c_can.c revision 4570a5248bafd9d06d31ab6f6ef337c90a2a4bc0
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37
38#include <linux/can.h>
39#include <linux/can/dev.h>
40#include <linux/can/error.h>
41
42#include "c_can.h"
43
44/* control register */
45#define CONTROL_TEST		BIT(7)
46#define CONTROL_CCE		BIT(6)
47#define CONTROL_DISABLE_AR	BIT(5)
48#define CONTROL_ENABLE_AR	(0 << 5)
49#define CONTROL_EIE		BIT(3)
50#define CONTROL_SIE		BIT(2)
51#define CONTROL_IE		BIT(1)
52#define CONTROL_INIT		BIT(0)
53
54/* test register */
55#define TEST_RX			BIT(7)
56#define TEST_TX1		BIT(6)
57#define TEST_TX2		BIT(5)
58#define TEST_LBACK		BIT(4)
59#define TEST_SILENT		BIT(3)
60#define TEST_BASIC		BIT(2)
61
62/* status register */
63#define STATUS_BOFF		BIT(7)
64#define STATUS_EWARN		BIT(6)
65#define STATUS_EPASS		BIT(5)
66#define STATUS_RXOK		BIT(4)
67#define STATUS_TXOK		BIT(3)
68
69/* error counter register */
70#define ERR_CNT_TEC_MASK	0xff
71#define ERR_CNT_TEC_SHIFT	0
72#define ERR_CNT_REC_SHIFT	8
73#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
74#define ERR_CNT_RP_SHIFT	15
75#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
76
77/* bit-timing register */
78#define BTR_BRP_MASK		0x3f
79#define BTR_BRP_SHIFT		0
80#define BTR_SJW_SHIFT		6
81#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
82#define BTR_TSEG1_SHIFT		8
83#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
84#define BTR_TSEG2_SHIFT		12
85#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
86
87/* brp extension register */
88#define BRP_EXT_BRPE_MASK	0x0f
89#define BRP_EXT_BRPE_SHIFT	0
90
91/* IFx command request */
92#define IF_COMR_BUSY		BIT(15)
93
94/* IFx command mask */
95#define IF_COMM_WR		BIT(7)
96#define IF_COMM_MASK		BIT(6)
97#define IF_COMM_ARB		BIT(5)
98#define IF_COMM_CONTROL		BIT(4)
99#define IF_COMM_CLR_INT_PND	BIT(3)
100#define IF_COMM_TXRQST		BIT(2)
101#define IF_COMM_DATAA		BIT(1)
102#define IF_COMM_DATAB		BIT(0)
103#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
104				IF_COMM_CONTROL | IF_COMM_TXRQST | \
105				IF_COMM_DATAA | IF_COMM_DATAB)
106
107/* IFx arbitration */
108#define IF_ARB_MSGVAL		BIT(15)
109#define IF_ARB_MSGXTD		BIT(14)
110#define IF_ARB_TRANSMIT		BIT(13)
111
112/* IFx message control */
113#define IF_MCONT_NEWDAT		BIT(15)
114#define IF_MCONT_MSGLST		BIT(14)
115#define IF_MCONT_CLR_MSGLST	(0 << 14)
116#define IF_MCONT_INTPND		BIT(13)
117#define IF_MCONT_UMASK		BIT(12)
118#define IF_MCONT_TXIE		BIT(11)
119#define IF_MCONT_RXIE		BIT(10)
120#define IF_MCONT_RMTEN		BIT(9)
121#define IF_MCONT_TXRQST		BIT(8)
122#define IF_MCONT_EOB		BIT(7)
123#define IF_MCONT_DLC_MASK	0xf
124
125/*
126 * IFx register masks:
127 * allow easy operation on 16-bit registers when the
128 * argument is 32-bit instead
129 */
130#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
131#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
132
133/* message object split */
134#define C_CAN_NO_OF_OBJECTS	32
135#define C_CAN_MSG_OBJ_RX_NUM	16
136#define C_CAN_MSG_OBJ_TX_NUM	16
137
138#define C_CAN_MSG_OBJ_RX_FIRST	1
139#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
140				C_CAN_MSG_OBJ_RX_NUM - 1)
141
142#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
143#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
144				C_CAN_MSG_OBJ_TX_NUM - 1)
145
146#define C_CAN_MSG_OBJ_RX_SPLIT	9
147#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
148
149#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
