN_MSG_OBJ_RX_SPLIT	9
156#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
157
158#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
159#define RECEIVE_OBJECT_BITS	0x0000ffff
160
161/* status interrupt */
162#define STATUS_INTERRUPT	0x8000
163
164/* global interrupt masks */
165#define ENABLE_ALL_INTERRUPTS	1
166#define DISABLE_ALL_INTERRUPTS	0
167
168/* minimum timeout for checking BUSY status */
169#define MIN_TIMEOUT_VALUE	6
170
171/* Wait for ~1 sec for INIT bit */
172#define INIT_WAIT_MS		1000
173
174/* napi related */
175#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
176
177/* c_can lec values */
178enum c_can_lec_type {
179	LEC_NO_ERROR = 0,
180	LEC_STUFF_ERROR,
181	LEC_FORM_ERROR,
182	LEC_ACK_ERROR,
183	LEC_BIT1_ERROR,
184	LEC_BIT0_ERROR,
185	LEC_CRC_ERROR,
186	LEC_UNUSED,
187};
188
189/*
190 * c_can error types:
191 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
192 */
193enum c_can_bus_error_types {
194	C_CAN_NO_ERROR = 0,
195	C_CAN_BUS_OFF,
196	C_CAN_ERROR_WARNING,
197	C_CAN_ERROR_PASSIVE,
198};
199
200static const struct can_bittiming_const c_can_bittiming_const = {
201	.name = KBUILD_MODNAME,
202	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
203	.tseg1_max = 16,
204	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
205	.tseg2_max = 8,
206	.sjw_max = 4,
207	.brp_min = 1,
208	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
209	.brp_inc = 1,
210};
211
212static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
213{
214	if (priv->device)
215		pm_runtime_enable(priv->device);
216}
217
218static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
219{
220	if (priv->device)
221		pm_runtime_disable(priv->device);
222}
223
224static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
225{
226	if (priv->device)
227		pm_runtime_get_sync(priv->device);
228}
229
230static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
231{
232	if (priv->device)
233		pm_runtime_put_sync(priv->device);
234}
235
236static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
237{
238	if (priv->raminit)
239		priv->raminit(priv, enable);
240}
241
242static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
243{
244	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
245			C_CAN_MSG_OBJ_TX_FIRST;
246}
247
248static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
249{
250	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
251			C_CAN_MSG_OBJ_TX_FIRST;
252}
253
254static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
255{
256	u32 val = priv->read_reg(priv, index);
257	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
258	return val;
259}
260
261static void c_can_enable_all_interrupts(struct c_can_priv *priv,
262						int enable)
263{
264	unsigned int cntrl_save = priv->read_reg(priv,
265						C_CAN_CTRL_REG);
266
267	if (enable)
268		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
269	else
270		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
271
272	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
273}
274
275static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
276{
277	int count = MIN_TIMEOUT_VALUE;
278
279	while (count && priv->read_reg(priv,
280				C_CAN_IFACE(COMREQ_REG, iface)) &
281				IF_COMR_BUSY) {
282		count--;
283		udelay(1);
284	}
285
286	if (!count)
287		return 1;
288
289	return 0;
290}
291
292static inline void c_can_object_get(struct net_device *dev,
293					int iface, int objno, int mask)
294{
295	struct c_can_priv *priv = netdev_priv(dev);
296
297	/*
298	 * As per specs, after writting the message object number in the
299	 * IF command request register the transfer b/w interface
300	 * register and message RAM must be complete in 6 CAN-CLK
301	 * period.
302	 */
303	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
304			IFX_WRITE_LOW_16BIT(mask));
305	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
306			IFX_WRITE_LOW_16BIT(objno));
307
308	if (c_can_msg_obj_is_busy(priv, iface))
309		netdev_err(dev, "timed out in object get\n");
310}
311
312static inline void c_can_object_put(struct net_device *dev,
313					int iface, int objno, int mask)
314{
315	struct c_can_priv *priv = netdev_priv(dev);
316
317	/*
318	 * As per specs, after writting the message object number in the
319	 * IF command request register the transfer b/w interface
320	 * register and message RAM must be complete in 6 CAN-CLK
321	 * period.
