c_can.c revision 35bdafb576c5c0a06815e7a681571c3ab950ff7e
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
64
65/* test register */
66#define TEST_RX			BIT(7)
67#define TEST_TX1		BIT(6)
68#define TEST_TX2		BIT(5)
69#define TEST_LBACK		BIT(4)
70#define TEST_SILENT		BIT(3)
71#define TEST_BASIC		BIT(2)
72
73/* status register */
74#define STATUS_PDA		BIT(10)
75#define STATUS_BOFF		BIT(7)
76#define STATUS_EWARN		BIT(6)
77#define STATUS_EPASS		BIT(5)
78#define STATUS_RXOK		BIT(4)
79#define STATUS_TXOK		BIT(3)
80
81/* error counter register */
82#define ERR_CNT_TEC_MASK	0xff
83#define ERR_CNT_TEC_SHIFT	0
84#define ERR_CNT_REC_SHIFT	8
85#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
86#define ERR_CNT_RP_SHIFT	15
87#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
88
89/* bit-timing register */
90#define BTR_BRP_MASK		0x3f
91#define BTR_BRP_SHIFT		0
92#define BTR_SJW_SHIFT		6
93#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
94#define BTR_TSEG1_SHIFT		8
95#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
96#define BTR_TSEG2_SHIFT		12
97#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
98
99/* brp extension register */
100#define BRP_EXT_BRPE_MASK	0x0f
101#define BRP_EXT_BRPE_SHIFT	0
102
103/* IFx command request */
104#define IF_COMR_BUSY		BIT(15)
105
106/* IFx command mask */
107#define IF_COMM_WR		BIT(7)
108#define IF_COMM_MASK		BIT(6)
109#define IF_COMM_ARB		BIT(5)
110#define IF_COMM_CONTROL		BIT(4)
111#define IF_COMM_CLR_INT_PND	BIT(3)
112#define IF_COMM_TXRQST		BIT(2)
113#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114#define IF_COMM_DATAA		BIT(1)
115#define IF_COMM_DATAB		BIT(0)
116
117/* TX buffer setup */
118#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
119				 IF_COMM_TXRQST |		 \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the low buffers we clear the interrupt bit, but keep newdat */
123#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
124				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
125				 IF_COMM_DATAA | IF_COMM_DATAB)
126
127/* For the high buffers we clear the interrupt bit and newdat */
128#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
129
130
131/* Receive setup of message objects */
132#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
133
134/* Invalidation of message objects */
135#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
136
137/* IFx arbitration */
138#define IF_ARB_MSGVAL		BIT(31)
139#define IF_ARB_MSGXTD		BIT(30)
140#define IF_ARB_TRANSMIT		BIT(29)
141
142/* IFx message control */
143#define IF_MCONT_NEWDAT		BIT(15)
144#define IF_MCONT_MSGLST		BIT(14)
145#define IF_MCONT_INTPND		BIT(13)
146#define IF_MCONT_UMASK		BIT(12)
147#define IF_MCONT_TXIE		BIT(11)
148#define IF_MCONT_RXIE		BIT(10)
149#define IF_MCONT_RMTEN		BIT(9)
150#define IF_MCONT_TXRQST		BIT(8)
151#define IF_MCONT_EOB		BIT(7)
152#define IF_MCONT_DLC_MASK	0xf
153
154#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
155#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
156
157#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
158
159/*
160 * Use IF1 for RX and IF2 for TX
161 */
162#define IF_RX			0
163#define IF_TX			1
164
165/* minimum timeout for checking BUSY status */
166#define MIN_TIMEOUT_VALUE	6
167
168/* Wait for ~1 sec for INIT bit */
169#define INIT_WAIT_MS		1000
170
171/* napi related */
172#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
173
174/* c_can lec values */
175enum c_can_lec_type {
176	LEC_NO_ERROR = 0,
177	LEC_STUFF_ERROR,
178	LEC_FORM_ERROR,
179	LEC_ACK_ERROR,
180	LEC_BIT1_ERROR,
181	LEC_BIT0_ERROR,
182	LEC_CRC_ERROR,
183	LEC_UNUSED,
184	LEC_MASK = LEC_UNUSED,
185};
186
187/*
188 * c_can error types:
189 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
190 */
191enum c_can_bus_error_types {
192	C_CAN_NO_ERROR = 0,
193	C_CAN_BUS_OFF,
194	C_CAN_ERROR_WARNING,
195	C_CAN_ERROR_PASSIVE,
196};
197
198static const struct can_bittiming_const c_can_bittiming_const = {
199	.name = KBUILD_MODNAME,
200	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
201	.tseg1_max = 16,
202	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
203	.tseg2_max = 8,
204	.sjw_max = 4,
205	.brp_min = 1,
206	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
207	.brp_inc = 1,
208};
209
210static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
211{
212	if (priv->device)
213		pm_runtime_enable(priv->device);
214}
215
216static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
217{
218	if (priv->device)
219		pm_runtime_disable(priv->device);
220}
221
222static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
223{
224	if (priv->device)
225		pm_runtime_get_sync(priv->device);
226}
227
228static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
229{
230	if (priv->device)
231		pm_runtime_put_sync(priv->device);
232}
233
234static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
235{
236	if (priv->raminit)
237		priv->raminit(priv, enable);
238}
239
240static void c_can_irq_control(struct c_can_priv *priv, bool enable)
241{
242	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
243
244	if (enable)
245		ctrl |= CONTROL_IRQMSK;
246
247	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