150#define RECEIVE_OBJECT_BITS	0x0000ffff
151
152/* status interrupt */
153#define STATUS_INTERRUPT	0x8000
154
155/* global interrupt masks */
156#define ENABLE_ALL_INTERRUPTS	1
157#define DISABLE_ALL_INTERRUPTS	0
158
159/* minimum timeout for checking BUSY status */
160#define MIN_TIMEOUT_VALUE	6
161
162/* napi related */
163#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
164
165/* c_can lec values */
166enum c_can_lec_type {
167	LEC_NO_ERROR = 0,
168	LEC_STUFF_ERROR,
169	LEC_FORM_ERROR,
170	LEC_ACK_ERROR,
171	LEC_BIT1_ERROR,
172	LEC_BIT0_ERROR,
173	LEC_CRC_ERROR,
174	LEC_UNUSED,
175};
176
177/*
178 * c_can error types:
179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
180 */
181enum c_can_bus_error_types {
182	C_CAN_NO_ERROR = 0,
183	C_CAN_BUS_OFF,
184	C_CAN_ERROR_WARNING,
185	C_CAN_ERROR_PASSIVE,
186};
187
188static struct can_bittiming_const c_can_bittiming_const = {
189	.name = KBUILD_MODNAME,
190	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
191	.tseg1_max = 16,
192	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
193	.tseg2_max = 8,
194	.sjw_max = 4,
195	.brp_min = 1,
196	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
197	.brp_inc = 1,
198};
199
200static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
201{
202	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
203			C_CAN_MSG_OBJ_TX_FIRST;
204}
205
206static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
207{
208	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
209			C_CAN_MSG_OBJ_TX_FIRST;
210}
211
212static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
213{
214	u32 val = priv->read_reg(priv, reg);
215	val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
216	return val;
217}
218
219static void c_can_enable_all_interrupts(struct c_can_priv *priv,
220						int enable)
221{
222	unsigned int cntrl_save = priv->read_reg(priv,
223						&priv->regs->control);
224
225	if (enable)
226		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
227	else
228		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
229
230	priv->write_reg(priv, &priv->regs->control, cntrl_save);
231}
232
233static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
234{
235	int count = MIN_TIMEOUT_VALUE;
236
237	while (count && priv->read_reg(priv,
238				&priv->regs->ifregs[iface].com_req) &
239				IF_COMR_BUSY) {
240		count--;
241		udelay(1);
242	}
243
244	if (!count)
245		return 1;
246
247	return 0;
248}
249
250static inline void c_can_object_get(struct net_device *dev,
251					int iface, int objno, int mask)
252{
253	struct c_can_priv *priv = netdev_priv(dev);
254
255	/*
256	 * As per specs, after writting the message object number in the
257	 * IF command request register the transfer b/w interface
258	 * register and message RAM must be complete in 6 CAN-CLK
259	 * period.
260	 */
261	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
262			IFX_WRITE_LOW_16BIT(mask));
263	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
264			IFX_WRITE_LOW_16BIT(objno));
265
266	if (c_can_msg_obj_is_busy(priv, iface))
267		netdev_err(dev, "timed out in object get\n");
268}
269
270static inline void c_can_object_put(struct net_device *dev,
271					int iface, int objno, int mask)
272{
273	struct c_can_priv *priv = netdev_priv(dev);
274
275	/*
276	 * As per specs, after writting the message object number in the
277	 * IF command request register the transfer b/w interface
278	 * register and message RAM must be complete in 6 CAN-CLK
279	 * period.