322	 */
323	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
324			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
325	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
326			IFX_WRITE_LOW_16BIT(objno));
327
328	if (c_can_msg_obj_is_busy(priv, iface))
329		netdev_err(dev, "timed out in object put\n");
330}
331
332static void c_can_write_msg_object(struct net_device *dev,
333			int iface, struct can_frame *frame, int objno)
334{
335	int i;
336	u16 flags = 0;
337	unsigned int id;
338	struct c_can_priv *priv = netdev_priv(dev);
339
340	if (!(frame->can_id & CAN_RTR_FLAG))
341		flags |= IF_ARB_TRANSMIT;
342
343	if (frame->can_id & CAN_EFF_FLAG) {
344		id = frame->can_id & CAN_EFF_MASK;
345		flags |= IF_ARB_MSGXTD;
346	} else
347		id = ((frame->can_id & CAN_SFF_MASK) << 18);
348
349	flags |= IF_ARB_MSGVAL;
350
351	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
352				IFX_WRITE_LOW_16BIT(id));
353	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
354				IFX_WRITE_HIGH_16BIT(id));
355
356	for (i = 0; i < frame->can_dlc; i += 2) {
357		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
358				frame->data[i] | (frame->data[i + 1] << 8));
359	}
360
361	/* enable interrupt for this message object */
362	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
363			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
364			frame->can_dlc);
365	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
366}
367
368static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
369						int iface, int ctrl_mask,
370						int obj)
371{
372	struct c_can_priv *priv = netdev_priv(dev);
373
374	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
375			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
376	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
377
378}
379
380static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
381						int iface,
382						int ctrl_mask)
383{
384	int i;
385	struct c_can_priv *priv = netdev_priv(dev);
386
387	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
388		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
389				ctrl_mask & ~(IF_MCONT_MSGLST |
390					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
391		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
392	}
393}
394
395static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
396						int iface, int ctrl_mask,
397						int obj)
398{
399	struct c_can_priv *priv = netdev_priv(dev);
400
401	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
402			ctrl_mask & ~(IF_MCONT_MSGLST |
403				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
404	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
405}
406
407static void c_can_handle_lost_msg_obj(struct net_device *dev,
408					int iface, int objno)
409{
410	struct c_can_priv *priv = netdev_priv(dev);
411	struct net_device_stats *stats = &dev->stats;
412	struct sk_buff *skb;
413	struct can_frame *frame;
414
415	netdev_err(dev, "msg lost in buffer %d\n", objno);
416
417	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
418
419	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
420			IF_MCONT_CLR_MSGLST);
421
422	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
423
424	/* create an error msg */
425	skb = alloc_can_err_skb(dev, &frame);
426	if (unlikely(!skb))
427		return;
428
429	frame->can_id |= CAN_ERR_CRTL;
430	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
431	stats->rx_errors++;
432	stats->rx_over_errors++;
433
434	netif_receive_skb(skb);
435}
436
437static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
438{
439	u16 flags, data;
440	int i;
441	unsigned int val;
442	struct c_can_priv *priv = netdev_priv(dev);
443	struct net_device_stats *stats = &dev->stats;
444	struct sk_buff *skb;
445	struct can_frame *frame;
446
447	skb = alloc_can_skb(dev, &frame);
448	if (!skb) {
449		stats->rx_dropped++;
450		return -ENOMEM;
451	}
452
453	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
454
455	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
456	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
457		(flags << 16);
458
459	if (flags & IF_ARB_MSGXTD)
460		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
461	else
462		frame->can_id = (val >> 18) & CAN_SFF_MASK;
463
464	if (flags & IF_ARB_TRANSMIT)
465		frame->can_id |= CAN_RTR_FLAG;
466	else {
467		for (i = 0; i < frame->can_dlc; i += 2) {
468			data = priv->read_reg(priv,
469				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
470			frame->data[i] = data;
471			frame->data[i + 1] = data >> 8;
472		}
473	}
474
475	netif_receive_skb(skb);
476
477	stats->rx_packets++;
478	stats->rx_bytes += frame->can_dlc;
479
480	return 0;
481}
482
483static void c_can_setup_receive_object(struct net_device *dev, int iface,
484					int objno, unsigned int mask,
485					unsigned int id, unsigned int mcont)
486{
487	struct c_can_priv *priv = netdev_priv(dev);
488
489	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
490			IFX_WRITE_LOW_16BIT(mask));
491
492	/* According to C_CAN documentation, the reserved bit
493	 * in IFx_MASK2 register is fixed 1
494	 */
495	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
496			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
497
498	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
499			IFX_WRITE_LOW_16BIT(id));
500	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
501			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
502
503	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
504	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
505
506	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
507			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
508}
509
510static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
511{
512	struct c_can_priv *priv = netdev_priv(dev);
513
514	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
515	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
516	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
517
518	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
519
520	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
521			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
522}
523
524static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
525{
526	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
527
528	/*
529	 * as transmission request register's bit n-1 corresponds to
530	 * message object n, we need to handle the same properly.