248}
249
250static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
251{
252	struct c_can_priv *priv = netdev_priv(dev);
253	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
254
255	priv->write_reg(priv, reg + 1, cmd);
256	priv->write_reg(priv, reg, obj);
257
258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260			return;
261		udelay(1);
262	}
263	netdev_err(dev, "Updating object timed out\n");
264
265}
266
267static inline void c_can_object_get(struct net_device *dev, int iface,
268				    u32 obj, u32 cmd)
269{
270	c_can_obj_update(dev, iface, cmd, obj);
271}
272
273static inline void c_can_object_put(struct net_device *dev, int iface,
274				    u32 obj, u32 cmd)
275{
276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277}
278
279static void c_can_setup_tx_object(struct net_device *dev, int iface,
280				  struct can_frame *frame, int obj)
281{
282	struct c_can_priv *priv = netdev_priv(dev);
283	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
284	u32 arb = IF_ARB_MSGVAL;
285	int i;
286
287	if (frame->can_id & CAN_EFF_FLAG) {
288		arb |= frame->can_id & CAN_EFF_MASK;
289		arb |= IF_ARB_MSGXTD;
290	} else {
291		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
292	}
293
294	if (!(frame->can_id & CAN_RTR_FLAG))
295		arb |= IF_ARB_TRANSMIT;
296
297	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
298	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), arb >> 16);
299
300	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
301
302	for (i = 0; i < frame->can_dlc; i += 2) {
303		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
304				frame->data[i] | (frame->data[i + 1] << 8));
305	}
306}
307
308static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
309						       int iface)
310{
311	int i;
312
313	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
314		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
315}
316
317static int c_can_handle_lost_msg_obj(struct net_device *dev,
318				     int iface, int objno, u32 ctrl)
319{
320	struct net_device_stats *stats = &dev->stats;
321	struct c_can_priv *priv = netdev_priv(dev);
322	struct can_frame *frame;
323	struct sk_buff *skb;
324
325	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
326	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
327	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
328
329	stats->rx_errors++;
330	stats->rx_over_errors++;
331
332	/* create an error msg */
333	skb = alloc_can_err_skb(dev, &frame);
334	if (unlikely(!skb))
335		return 0;
336
337	frame->can_id |= CAN_ERR_CRTL;
338	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
339
340	netif_receive_skb(skb);
341	return 1;
342}
343
344static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
345{
346	struct net_device_stats *stats = &dev->stats;
347	struct c_can_priv *priv = netdev_priv(dev);
348	struct can_frame *frame;
349	struct sk_buff *skb;
350	u32 arb, data;
351
352	skb = alloc_can_skb(dev, &frame);
353	if (!skb) {
354		stats->rx_dropped++;
355		return -ENOMEM;
356	}
357
358	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
359
360	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
361	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
362
363	if (arb & IF_ARB_MSGXTD)
364		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
365	else
366		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
367
368	if (arb & IF_ARB_TRANSMIT) {
369		frame->can_id |= CAN_RTR_FLAG;
370	} else {
371		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
372
373		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
374			data = priv->read_reg(priv, dreg);
375			frame->data[i] = data;
376			frame->data[i + 1] = data >> 8;
377		}
378	}
379
380	stats->rx_packets++;
381	stats->rx_bytes += frame->can_dlc;
382
383	netif_receive_skb(skb);
384	return 0;
385}
386
387static void c_can_setup_receive_object(struct net_device *dev, int iface,
388				       u32 obj, u32 mask, u32 id, u32 mcont)
389{
390	struct c_can_priv *priv = netdev_priv(dev);
391
392	mask |= BIT(29);
393	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
394	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
395
396	id |= IF_ARB_MSGVAL;
397	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
398	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
399
400	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
401	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
402}
403
404static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
405{
406	struct c_can_priv *priv = netdev_priv(dev);
407
408	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
409	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
410	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
411
412	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
413}
414
415static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
416				    struct net_device *dev)
417{
418	struct can_frame *frame = (struct can_frame *)skb->data;
419	struct c_can_priv *priv = netdev_priv(dev);
420	u32 idx, obj;
421
422	if (can_dropped_invalid_skb(dev, skb))
423		return NETDEV_TX_OK;
424	/*
425	 * This is not a FIFO. C/D_CAN sends out the buffers
426	 * prioritized. The lowest buffer number wins.