280	 */
281	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
282			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
283	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
284			IFX_WRITE_LOW_16BIT(objno));
285
286	if (c_can_msg_obj_is_busy(priv, iface))
287		netdev_err(dev, "timed out in object put\n");
288}
289
290static void c_can_write_msg_object(struct net_device *dev,
291			int iface, struct can_frame *frame, int objno)
292{
293	int i;
294	u16 flags = 0;
295	unsigned int id;
296	struct c_can_priv *priv = netdev_priv(dev);
297
298	if (!(frame->can_id & CAN_RTR_FLAG))
299		flags |= IF_ARB_TRANSMIT;
300
301	if (frame->can_id & CAN_EFF_FLAG) {
302		id = frame->can_id & CAN_EFF_MASK;
303		flags |= IF_ARB_MSGXTD;
304	} else
305		id = ((frame->can_id & CAN_SFF_MASK) << 18);
306
307	flags |= IF_ARB_MSGVAL;
308
309	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
310				IFX_WRITE_LOW_16BIT(id));
311	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
312				IFX_WRITE_HIGH_16BIT(id));
313
314	for (i = 0; i < frame->can_dlc; i += 2) {
315		priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
316				frame->data[i] | (frame->data[i + 1] << 8));
317	}
318
319	/* enable interrupt for this message object */
320	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
321			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
322			frame->can_dlc);
323	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
324}
325
326static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
327						int iface, int ctrl_mask,
328						int obj)
329{
330	struct c_can_priv *priv = netdev_priv(dev);
331
332	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
333			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
334	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
335
336}
337
338static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
339						int iface,
340						int ctrl_mask)
341{
342	int i;
343	struct c_can_priv *priv = netdev_priv(dev);
344
345	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
346		priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
347				ctrl_mask & ~(IF_MCONT_MSGLST |
348					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
349		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
350	}
351}
352
353static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
354						int iface, int ctrl_mask,
355						int obj)
356{
357	struct c_can_priv *priv = netdev_priv(dev);
358
359	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
360			ctrl_mask & ~(IF_MCONT_MSGLST |
361				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
362	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
363}
364
365static void c_can_handle_lost_msg_obj(struct net_device *dev,
366					int iface, int objno)
367{
368	struct c_can_priv *priv = netdev_priv(dev);
369	struct net_device_stats *stats = &dev->stats;
370	struct sk_buff *skb;
371	struct can_frame *frame;
372
373	netdev_err(dev, "msg lost in buffer %d\n", objno);
374
375	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
376
377	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
378			IF_MCONT_CLR_MSGLST);
379
380	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
381
382	/* create an error msg */
383	skb = alloc_can_err_skb(dev, &frame);
384	if (unlikely(!skb))
385		return;
386
387	frame->can_id |= CAN_ERR_CRTL;
388	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
389	stats->rx_errors++;
390	stats->rx_over_errors++;
391
392	netif_receive_skb(skb);
393}
394
395static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
396{
397	u16 flags, data;
398	int i;
399	unsigned int val;
400	struct c_can_priv *priv = netdev_priv(dev);
401	struct net_device_stats *stats = &dev->stats;
402	struct sk_buff *skb;
403	struct can_frame *frame;
404
405	skb = alloc_can_skb(dev, &frame);
406	if (!skb) {
407		stats->rx_dropped++;
408		return -ENOMEM;
409	}
410
411	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
412
413	flags =	priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
414	val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
415		(flags << 16);
416
417	if (flags & IF_ARB_MSGXTD)
418		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
419	else
420		frame->can_id = (val >> 18) & CAN_SFF_MASK;
421
422	if (flags & IF_ARB_TRANSMIT)
423		frame->can_id |= CAN_RTR_FLAG;
424	else {
425		for (i = 0; i < frame->can_dlc; i += 2) {
426			data = priv->read_reg(priv,
427				&priv->regs->ifregs[iface].data[i / 2]);
428			frame->data[i] = data;
429			frame->data[i + 1] = data >> 8;
430		}
431	}
432
433	netif_receive_skb(skb);
434
435	stats->rx_packets++;
436	stats->rx_bytes += frame->can_dlc;
437
438	return 0;
439}
440
441static void c_can_setup_receive_object(struct net_device *dev, int iface,
442					int objno, unsigned int mask,
443					unsigned int id, unsigned int mcont)
444{
445	struct c_can_priv *priv = netdev_priv(dev);
446
447	priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
448			IFX_WRITE_LOW_16BIT(mask));
449	priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
450			IFX_WRITE_HIGH_16BIT(mask));
451
452	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
453			IFX_WRITE_LOW_16BIT(id));
454	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
455			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
456
457	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
458	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
459
460	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
461			c_can_read_reg32(priv, &priv->regs->msgval1));
462}
463
464static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
465{
466	struct c_can_priv *priv = netdev_priv(dev);
467
468	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
469	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
470	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
471
472	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
473
474	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
475			c_can_read_reg32(priv, &priv->regs->msgval1));
476}
477
478static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
479{
480	int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
481
482	/*
483	 * as transmission request register's bit n-1 corresponds to
484	 * message object n, we need to handle the same properly.