531	 */
532	if (val & (1 << (objno - 1)))
533		return 1;
534
535	return 0;
536}
537
538static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
539					struct net_device *dev)
540{
541	u32 msg_obj_no;
542	struct c_can_priv *priv = netdev_priv(dev);
543	struct can_frame *frame = (struct can_frame *)skb->data;
544
545	if (can_dropped_invalid_skb(dev, skb))
546		return NETDEV_TX_OK;
547
548	msg_obj_no = get_tx_next_msg_obj(priv);
549
550	/* prepare message object for transmission */
551	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
552	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
553
554	/*
555	 * we have to stop the queue in case of a wrap around or
556	 * if the next TX message object is still in use
557	 */
558	priv->tx_next++;
559	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
560			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
561		netif_stop_queue(dev);
562
563	return NETDEV_TX_OK;
564}
565
566static int c_can_set_bittiming(struct net_device *dev)
567{
568	unsigned int reg_btr, reg_brpe, ctrl_save;
569	u8 brp, brpe, sjw, tseg1, tseg2;
570	u32 ten_bit_brp;
571	struct c_can_priv *priv = netdev_priv(dev);
572	const struct can_bittiming *bt = &priv->can.bittiming;
573
574	/* c_can provides a 6-bit brp and 4-bit brpe fields */
575	ten_bit_brp = bt->brp - 1;
576	brp = ten_bit_brp & BTR_BRP_MASK;
577	brpe = ten_bit_brp >> 6;
578
579	sjw = bt->sjw - 1;
580	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
581	tseg2 = bt->phase_seg2 - 1;
582	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
583			(tseg2 << BTR_TSEG2_SHIFT);
584	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
585
586	netdev_info(dev,
587		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
588
589	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
590	priv->write_reg(priv, C_CAN_CTRL_REG,
591			ctrl_save | CONTROL_CCE | CONTROL_INIT);
592	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
593	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
594	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
595
596	return 0;
597}
598
599/*
600 * Configure C_CAN message objects for Tx and Rx purposes:
601 * C_CAN provides a total of 32 message objects that can be configured
602 * either for Tx or Rx purposes. Here the first 16 message objects are used as
603 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
604 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
605 * See user guide document for further details on configuring message
606 * objects.