427	 */
428	idx = fls(atomic_read(&priv->tx_active));
429	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
430
431	/* If this is the last buffer, stop the xmit queue */
432	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
433		netif_stop_queue(dev);
434	/*
435	 * Store the message in the interface so we can call
436	 * can_put_echo_skb(). We must do this before we enable
437	 * transmit as we might race against do_tx().
438	 */
439	c_can_setup_tx_object(dev, IF_TX, frame, obj);
440	priv->dlc[idx] = frame->can_dlc;
441	can_put_echo_skb(skb, dev, idx);
442
443	/* Update the active bits */
444	atomic_add((1 << idx), &priv->tx_active);
445	/* Start transmission */
446	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
447
448	return NETDEV_TX_OK;
449}
450
451static int c_can_wait_for_ctrl_init(struct net_device *dev,
452				    struct c_can_priv *priv, u32 init)
453{
454	int retry = 0;
455
456	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
457		udelay(10);
458		if (retry++ > 1000) {
459			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
460			return -EIO;
461		}
462	}
463	return 0;
464}
465
466static int c_can_set_bittiming(struct net_device *dev)
467{
468	unsigned int reg_btr, reg_brpe, ctrl_save;
469	u8 brp, brpe, sjw, tseg1, tseg2;
470	u32 ten_bit_brp;
471	struct c_can_priv *priv = netdev_priv(dev);
472	const struct can_bittiming *bt = &priv->can.bittiming;
473	int res;
474
475	/* c_can provides a 6-bit brp and 4-bit brpe fields */
476	ten_bit_brp = bt->brp - 1;
477	brp = ten_bit_brp & BTR_BRP_MASK;
478	brpe = ten_bit_brp >> 6;
479
480	sjw = bt->sjw - 1;
481	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
482	tseg2 = bt->phase_seg2 - 1;
483	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
484			(tseg2 << BTR_TSEG2_SHIFT);
485	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
486
487	netdev_info(dev,
488		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
489
490	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
491	ctrl_save &= ~CONTROL_INIT;
492	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
493	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
494	if (res)
495		return res;
496
497	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
498	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
499	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
500
501	return c_can_wait_for_ctrl_init(dev, priv, 0);
502}
503
504/*
505 * Configure C_CAN message objects for Tx and Rx purposes:
506 * C_CAN provides a total of 32 message objects that can be configured
507 * either for Tx or Rx purposes. Here the first 16 message objects are used as
508 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
509 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
510 * See user guide document for further details on configuring message
511 * objects.