485	 */
486	if (val & (1 << (objno - 1)))
487		return 1;
488
489	return 0;
490}
491
492static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
493					struct net_device *dev)
494{
495	u32 msg_obj_no;
496	struct c_can_priv *priv = netdev_priv(dev);
497	struct can_frame *frame = (struct can_frame *)skb->data;
498
499	if (can_dropped_invalid_skb(dev, skb))
500		return NETDEV_TX_OK;
501
502	msg_obj_no = get_tx_next_msg_obj(priv);
503
504	/* prepare message object for transmission */
505	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
506	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
507
508	/*
509	 * we have to stop the queue in case of a wrap around or
510	 * if the next TX message object is still in use
511	 */
512	priv->tx_next++;
513	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
514			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
515		netif_stop_queue(dev);
516
517	return NETDEV_TX_OK;
518}
519
520static int c_can_set_bittiming(struct net_device *dev)
521{
522	unsigned int reg_btr, reg_brpe, ctrl_save;
523	u8 brp, brpe, sjw, tseg1, tseg2;
524	u32 ten_bit_brp;
525	struct c_can_priv *priv = netdev_priv(dev);
526	const struct can_bittiming *bt = &priv->can.bittiming;
527
528	/* c_can provides a 6-bit brp and 4-bit brpe fields */
529	ten_bit_brp = bt->brp - 1;
530	brp = ten_bit_brp & BTR_BRP_MASK;
531	brpe = ten_bit_brp >> 6;
532
533	sjw = bt->sjw - 1;
534	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
535	tseg2 = bt->phase_seg2 - 1;
536	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
537			(tseg2 << BTR_TSEG2_SHIFT);
538	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
539
540	netdev_info(dev,
541		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
542
543	ctrl_save = priv->read_reg(priv, &priv->regs->control);
544	priv->write_reg(priv, &priv->regs->control,
545			ctrl_save | CONTROL_CCE | CONTROL_INIT);
546	priv->write_reg(priv, &priv->regs->btr, reg_btr);
547	priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
548	priv->write_reg(priv, &priv->regs->control, ctrl_save);
549
550	return 0;
551}
552
553/*
554 * Configure C_CAN message objects for Tx and Rx purposes:
555 * C_CAN provides a total of 32 message objects that can be configured
556 * either for Tx or Rx purposes. Here the first 16 message objects are used as
557 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
558 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
559 * See user guide document for further details on configuring message
560 * objects.
561 */
562static void c_can_configure_msg_objects(struct net_device *dev)
563{
564	int i;
565
566	/* first invalidate all message objects */
567	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
568		c_can_inval_msg_object(dev, 0, i);
569
570	/* setup receive message objects */
571	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
572		c_can_setup_receive_object(dev, 0, i, 0, 0,
573			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
574
575	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
576			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
577}
578
579/*
580 * Configure C_CAN chip:
581 * - enable/disable auto-retransmission
582 * - set operating mode
583 * - configure message objects
584 */
585static void c_can_chip_config(struct net_device *dev)
586{
587	struct c_can_priv *priv = netdev_priv(dev);
588
589	/* enable automatic retransmission */
590	priv->write_reg(priv, &priv->regs->control,
591			CONTROL_ENABLE_AR);
592
593	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
594					CAN_CTRLMODE_LOOPBACK)) {
595		/* loopback + silent mode : useful for hot self-test */
596		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
597				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
598		priv->write_reg(priv, &priv->regs->test,
599				TEST_LBACK | TEST_SILENT);
600	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
601		/* loopback mode : useful for self-test function */
602		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
603				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
604		priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
605	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
606		/* silent mode : bus-monitoring mode */
607		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
608				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
609		priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
610	} else
611		/* normal mode*/
612		priv->write_reg(priv, &priv->regs->control,
613				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
614