607 */
608static void c_can_configure_msg_objects(struct net_device *dev)
609{
610	int i;
611
612	/* first invalidate all message objects */
613	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
614		c_can_inval_msg_object(dev, 0, i);
615
616	/* setup receive message objects */
617	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
618		c_can_setup_receive_object(dev, 0, i, 0, 0,
619			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
620
621	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
622			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
623}
624
625/*
626 * Configure C_CAN chip:
627 * - enable/disable auto-retransmission
628 * - set operating mode
629 * - configure message objects
630 */
631static void c_can_chip_config(struct net_device *dev)
632{
633	struct c_can_priv *priv = netdev_priv(dev);
634
635	/* enable automatic retransmission */
636	priv->write_reg(priv, C_CAN_CTRL_REG,
637			CONTROL_ENABLE_AR);
638
639	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
640	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
641		/* loopback + silent mode : useful for hot self-test */
642		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
643				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
644		priv->write_reg(priv, C_CAN_TEST_REG,
645				TEST_LBACK | TEST_SILENT);
646	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
647		/* loopback mode : useful for self-test function */
648		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
649				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
650		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
651	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
652		/* silent mode : bus-monitoring mode */
653		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
654				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
655		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
656	} else
657		/* normal mode*/
658		priv->write_reg(priv, C_CAN_CTRL_REG,
659				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
660
661	/* configure message objects */
662	c_can_configure_msg_objects(dev);
663
664	/* set a `lec` value so that we can check for updates later */
665	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
666
667	/* set bittiming params */
668	c_can_set_bittiming(dev);
669}
670
671static void c_can_start(struct net_device *dev)
672{
673	struct c_can_priv *priv = netdev_priv(dev);
674
675	/* basic c_can configuration */
676	c_can_chip_config(dev);
677
678	priv->can.state = CAN_STATE_ERROR_ACTIVE;
679
680	/* reset tx helper pointers */
681	priv->tx_next = priv->tx_echo = 0;
682
683	/* enable status change, error and module interrupts */
684	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
685}
686
687static void c_can_stop(struct net_device *dev)
688{
689	struct c_can_priv *priv = netdev_priv(dev);
690
691	/* disable all interrupts */
692	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
693
694	/* set the state as STOPPED */
695	priv->can.state = CAN_STATE_STOPPED;
696}
697
698static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
699{
700	switch (mode) {
701	case CAN_MODE_START:
702		c_can_start(dev);
703		netif_wake_queue(dev);
704		break;
705	default:
706		return -EOPNOTSUPP;
707	}
708
709	return 0;
710}
711
712static int c_can_get_berr_counter(const struct net_device *dev,
713					struct can_berr_counter *bec)
714{
715	unsigned int reg_err_counter;
716	struct c_can_priv *priv = netdev_priv(dev);
717
718	c_can_pm_runtime_get_sync(priv);
719
720	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
721	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
722				ERR_CNT_REC_SHIFT;
723	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
724
725	c_can_pm_runtime_put_sync(priv);
726
727	return 0;
728}
729
730/*
731 * theory of operation:
732 *
733 * priv->tx_echo holds the number of the oldest can_frame put for
734 * transmission into the hardware, but not yet ACKed by the CAN tx
735 * complete IRQ.
736 *
737 * We iterate from priv->tx_echo to priv->tx_next and check if the
738 * packet has been transmitted, echo it back to the CAN framework.
739 * If we discover a not yet transmitted packet, stop looking for more.
740 */
741static void c_can_do_tx(struct net_device *dev)
742{
743	u32 val;
744	u32 msg_obj_no;
745	struct c_can_priv *priv = netdev_priv(dev);
746	struct net_device_stats *stats = &dev->stats;
747
748	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
749		msg_obj_no = get_tx_echo_msg_obj(priv);
750		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
751		if (!(val & (1 << (msg_obj_no - 1)))) {
752			can_get_echo_skb(dev,
753					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
754			stats->tx_bytes += priv->read_reg(priv,
755					C_CAN_IFACE(MSGCTRL_REG, 0))
756					& IF_MCONT_DLC_MASK;
757			stats->tx_packets++;
758			c_can_inval_msg_object(dev, 0, msg_obj_no);
759		} else {
760			break;
761		}
762	}
763
764	/* restart queue if wrap-up or if queue stalled on last pkt */
765	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
766			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
767		netif_wake_queue(dev);
768}
769
770/*
771 * theory of operation:
772 *
773 * c_can core saves a received CAN message into the first free message
774 * object it finds free (starting with the lowest). Bits NEWDAT and
775 * INTPND are set for this message object indicating that a new message
776 * has arrived. To work-around this issue, we keep two groups of message
777 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
778 *
779 * To ensure in-order frame reception we use the following
780 * approach while re-activating a message object to receive further
781 * frames:
782 * - if the current message object number is lower than
783 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
784 *   the INTPND bit.