512 */
513static void c_can_configure_msg_objects(struct net_device *dev)
514{
515	int i;
516
517	/* first invalidate all message objects */
518	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
519		c_can_inval_msg_object(dev, IF_RX, i);
520
521	/* setup receive message objects */
522	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
523		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
524
525	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
526				   IF_MCONT_RCV_EOB);
527}
528
529/*
530 * Configure C_CAN chip:
531 * - enable/disable auto-retransmission
532 * - set operating mode
533 * - configure message objects
534 */
535static int c_can_chip_config(struct net_device *dev)
536{
537	struct c_can_priv *priv = netdev_priv(dev);
538
539	/* enable automatic retransmission */
540	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
541
542	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
543	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
544		/* loopback + silent mode : useful for hot self-test */
545		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
546		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
547	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
548		/* loopback mode : useful for self-test function */
549		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
550		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
551	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
552		/* silent mode : bus-monitoring mode */
553		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
554		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
555	}
556
557	/* configure message objects */
558	c_can_configure_msg_objects(dev);
559
560	/* set a `lec` value so that we can check for updates later */
561	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
562
563	/* Clear all internal status */
564	atomic_set(&priv->tx_active, 0);
565	priv->rxmasked = 0;
566
567	/* set bittiming params */
568	return c_can_set_bittiming(dev);
569}
570
571static int c_can_start(struct net_device *dev)
572{
573	struct c_can_priv *priv = netdev_priv(dev);
574	int err;
575
576	/* basic c_can configuration */
577	err = c_can_chip_config(dev);
578	if (err)
579		return err;
580
581	/* Setup the command for new messages */
582	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
583		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
584
585	priv->can.state = CAN_STATE_ERROR_ACTIVE;
586
587	return 0;
588}
589
590static void c_can_stop(struct net_device *dev)
591{
592	struct c_can_priv *priv = netdev_priv(dev);
593
594	c_can_irq_control(priv, false);
595	priv->can.state = CAN_STATE_STOPPED;
596}
597
598static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
599{
600	struct c_can_priv *priv = netdev_priv(dev);
601	int err;
602
603	switch (mode) {
604	case CAN_MODE_START:
605		err = c_can_start(dev);
606		if (err)
607			return err;
608		netif_wake_queue(dev);
609		c_can_irq_control(priv, true);
610		break;
611	default:
612		return -EOPNOTSUPP;
613	}
614
615	return 0;
616}
617
618static int __c_can_get_berr_counter(const struct net_device *dev,
619				    struct can_berr_counter *bec)
620{
621	unsigned int reg_err_counter;
622	struct c_can_priv *priv = netdev_priv(dev);
623
624	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
625	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
626				ERR_CNT_REC_SHIFT;
627	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
628
629	return 0;
630}
631
632static int c_can_get_berr_counter(const struct net_device *dev,
633				  struct can_berr_counter *bec)
634{
635	struct c_can_priv *priv = netdev_priv(dev);
636	int err;
637
638	c_can_pm_runtime_get_sync(priv);
639	err = __c_can_get_berr_counter(dev, bec);
640	c_can_pm_runtime_put_sync(priv);
641
642	return err;
643}
644
645static void c_can_do_tx(struct net_device *dev)
646{
647	struct c_can_priv *priv = netdev_priv(dev);
648	struct net_device_stats *stats = &dev->stats;
649	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
650
651	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
652
653	while ((idx = ffs(pend))) {
654		idx--;
655		pend &= ~(1 << idx);
656		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
657		c_can_inval_msg_object(dev, IF_RX, obj);
658		can_get_echo_skb(dev, idx);
659		bytes += priv->dlc[idx];
660		pkts++;
661	}
662
663	/* Clear the bits in the tx_active mask */
664	atomic_sub(clr, &priv->tx_active);
665
666	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
667		netif_wake_queue(dev);
668
669	if (pkts) {
670		stats->tx_bytes += bytes;
671		stats->tx_packets += pkts;
672		can_led_event(dev, CAN_LED_EVENT_TX);
673	}
674}
675
676/*
677 * If we have a gap in the pending bits, that means we either
678 * raced with the hardware or failed to readout all upper
679 * objects in the last run due to quota limit.
680 */
681static u32 c_can_adjust_pending(u32 pend)
682{
683	u32 weight, lasts;
684
685	if (pend == RECEIVE_OBJECT_BITS)
686		return pend;
687
688	/*
689	 * If the last set bit is larger than the number of pending
690	 * bits we have a gap.
691	 */
692	weight = hweight32(pend);
693	lasts = fls(pend);
694
695	/* If the bits are linear, nothing to do */
696	if (lasts == weight)
697		return pend;
698
699	/*
700	 * Find the first set bit after the gap. We walk backwards
701	 * from the last set bit.