615	/* configure message objects */
616	c_can_configure_msg_objects(dev);
617
618	/* set a `lec` value so that we can check for updates later */
619	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
620
621	/* set bittiming params */
622	c_can_set_bittiming(dev);
623}
624
625static void c_can_start(struct net_device *dev)
626{
627	struct c_can_priv *priv = netdev_priv(dev);
628
629	/* basic c_can configuration */
630	c_can_chip_config(dev);
631
632	priv->can.state = CAN_STATE_ERROR_ACTIVE;
633
634	/* reset tx helper pointers */
635	priv->tx_next = priv->tx_echo = 0;
636
637	/* enable status change, error and module interrupts */
638	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
639}
640
641static void c_can_stop(struct net_device *dev)
642{
643	struct c_can_priv *priv = netdev_priv(dev);
644
645	/* disable all interrupts */
646	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
647
648	/* set the state as STOPPED */
649	priv->can.state = CAN_STATE_STOPPED;
650}
651
652static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
653{
654	switch (mode) {
655	case CAN_MODE_START:
656		c_can_start(dev);
657		netif_wake_queue(dev);
658		break;
659	default:
660		return -EOPNOTSUPP;
661	}
662
663	return 0;
664}
665
666static int c_can_get_berr_counter(const struct net_device *dev,
667					struct can_berr_counter *bec)
668{
669	unsigned int reg_err_counter;
670	struct c_can_priv *priv = netdev_priv(dev);
671
672	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
673	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
674				ERR_CNT_REC_SHIFT;
675	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
676
677	return 0;
678}
679
680/*
681 * theory of operation:
682 *
683 * priv->tx_echo holds the number of the oldest can_frame put for
684 * transmission into the hardware, but not yet ACKed by the CAN tx
685 * complete IRQ.
686 *
687 * We iterate from priv->tx_echo to priv->tx_next and check if the
688 * packet has been transmitted, echo it back to the CAN framework.
689 * If we discover a not yet transmitted package, stop looking for more.
690 */
691static void c_can_do_tx(struct net_device *dev)
692{
693	u32 val;
694	u32 msg_obj_no;
695	struct c_can_priv *priv = netdev_priv(dev);
696	struct net_device_stats *stats = &dev->stats;
697
698	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
699		msg_obj_no = get_tx_echo_msg_obj(priv);
700		val = c_can_read_reg32(priv, &priv->regs->txrqst1);
701		if (!(val & (1 << msg_obj_no))) {
702			can_get_echo_skb(dev,
703					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
704			stats->tx_bytes += priv->read_reg(priv,
705					&priv->regs->ifregs[0].msg_cntrl)
706					& IF_MCONT_DLC_MASK;
707			stats->tx_packets++;
708			c_can_inval_msg_object(dev, 0, msg_obj_no);
709		}
710	}
711
712	/* restart queue if wrap-up or if queue stalled on last pkt */
713	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
714			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
715		netif_wake_queue(dev);
716}
717
718/*
719 * theory of operation:
720 *
721 * c_can core saves a received CAN message into the first free message
722 * object it finds free (starting with the lowest). Bits NEWDAT and
723 * INTPND are set for this message object indicating that a new message
724 * has arrived. To work-around this issue, we keep two groups of message
725 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
726 *
727 * To ensure in-order frame reception we use the following
728 * approach while re-activating a message object to receive further
729 * frames:
730 * - if the current message object number is lower than
731 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
732 *   the INTPND bit.
733 * - if the current message object number is equal to
734 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
735 *   receive message objects.
736 * - if the current message object number is greater than
737 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
738 *   only this message object.
739 */
740static int c_can_do_rx_poll(struct net_device *dev, int quota)
741{
742	u32 num_rx_pkts = 0;
743	unsigned int msg_obj, msg_ctrl_save;
744	struct c_can_priv *priv = netdev_priv(dev);
745	u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
746
747	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
748			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
749			val = c_can_read_reg32(priv, &priv->regs->intpnd1),
750			msg_obj++) {
751		/*
752		 * as interrupt pending register's bit n-1 corresponds to
753		 * message object n, we need to handle the same properly.