785 * - if the current message object number is equal to
786 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
787 *   receive message objects.
788 * - if the current message object number is greater than
789 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
790 *   only this message object.
791 */
792static int c_can_do_rx_poll(struct net_device *dev, int quota)
793{
794	u32 num_rx_pkts = 0;
795	unsigned int msg_obj, msg_ctrl_save;
796	struct c_can_priv *priv = netdev_priv(dev);
797	u32 val = c_can_read_reg32(priv, C_CAN_INTPND1_REG);
798
799	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
800			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
801			val = c_can_read_reg32(priv, C_CAN_INTPND1_REG),
802			msg_obj++) {
803		/*
804		 * as interrupt pending register's bit n-1 corresponds to
805		 * message object n, we need to handle the same properly.
806		 */
807		if (val & (1 << (msg_obj - 1))) {
808			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
809					~IF_COMM_TXRQST);
810			msg_ctrl_save = priv->read_reg(priv,
811					C_CAN_IFACE(MSGCTRL_REG, 0));
812
813			if (msg_ctrl_save & IF_MCONT_EOB)
814				return num_rx_pkts;
815
816			if (msg_ctrl_save & IF_MCONT_MSGLST) {
817				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
818				num_rx_pkts++;
819				quota--;
820				continue;
821			}
822
823			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
824				continue;
825
826			/* read the data from the message object */
827			c_can_read_msg_object(dev, 0, msg_ctrl_save);
828
829			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
830				c_can_mark_rx_msg_obj(dev, 0,
831						msg_ctrl_save, msg_obj);
832			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
833				/* activate this msg obj */
834				c_can_activate_rx_msg_obj(dev, 0,
835						msg_ctrl_save, msg_obj);
836			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
837				/* activate all lower message objects */
838				c_can_activate_all_lower_rx_msg_obj(dev,
839						0, msg_ctrl_save);
840
841			num_rx_pkts++;
842			quota--;
843		}
844	}
845
846	return num_rx_pkts;
847}
848
849static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
850{
851	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
852		(priv->current_status & LEC_UNUSED);
853}
854
855static int c_can_handle_state_change(struct net_device *dev,
856				enum c_can_bus_error_types error_type)
857{
858	unsigned int reg_err_counter;
859	unsigned int rx_err_passive;
860	struct c_can_priv *priv = netdev_priv(dev);
861	struct net_device_stats *stats = &dev->stats;
862	struct can_frame *cf;
863	struct sk_buff *skb;
864	struct can_berr_counter bec;
865
866	/* propagate the error condition to the CAN stack */
867	skb = alloc_can_err_skb(dev, &cf);
868	if (unlikely(!skb))
869		return 0;
870
871	c_can_get_berr_counter(dev, &bec);
872	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
873	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
874				ERR_CNT_RP_SHIFT;
875
876	switch (error_type) {
877	case C_CAN_ERROR_WARNING:
878		/* error warning state */
879		priv->can.can_stats.error_warning++;
880		priv->can.state = CAN_STATE_ERROR_WARNING;
881		cf->can_id |= CAN_ERR_CRTL;
882		cf->data[1] = (bec.txerr > bec.rxerr) ?