702	 */
703	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
704
705	return pend & ~((1 << lasts) - 1);
706}
707
708static inline void c_can_rx_object_get(struct net_device *dev,
709				       struct c_can_priv *priv, u32 obj)
710{
711#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
712	if (obj < C_CAN_MSG_RX_LOW_LAST)
713		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
714	else
715#endif
716		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
717}
718
719static inline void c_can_rx_finalize(struct net_device *dev,
720				     struct c_can_priv *priv, u32 obj)
721{
722#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
723	if (obj < C_CAN_MSG_RX_LOW_LAST)
724		priv->rxmasked |= BIT(obj - 1);
725	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
726		priv->rxmasked = 0;
727		/* activate all lower message objects */
728		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
729	}
730#endif
731	if (priv->type != BOSCH_D_CAN)
732		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
733}
734
735static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
736			      u32 pend, int quota)
737{
738	u32 pkts = 0, ctrl, obj;
739
740	while ((obj = ffs(pend)) && quota > 0) {
741		pend &= ~BIT(obj - 1);
742
743		c_can_rx_object_get(dev, priv, obj);
744		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
745
746		if (ctrl & IF_MCONT_MSGLST) {
747			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
748
749			pkts += n;
750			quota -= n;
751			continue;
752		}
753
754		/*
755		 * This really should not happen, but this covers some
756		 * odd HW behaviour. Do not remove that unless you
757		 * want to brick your machine.
758		 */
759		if (!(ctrl & IF_MCONT_NEWDAT))
760			continue;
761
762		/* read the data from the message object */
763		c_can_read_msg_object(dev, IF_RX, ctrl);
764
765		c_can_rx_finalize(dev, priv, obj);
766
767		pkts++;
768		quota--;
769	}
770
771	return pkts;
772}
773
774static inline u32 c_can_get_pending(struct c_can_priv *priv)
775{
776	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
777
778#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
779	pend &= ~priv->rxmasked;
780#endif
781	return pend;
782}
783
784/*
785 * theory of operation:
786 *
787 * c_can core saves a received CAN message into the first free message
788 * object it finds free (starting with the lowest). Bits NEWDAT and
789 * INTPND are set for this message object indicating that a new message
790 * has arrived. To work-around this issue, we keep two groups of message
791 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
792 *
793 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
794 *
795 * To ensure in-order frame reception we use the following
796 * approach while re-activating a message object to receive further
797 * frames:
798 * - if the current message object number is lower than
799 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
800 *   the INTPND bit.
801 * - if the current message object number is equal to
802 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
803 *   receive message objects.
804 * - if the current message object number is greater than
805 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
806 *   only this message object.
807 *
808 * This can cause packet loss!
809 *
810 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
811 *
812 * We clear the newdat bit right away.
813 *
814 * This can result in packet reordering when the readout is slow.
815 */
816static int c_can_do_rx_poll(struct net_device *dev, int quota)
817{
818	struct c_can_priv *priv = netdev_priv(dev);
819	u32 pkts = 0, pend = 0, toread, n;
820
821	/*
822	 * It is faster to read only one 16bit register. This is only possible
823	 * for a maximum number of 16 objects.
824	 */
825	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
826			"Implementation does not support more message objects than 16");
827
828	while (quota > 0) {
829		if (!pend) {
830			pend = c_can_get_pending(priv);
831			if (!pend)
832				break;
833			/*
834			 * If the pending field has a gap, handle the
835			 * bits above the gap first.