754		 */
755		if (val & (1 << (msg_obj - 1))) {
756			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
757					~IF_COMM_TXRQST);
758			msg_ctrl_save = priv->read_reg(priv,
759					&priv->regs->ifregs[0].msg_cntrl);
760
761			if (msg_ctrl_save & IF_MCONT_EOB)
762				return num_rx_pkts;
763
764			if (msg_ctrl_save & IF_MCONT_MSGLST) {
765				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
766				num_rx_pkts++;
767				quota--;
768				continue;
769			}
770
771			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
772				continue;
773
774			/* read the data from the message object */
775			c_can_read_msg_object(dev, 0, msg_ctrl_save);
776
777			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
778				c_can_mark_rx_msg_obj(dev, 0,
779						msg_ctrl_save, msg_obj);
780			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
781				/* activate this msg obj */
782				c_can_activate_rx_msg_obj(dev, 0,
783						msg_ctrl_save, msg_obj);
784			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
785				/* activate all lower message objects */
786				c_can_activate_all_lower_rx_msg_obj(dev,
787						0, msg_ctrl_save);
788
789			num_rx_pkts++;
790			quota--;
791		}
792	}
793
794	return num_rx_pkts;
795}
796
797static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
798{
799	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
800		(priv->current_status & LEC_UNUSED);
801}
802
803static int c_can_handle_state_change(struct net_device *dev,
804				enum c_can_bus_error_types error_type)
805{
806	unsigned int reg_err_counter;
807	unsigned int rx_err_passive;
808	struct c_can_priv *priv = netdev_priv(dev);
809	struct net_device_stats *stats = &dev->stats;
810	struct can_frame *cf;
811	struct sk_buff *skb;
812	struct can_berr_counter bec;
813
814	/* propagate the error condition to the CAN stack */
815	skb = alloc_can_err_skb(dev, &cf);
816	if (unlikely(!skb))
817		return 0;
818
819	c_can_get_berr_counter(dev, &bec);
820	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
821	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
822				ERR_CNT_RP_SHIFT;
823
824	switch (error_type) {
825	case C_CAN_ERROR_WARNING:
826		/* error warning state */
827		priv->can.can_stats.error_warning++;
828		priv->can.state = CAN_STATE_ERROR_WARNING;
829		cf->can_id |= CAN_ERR_CRTL;
830		cf->data[1] = (bec.txerr > bec.rxerr) ?
831			CAN_ERR_CRTL_TX_WARNING :
832			CAN_ERR_CRTL_RX_WARNING;
833		cf->data[6] = bec.txerr;
834		cf->data[7] = bec.rxerr;
835
836		break;
837	case C_CAN_ERROR_PASSIVE:
838		/* error passive state */
839		priv->can.can_stats.error_passive++;
840		priv->can.state = CAN_STATE_ERROR_PASSIVE;
841		cf->can_id |= CAN_ERR_CRTL;
842		if (rx_err_passive)
843			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
844		if (bec.txerr > 127)
845			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
846
847		cf->data[6] = bec.txerr;
848		cf->data[7] = bec.rxerr;
849		break;
850	case C_CAN_BUS_OFF:
851		/* bus-off state */
852		priv->can.state = CAN_STATE_BUS_OFF;
853		cf->can_id |= CAN_ERR_BUSOFF;
854		/*
855		 * disable all interrupts in bus-off mode to ensure that
856		 * the CPU is not hogged down
857		 */
858		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
859		can_bus_off(dev);
860		break;
861	default:
862		break;
863	}
864
865	netif_receive_skb(skb);
866	stats->rx_packets++;
867	stats->rx_bytes += cf->can_dlc;
868
869	return 1;
870}
871
872static int c_can_handle_bus_err(struct net_device *dev,
873				enum c_can_lec_type lec_type)
874{
875	struct c_can_priv *priv = netdev_priv(dev);
876	struct net_device_stats *stats = &dev->stats;
877	struct can_frame *cf;
878	struct sk_buff *skb;
879
880	/*
881	 * early exit if no lec update or no error.
882	 * no lec update means that no CAN bus event has been detected
883	 * since CPU wrote 0x7 value to status reg.