883			CAN_ERR_CRTL_TX_WARNING :
884			CAN_ERR_CRTL_RX_WARNING;
885		cf->data[6] = bec.txerr;
886		cf->data[7] = bec.rxerr;
887
888		break;
889	case C_CAN_ERROR_PASSIVE:
890		/* error passive state */
891		priv->can.can_stats.error_passive++;
892		priv->can.state = CAN_STATE_ERROR_PASSIVE;
893		cf->can_id |= CAN_ERR_CRTL;
894		if (rx_err_passive)
895			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
896		if (bec.txerr > 127)
897			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
898
899		cf->data[6] = bec.txerr;
900		cf->data[7] = bec.rxerr;
901		break;
902	case C_CAN_BUS_OFF:
903		/* bus-off state */
904		priv->can.state = CAN_STATE_BUS_OFF;
905		cf->can_id |= CAN_ERR_BUSOFF;
906		/*
907		 * disable all interrupts in bus-off mode to ensure that
908		 * the CPU is not hogged down
909		 */
910		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
911		can_bus_off(dev);
912		break;
913	default:
914		break;
915	}
916
917	netif_receive_skb(skb);
918	stats->rx_packets++;
919	stats->rx_bytes += cf->can_dlc;
920
921	return 1;
922}
923
924static int c_can_handle_bus_err(struct net_device *dev,
925				enum c_can_lec_type lec_type)
926{
927	struct c_can_priv *priv = netdev_priv(dev);
928	struct net_device_stats *stats = &dev->stats;
929	struct can_frame *cf;
930	struct sk_buff *skb;
931
932	/*
933	 * early exit if no lec update or no error.
934	 * no lec update means that no CAN bus event has been detected
935	 * since CPU wrote 0x7 value to status reg.
936	 */
937	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
938		return 0;
939
940	/* propagate the error condition to the CAN stack */
941	skb = alloc_can_err_skb(dev, &cf);
942	if (unlikely(!skb))
943		return 0;
944
945	/*
946	 * check for 'last error code' which tells us the
947	 * type of the last error to occur on the CAN bus
948	 */
949
950	/* common for all type of bus errors */
951	priv->can.can_stats.bus_error++;
952	stats->rx_errors++;
953	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
954	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
955
956	switch (lec_type) {
957	case LEC_STUFF_ERROR:
958		netdev_dbg(dev, "stuff error\n");
959		cf->data[2] |= CAN_ERR_PROT_STUFF;
960		break;
961	case LEC_FORM_ERROR:
962		netdev_dbg(dev, "form error\n");
963		cf->data[2] |= CAN_ERR_PROT_FORM;
964		break;
965	case LEC_ACK_ERROR:
966		netdev_dbg(dev, "ack error\n");
967		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
968				CAN_ERR_PROT_LOC_ACK_DEL);
969		break;
970	case LEC_BIT1_ERROR:
971		netdev_dbg(dev, "bit1 error\n");
972		cf->data[2] |= CAN_ERR_PROT_BIT1;
973		break;
974	case LEC_BIT0_ERROR:
975		netdev_dbg(dev, "bit0 error\n");
976		cf->data[2] |= CAN_ERR_PROT_BIT0;
977		break;
978	case LEC_CRC_ERROR:
979		netdev_dbg(dev, "CRC error\n");
980		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
981				CAN_ERR_PROT_LOC_CRC_DEL);
982		break;
983	default:
984		break;
985	}
986
987	/* set a `lec` value so that we can check for updates later */
988	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
989
990	netif_receive_skb(skb);
991	stats->rx_packets++;
992	stats->rx_bytes += cf->can_dlc;
993
994	return 1;
995}
996
997static int c_can_poll(struct napi_struct *napi, int quota)
998{
999	u16 irqstatus;
1000	int lec_type = 0;
1001	int work_done = 0;
1002	struct net_device *dev = napi->dev;
1003	struct c_can_priv *priv = netdev_priv(dev);
1004
1005	irqstatus = priv->irqstatus;
1006	if (!irqstatus)
1007		goto end;
1008
1009	/* status events have the highest priority */
1010	if (irqstatus == STATUS_INTERRUPT) {
1011		priv->current_status = priv->read_reg(priv,
1012					C_CAN_STS_REG);
1013
1014		/* handle Tx/Rx events */
1015		if (priv->current_status & STATUS_TXOK)
1016			priv->write_reg(priv, C_CAN_STS_REG,
1017					priv->current_status & ~STATUS_TXOK);
1018
1019		if (priv->current_status & STATUS_RXOK)
1020			priv->write_reg(priv, C_CAN_STS_REG,