836			 */
837			toread = c_can_adjust_pending(pend);
838		} else {
839			toread = pend;
840		}
841		/* Remove the bits from pend */
842		pend &= ~toread;
843		/* Read the objects */
844		n = c_can_read_objects(dev, priv, toread, quota);
845		pkts += n;
846		quota -= n;
847	}
848
849	if (pkts)
850		can_led_event(dev, CAN_LED_EVENT_RX);
851
852	return pkts;
853}
854
855static int c_can_handle_state_change(struct net_device *dev,
856				enum c_can_bus_error_types error_type)
857{
858	unsigned int reg_err_counter;
859	unsigned int rx_err_passive;
860	struct c_can_priv *priv = netdev_priv(dev);
861	struct net_device_stats *stats = &dev->stats;
862	struct can_frame *cf;
863	struct sk_buff *skb;
864	struct can_berr_counter bec;
865
866	switch (error_type) {
867	case C_CAN_ERROR_WARNING:
868		/* error warning state */
869		priv->can.can_stats.error_warning++;
870		priv->can.state = CAN_STATE_ERROR_WARNING;
871		break;
872	case C_CAN_ERROR_PASSIVE:
873		/* error passive state */
874		priv->can.can_stats.error_passive++;
875		priv->can.state = CAN_STATE_ERROR_PASSIVE;
876		break;
877	case C_CAN_BUS_OFF:
878		/* bus-off state */
879		priv->can.state = CAN_STATE_BUS_OFF;
880		can_bus_off(dev);
881		break;
882	default:
883		break;
884	}
885
886	/* propagate the error condition to the CAN stack */
887	skb = alloc_can_err_skb(dev, &cf);
888	if (unlikely(!skb))
889		return 0;
890
891	__c_can_get_berr_counter(dev, &bec);
892	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
893	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
894				ERR_CNT_RP_SHIFT;
895
896	switch (error_type) {
897	case C_CAN_ERROR_WARNING:
898		/* error warning state */
899		cf->can_id |= CAN_ERR_CRTL;
900		cf->data[1] = (bec.txerr > bec.rxerr) ?
901			CAN_ERR_CRTL_TX_WARNING :
902			CAN_ERR_CRTL_RX_WARNING;
903		cf->data[6] = bec.txerr;
904		cf->data[7] = bec.rxerr;
905
906		break;
907	case C_CAN_ERROR_PASSIVE:
908		/* error passive state */
909		cf->can_id |= CAN_ERR_CRTL;
910		if (rx_err_passive)
911			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
912		if (bec.txerr > 127)
913			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
914
915		cf->data[6] = bec.txerr;
916		cf->data[7] = bec.rxerr;
917		break;
918	case C_CAN_BUS_OFF:
919		/* bus-off state */
920		cf->can_id |= CAN_ERR_BUSOFF;
921		can_bus_off(dev);
922		break;
923	default:
924		break;
925	}
926
927	stats->rx_packets++;
928	stats->rx_bytes += cf->can_dlc;
929	netif_receive_skb(skb);
930
931	return 1;
932}
933
934static int c_can_handle_bus_err(struct net_device *dev,
935				enum c_can_lec_type lec_type)
936{
937	struct c_can_priv *priv = netdev_priv(dev);
938	struct net_device_stats *stats = &dev->stats;
939	struct can_frame *cf;
940	struct sk_buff *skb;
941
942	/*
943	 * early exit if no lec update or no error.
944	 * no lec update means that no CAN bus event has been detected
945	 * since CPU wrote 0x7 value to status reg.
946	 */
947	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
948		return 0;
949
950	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
951		return 0;
952
953	/* common for all type of bus errors */
954	priv->can.can_stats.bus_error++;
955	stats->rx_errors++;
956
957	/* propagate the error condition to the CAN stack */
958	skb = alloc_can_err_skb(dev, &cf);
959	if (unlikely(!skb))
960		return 0;
961
962	/*
963	 * check for 'last error code' which tells us the
964	 * type of the last error to occur on the CAN bus
965	 */
966	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
967	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
968
969	switch (lec_type) {
970	case LEC_STUFF_ERROR:
971		netdev_dbg(dev, "stuff error\n");
972		cf->data[2] |= CAN_ERR_PROT_STUFF;
973		break;
974	case LEC_FORM_ERROR:
975		netdev_dbg(dev, "form error\n");
976		cf->data[2] |= CAN_ERR_PROT_FORM;
977		break;
978	case LEC_ACK_ERROR:
979		netdev_dbg(dev, "ack error\n");
980		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
981				CAN_ERR_PROT_LOC_ACK_DEL);
982		break;
983	case LEC_BIT1_ERROR:
984		netdev_dbg(dev, "bit1 error\n");
985		cf->data[2] |= CAN_ERR_PROT_BIT1;
986		break;
987	case LEC_BIT0_ERROR:
988		netdev_dbg(dev, "bit0 error\n");