884	 */
885	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
886		return 0;
887
888	/* propagate the error condition to the CAN stack */
889	skb = alloc_can_err_skb(dev, &cf);
890	if (unlikely(!skb))
891		return 0;
892
893	/*
894	 * check for 'last error code' which tells us the
895	 * type of the last error to occur on the CAN bus
896	 */
897
898	/* common for all type of bus errors */
899	priv->can.can_stats.bus_error++;
900	stats->rx_errors++;
901	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
902	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
903
904	switch (lec_type) {
905	case LEC_STUFF_ERROR:
906		netdev_dbg(dev, "stuff error\n");
907		cf->data[2] |= CAN_ERR_PROT_STUFF;
908		break;
909	case LEC_FORM_ERROR:
910		netdev_dbg(dev, "form error\n");
911		cf->data[2] |= CAN_ERR_PROT_FORM;
912		break;
913	case LEC_ACK_ERROR:
914		netdev_dbg(dev, "ack error\n");
915		cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
916				CAN_ERR_PROT_LOC_ACK_DEL);
917		break;
918	case LEC_BIT1_ERROR:
919		netdev_dbg(dev, "bit1 error\n");
920		cf->data[2] |= CAN_ERR_PROT_BIT1;
921		break;
922	case LEC_BIT0_ERROR:
923		netdev_dbg(dev, "bit0 error\n");
924		cf->data[2] |= CAN_ERR_PROT_BIT0;
925		break;
926	case LEC_CRC_ERROR:
927		netdev_dbg(dev, "CRC error\n");
928		cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
929				CAN_ERR_PROT_LOC_CRC_DEL);
930		break;
931	default:
932		break;
933	}
934
935	/* set a `lec` value so that we can check for updates later */
936	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
937
938	netif_receive_skb(skb);
939	stats->rx_packets++;
940	stats->rx_bytes += cf->can_dlc;
941
942	return 1;
943}
944
945static int c_can_poll(struct napi_struct *napi, int quota)
946{
947	u16 irqstatus;
948	int lec_type = 0;
949	int work_done = 0;
950	struct net_device *dev = napi->dev;
951	struct c_can_priv *priv = netdev_priv(dev);
952
953	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
954	if (!irqstatus)
955		goto end;
956
957	/* status events have the highest priority */
958	if (irqstatus == STATUS_INTERRUPT) {
959		priv->current_status = priv->read_reg(priv,
960					&priv->regs->status);
961
962		/* handle Tx/Rx events */
963		if (priv->current_status & STATUS_TXOK)
964			priv->write_reg(priv, &priv->regs->status,
965					priv->current_status & ~STATUS_TXOK);
966
967		if (priv->current_status & STATUS_RXOK)
968			priv->write_reg(priv, &priv->regs->status,
969					priv->current_status & ~STATUS_RXOK);
970
971		/* handle state changes */
972		if ((priv->current_status & STATUS_EWARN) &&
973				(!(priv->last_status & STATUS_EWARN))) {
974			netdev_dbg(dev, "entered error warning state\n");
975			work_done += c_can_handle_state_change(dev,
976						C_CAN_ERROR_WARNING);
977		}
978		if ((priv->current_status & STATUS_EPASS) &&
979				(!(priv->last_status & STATUS_EPASS))) {
980			netdev_dbg(dev, "entered error passive state\n");
981			work_done += c_can_handle_state_change(dev,
982						C_CAN_ERROR_PASSIVE);
983		}
984		if ((priv->current_status & STATUS_BOFF) &&
985				(!(priv->last_status & STATUS_BOFF))) {
986			netdev_dbg(dev, "entered bus off state\n");
987			work_done += c_can_handle_state_change(dev,
988						C_CAN_BUS_OFF);
989		}
990
991		/* handle bus recovery events */
992		if ((!(priv->current_status & STATUS_BOFF)) &&
993				(priv->last_status & STATUS_BOFF)) {
994			netdev_dbg(dev, "left bus off state\n");
995			priv->can.state = CAN_STATE_ERROR_ACTIVE;
996		}
997		if ((!(priv->current_status & STATUS_EPASS)) &&
998				(priv->last_status & STATUS_EPASS)) {
999			netdev_dbg(dev, "left error passive state\n");
1000			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1001		}
1002
1003		priv->last_status = priv->current_status;
1004
1005		/* handle lec errors on the bus */
1006		lec_type = c_can_has_and_handle_berr(priv);
1007		if (lec_type)
1008			work_done += c_can_handle_bus_err(dev, lec_type);