1021					priv->current_status & ~STATUS_RXOK);
1022
1023		/* handle state changes */
1024		if ((priv->current_status & STATUS_EWARN) &&
1025				(!(priv->last_status & STATUS_EWARN))) {
1026			netdev_dbg(dev, "entered error warning state\n");
1027			work_done += c_can_handle_state_change(dev,
1028						C_CAN_ERROR_WARNING);
1029		}
1030		if ((priv->current_status & STATUS_EPASS) &&
1031				(!(priv->last_status & STATUS_EPASS))) {
1032			netdev_dbg(dev, "entered error passive state\n");
1033			work_done += c_can_handle_state_change(dev,
1034						C_CAN_ERROR_PASSIVE);
1035		}
1036		if ((priv->current_status & STATUS_BOFF) &&
1037				(!(priv->last_status & STATUS_BOFF))) {
1038			netdev_dbg(dev, "entered bus off state\n");
1039			work_done += c_can_handle_state_change(dev,
1040						C_CAN_BUS_OFF);
1041		}
1042
1043		/* handle bus recovery events */
1044		if ((!(priv->current_status & STATUS_BOFF)) &&
1045				(priv->last_status & STATUS_BOFF)) {
1046			netdev_dbg(dev, "left bus off state\n");
1047			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1048		}
1049		if ((!(priv->current_status & STATUS_EPASS)) &&
1050				(priv->last_status & STATUS_EPASS)) {
1051			netdev_dbg(dev, "left error passive state\n");
1052			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1053		}
1054
1055		priv->last_status = priv->current_status;
1056
1057		/* handle lec errors on the bus */
1058		lec_type = c_can_has_and_handle_berr(priv);
1059		if (lec_type)
1060			work_done += c_can_handle_bus_err(dev, lec_type);
1061	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1062			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1063		/* handle events corresponding to receive message objects */
1064		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1065	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1066			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1067		/* handle events corresponding to transmit message objects */
1068		c_can_do_tx(dev);
1069	}
1070
1071end:
1072	if (work_done < quota) {
1073		napi_complete(napi);
1074		/* enable all IRQs */
1075		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1076	}
1077
1078	return work_done;
1079}
1080
1081static irqreturn_t c_can_isr(int irq, void *dev_id)
1082{
1083	struct net_device *dev = (struct net_device *)dev_id;
1084	struct c_can_priv *priv = netdev_priv(dev);
1085
1086	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1087	if (!priv->irqstatus)
1088		return IRQ_NONE;
1089
1090	/* disable all interrupts and schedule the NAPI */
1091	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1092	napi_schedule(&priv->napi);
1093
1094	return IRQ_HANDLED;
1095}
1096
1097static int c_can_open(struct net_device *dev)
1098{
1099	int err;
1100	struct c_can_priv *priv = netdev_priv(dev);
1101
1102	c_can_pm_runtime_get_sync(priv);
1103	c_can_reset_ram(priv, true);
1104
1105	/* open the can device */
1106	err = open_candev(dev);
1107	if (err) {
1108		netdev_err(dev, "failed to open can device\n");
1109		goto exit_open_fail;
1110	}
1111
1112	/* register interrupt handler */
1113	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1114				dev);
1115	if (err < 0) {
1116		netdev_err(dev, "failed to request interrupt\n");
1117		goto exit_irq_fail;
1118	}
1119
1120	napi_enable(&priv->napi);
1121
1122	/* start the c_can controller */
1123	c_can_start(dev);
1124
1125	netif_start_queue(dev);
1126
1127	return 0;
1128
1129exit_irq_fail:
1130	close_candev(dev);
1131exit_open_fail:
1132	c_can_reset_ram(priv, false);
1133	c_can_pm_runtime_put_sync(priv);
1134	return err;
1135}
1136
1137static int c_can_close(struct net_device *dev)
1138{
1139	struct c_can_priv *priv = netdev_priv(dev);
1140
1141	netif_stop_queue(dev);
1142	napi_disable(&priv->napi);
1143	c_can_stop(dev);
1144	free_irq(dev->irq, dev);
1145	close_candev(dev);
1146
1147	c_can_reset_ram(priv, false);
1148	c_can_pm_runtime_put_sync(priv);