989		cf->data[2] |= CAN_ERR_PROT_BIT0;
990		break;
991	case LEC_CRC_ERROR:
992		netdev_dbg(dev, "CRC error\n");
993		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
994				CAN_ERR_PROT_LOC_CRC_DEL);
995		break;
996	default:
997		break;
998	}
999
1000	stats->rx_packets++;
1001	stats->rx_bytes += cf->can_dlc;
1002	netif_receive_skb(skb);
1003	return 1;
1004}
1005
1006static int c_can_poll(struct napi_struct *napi, int quota)
1007{
1008	struct net_device *dev = napi->dev;
1009	struct c_can_priv *priv = netdev_priv(dev);
1010	u16 curr, last = priv->last_status;
1011	int work_done = 0;
1012
1013	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1014	/* Ack status on C_CAN. D_CAN is self clearing */
1015	if (priv->type != BOSCH_D_CAN)
1016		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1017
1018	/* handle state changes */
1019	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1020		netdev_dbg(dev, "entered error warning state\n");
1021		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1022	}
1023
1024	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1025		netdev_dbg(dev, "entered error passive state\n");
1026		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1027	}
1028
1029	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1030		netdev_dbg(dev, "entered bus off state\n");
1031		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1032		goto end;
1033	}
1034
1035	/* handle bus recovery events */
1036	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1037		netdev_dbg(dev, "left bus off state\n");
1038		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1039	}
1040	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1041		netdev_dbg(dev, "left error passive state\n");
1042		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1043	}
1044
1045	/* handle lec errors on the bus */
1046	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1047
1048	/* Handle Tx/Rx events. We do this unconditionally */
1049	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1050	c_can_do_tx(dev);
1051
1052end:
1053	if (work_done < quota) {
1054		napi_complete(napi);
1055		/* enable all IRQs if we are not in bus off state */
1056		if (priv->can.state != CAN_STATE_BUS_OFF)
1057			c_can_irq_control(priv, true);
1058	}
1059
1060	return work_done;
1061}
1062
1063static irqreturn_t c_can_isr(int irq, void *dev_id)
1064{
1065	struct net_device *dev = (struct net_device *)dev_id;
1066	struct c_can_priv *priv = netdev_priv(dev);
1067
1068	if (!priv->read_reg(priv, C_CAN_INT_REG))
1069		return IRQ_NONE;
1070
1071	/* disable all interrupts and schedule the NAPI */
1072	c_can_irq_control(priv, false);
1073	napi_schedule(&priv->napi);
1074
1075	return IRQ_HANDLED;
1076}
1077
1078static int c_can_open(struct net_device *dev)
1079{
1080	int err;
1081	struct c_can_priv *priv = netdev_priv(dev);
1082
1083	c_can_pm_runtime_get_sync(priv);
1084	c_can_reset_ram(priv, true);
1085
1086	/* open the can device */
1087	err = open_candev(dev);
1088	if (err) {
1089		netdev_err(dev, "failed to open can device\n");
1090		goto exit_open_fail;
1091	}
1092
1093	/* register interrupt handler */
1094	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1095				dev);
1096	if (err < 0) {
1097		netdev_err(dev, "failed to request interrupt\n");
1098		goto exit_irq_fail;
1099	}
1100
1101	/* start the c_can controller */
1102	err = c_can_start(dev);
1103	if (err)
1104		goto exit_start_fail;
1105
1106	can_led_event(dev, CAN_LED_EVENT_OPEN);
1107
1108	napi_enable(&priv->napi);
1109	/* enable status change, error and module interrupts */
1110	c_can_irq_control(priv, true);
1111	netif_start_queue(dev);
1112
1113	return 0;
1114
1115exit_start_fail:
1116	free_irq(dev->irq, dev);
1117exit_irq_fail:
1118	close_candev(dev);
1119exit_open_fail:
1120	c_can_reset_ram(priv, false);
1121	c_can_pm_runtime_put_sync(priv);
1122	return err;
1123}
1124
1125static int c_can_close(struct net_device *dev)
1126{
1127	struct c_can_priv *priv = netdev_priv(dev);
1128
1129	netif_stop_queue(dev);
1130	napi_disable(&priv->napi);
1131	c_can_stop(dev);
1132	free_irq(dev->irq, dev);
1133	close_candev(dev);
1134
1135	c_can_reset_ram(priv, false);
1136	c_can_pm_runtime_put_sync(priv);