1009	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1010			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1011		/* handle events corresponding to receive message objects */
1012		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1013	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1014			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1015		/* handle events corresponding to transmit message objects */
1016		c_can_do_tx(dev);
1017	}
1018
1019end:
1020	if (work_done < quota) {
1021		napi_complete(napi);
1022		/* enable all IRQs */
1023		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1024	}
1025
1026	return work_done;
1027}
1028
1029static irqreturn_t c_can_isr(int irq, void *dev_id)
1030{
1031	u16 irqstatus;
1032	struct net_device *dev = (struct net_device *)dev_id;
1033	struct c_can_priv *priv = netdev_priv(dev);
1034
1035	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1036	if (!irqstatus)
1037		return IRQ_NONE;
1038
1039	/* disable all interrupts and schedule the NAPI */
1040	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1041	napi_schedule(&priv->napi);
1042
1043	return IRQ_HANDLED;
1044}
1045
1046static int c_can_open(struct net_device *dev)
1047{
1048	int err;
1049	struct c_can_priv *priv = netdev_priv(dev);
1050
1051	/* open the can device */
1052	err = open_candev(dev);
1053	if (err) {
1054		netdev_err(dev, "failed to open can device\n");
1055		return err;
1056	}
1057
1058	/* register interrupt handler */
1059	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1060				dev);
1061	if (err < 0) {
1062		netdev_err(dev, "failed to request interrupt\n");
1063		goto exit_irq_fail;
1064	}
1065
1066	/* start the c_can controller */
1067	c_can_start(dev);
1068
1069	napi_enable(&priv->napi);
1070	netif_start_queue(dev);
1071
1072	return 0;
1073
1074exit_irq_fail:
1075	close_candev(dev);
1076	return err;
1077}
1078
1079static int c_can_close(struct net_device *dev)
1080{
1081	struct c_can_priv *priv = netdev_priv(dev);
1082
1083	netif_stop_queue(dev);
1084	napi_disable(&priv->napi);
1085	c_can_stop(dev);
1086	free_irq(dev->irq, dev);
1087	close_candev(dev);
1088
1089	return 0;
1090}
1091
1092struct net_device *alloc_c_can_dev(void)
1093{
1094	struct net_device *dev;
1095	struct c_can_priv *priv;
1096
1097	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1098	if (!dev)
1099		return NULL;
1100
1101	priv = netdev_priv(dev);
1102	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1103
1104	priv->dev = dev;
1105	priv->can.bittiming_const = &c_can_bittiming_const;
1106	priv->can.do_set_mode = c_can_set_mode;
1107	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1108	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1109					CAN_CTRLMODE_LISTENONLY |
1110					CAN_CTRLMODE_BERR_REPORTING;
1111
1112	return dev;
1113}
1114EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1115
1116void free_c_can_dev(struct net_device *dev)
1117{
1118	free_candev(dev);
1119}
1120EXPORT_SYMBOL_GPL(free_c_can_dev);
1121
1122static const struct net_device_ops c_can_netdev_ops = {
1123	.ndo_open = c_can_open,
1124	.ndo_stop = c_can_close,
1125	.ndo_start_xmit = c_can_start_xmit,
1126};
1127
1128int register_c_can_dev(struct net_device *dev)
1129{
1130	dev->flags |= IFF_ECHO;	/* we support local echo */
1131	dev->netdev_ops = &c_can_netdev_ops;
1132
1133	return register_candev(dev);
1134}
1135EXPORT_SYMBOL_GPL(register_c_can_dev);
1136
1137void unregister_c_can_dev(struct net_device *dev)
1138{
1139	struct c_can_priv *priv = netdev_priv(dev);
1140
1141	/* disable all interrupts */
1142	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1143
1144	unregister_candev(dev);
1145}
1146EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1147
1148MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1149MODULE_LICENSE("GPL v2");
1150MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1151