1149
1150	return 0;
1151}
1152
1153struct net_device *alloc_c_can_dev(void)
1154{
1155	struct net_device *dev;
1156	struct c_can_priv *priv;
1157
1158	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1159	if (!dev)
1160		return NULL;
1161
1162	priv = netdev_priv(dev);
1163	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1164
1165	priv->dev = dev;
1166	priv->can.bittiming_const = &c_can_bittiming_const;
1167	priv->can.do_set_mode = c_can_set_mode;
1168	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1169	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1170					CAN_CTRLMODE_LISTENONLY |
1171					CAN_CTRLMODE_BERR_REPORTING;
1172
1173	return dev;
1174}
1175EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1176
1177#ifdef CONFIG_PM
1178int c_can_power_down(struct net_device *dev)
1179{
1180	u32 val;
1181	unsigned long time_out;
1182	struct c_can_priv *priv = netdev_priv(dev);
1183
1184	if (!(dev->flags & IFF_UP))
1185		return 0;
1186
1187	WARN_ON(priv->type != BOSCH_D_CAN);
1188
1189	/* set PDR value so the device goes to power down mode */
1190	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1191	val |= CONTROL_EX_PDR;
1192	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1193
1194	/* Wait for the PDA bit to get set */
1195	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1196	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1197				time_after(time_out, jiffies))
1198		cpu_relax();
1199
1200	if (time_after(jiffies, time_out))
1201		return -ETIMEDOUT;
1202
1203	c_can_stop(dev);
1204
1205	c_can_reset_ram(priv, false);
1206	c_can_pm_runtime_put_sync(priv);
1207
1208	return 0;
1209}
1210EXPORT_SYMBOL_GPL(c_can_power_down);
1211
1212int c_can_power_up(struct net_device *dev)
1213{
1214	u32 val;
1215	unsigned long time_out;
1216	struct c_can_priv *priv = netdev_priv(dev);
1217
1218	if (!(dev->flags & IFF_UP))
1219		return 0;
1220
1221	WARN_ON(priv->type != BOSCH_D_CAN);
1222
1223	c_can_pm_runtime_get_sync(priv);
1224	c_can_reset_ram(priv, true);
1225
1226	/* Clear PDR and INIT bits */
1227	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1228	val &= ~CONTROL_EX_PDR;
1229	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1230	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1231	val &= ~CONTROL_INIT;
1232	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1233
1234	/* Wait for the PDA bit to get clear */
1235	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1236	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1237				time_after(time_out, jiffies))
1238		cpu_relax();
1239
1240	if (time_after(jiffies, time_out))
1241		return -ETIMEDOUT;
1242
1243	c_can_start(dev);
1244
1245	return 0;
1246}
1247EXPORT_SYMBOL_GPL(c_can_power_up);
1248#endif
1249
1250void free_c_can_dev(struct net_device *dev)
1251{
1252	free_candev(dev);
1253}
1254EXPORT_SYMBOL_GPL(free_c_can_dev);
1255
1256static const struct net_device_ops c_can_netdev_ops = {
1257	.ndo_open = c_can_open,
1258	.ndo_stop = c_can_close,
1259	.ndo_start_xmit = c_can_start_xmit,
1260};
1261
1262int register_c_can_dev(struct net_device *dev)
1263{
1264	struct c_can_priv *priv = netdev_priv(dev);
1265	int err;
1266
1267	c_can_pm_runtime_enable(priv);
1268
1269	dev->flags |= IFF_ECHO;	/* we support local echo */
1270	dev->netdev_ops = &c_can_netdev_ops;
1271
1272	err = register_candev(dev);
1273	if (err)
1274		c_can_pm_runtime_disable(priv);
1275
1276	return err;
1277}
1278EXPORT_SYMBOL_GPL(register_c_can_dev);
1279
1280void unregister_c_can_dev(struct net_device *dev)
1281{
1282	struct c_can_priv *priv = netdev_priv(dev);
1283
1284	unregister_candev(dev);
1285
1286	c_can_pm_runtime_disable(priv);
1287}
1288EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1289
1290MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1291MODULE_LICENSE("GPL v2");
1292MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1293