1137
1138	can_led_event(dev, CAN_LED_EVENT_STOP);
1139
1140	return 0;
1141}
1142
1143struct net_device *alloc_c_can_dev(void)
1144{
1145	struct net_device *dev;
1146	struct c_can_priv *priv;
1147
1148	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1149	if (!dev)
1150		return NULL;
1151
1152	priv = netdev_priv(dev);
1153	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1154
1155	priv->dev = dev;
1156	priv->can.bittiming_const = &c_can_bittiming_const;
1157	priv->can.do_set_mode = c_can_set_mode;
1158	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1159	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1160					CAN_CTRLMODE_LISTENONLY |
1161					CAN_CTRLMODE_BERR_REPORTING;
1162
1163	return dev;
1164}
1165EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1166
1167#ifdef CONFIG_PM
1168int c_can_power_down(struct net_device *dev)
1169{
1170	u32 val;
1171	unsigned long time_out;
1172	struct c_can_priv *priv = netdev_priv(dev);
1173
1174	if (!(dev->flags & IFF_UP))
1175		return 0;
1176
1177	WARN_ON(priv->type != BOSCH_D_CAN);
1178
1179	/* set PDR value so the device goes to power down mode */
1180	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1181	val |= CONTROL_EX_PDR;
1182	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1183
1184	/* Wait for the PDA bit to get set */
1185	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1186	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1187				time_after(time_out, jiffies))
1188		cpu_relax();
1189
1190	if (time_after(jiffies, time_out))
1191		return -ETIMEDOUT;
1192
1193	c_can_stop(dev);
1194
1195	c_can_reset_ram(priv, false);
1196	c_can_pm_runtime_put_sync(priv);
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL_GPL(c_can_power_down);
1201
1202int c_can_power_up(struct net_device *dev)
1203{
1204	u32 val;
1205	unsigned long time_out;
1206	struct c_can_priv *priv = netdev_priv(dev);
1207	int ret;
1208
1209	if (!(dev->flags & IFF_UP))
1210		return 0;
1211
1212	WARN_ON(priv->type != BOSCH_D_CAN);
1213
1214	c_can_pm_runtime_get_sync(priv);
1215	c_can_reset_ram(priv, true);
1216
1217	/* Clear PDR and INIT bits */
1218	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1219	val &= ~CONTROL_EX_PDR;
1220	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1221	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1222	val &= ~CONTROL_INIT;
1223	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1224
1225	/* Wait for the PDA bit to get clear */
1226	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1227	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1228				time_after(time_out, jiffies))
1229		cpu_relax();
1230
1231	if (time_after(jiffies, time_out))
1232		return -ETIMEDOUT;
1233
1234	ret = c_can_start(dev);
1235	if (!ret)
1236		c_can_irq_control(priv, true);
1237
1238	return ret;
1239}
1240EXPORT_SYMBOL_GPL(c_can_power_up);
1241#endif
1242
1243void free_c_can_dev(struct net_device *dev)
1244{
1245	struct c_can_priv *priv = netdev_priv(dev);
1246
1247	netif_napi_del(&priv->napi);
1248	free_candev(dev);
1249}
1250EXPORT_SYMBOL_GPL(free_c_can_dev);
1251
1252static const struct net_device_ops c_can_netdev_ops = {
1253	.ndo_open = c_can_open,
1254	.ndo_stop = c_can_close,
1255	.ndo_start_xmit = c_can_start_xmit,
1256	.ndo_change_mtu = can_change_mtu,
1257};
1258
1259int register_c_can_dev(struct net_device *dev)
1260{
1261	struct c_can_priv *priv = netdev_priv(dev);
1262	int err;
1263
1264	c_can_pm_runtime_enable(priv);
1265
1266	dev->flags |= IFF_ECHO;	/* we support local echo */
1267	dev->netdev_ops = &c_can_netdev_ops;
1268
1269	err = register_candev(dev);
1270	if (err)
1271		c_can_pm_runtime_disable(priv);
1272	else
1273		devm_can_led_init(dev);
1274
1275	return err;
1276}
1277EXPORT_SYMBOL_GPL(register_c_can_dev);
1278
1279void unregister_c_can_dev(struct net_device *dev)
1280{
1281	struct c_can_priv *priv = netdev_priv(dev);
1282
1283	unregister_candev(dev);
1284
1285	c_can_pm_runtime_disable(priv);
1286}
1287EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1288
1289MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1290MODULE_LICENSE("GPL v2");
1291MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1292