c_can.c revision 4f2d56c45fec7c15169599cab05e9f6df18769d0
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/version.h>
30#include <linux/module.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/list.h>
37#include <linux/delay.h>
38#include <linux/io.h>
39
40#include <linux/can.h>
41#include <linux/can/dev.h>
42#include <linux/can/error.h>
43
44#include "c_can.h"
45
46/* control register */
47#define CONTROL_TEST		BIT(7)
48#define CONTROL_CCE		BIT(6)
49#define CONTROL_DISABLE_AR	BIT(5)
50#define CONTROL_ENABLE_AR	(0 << 5)
51#define CONTROL_EIE		BIT(3)
52#define CONTROL_SIE		BIT(2)
53#define CONTROL_IE		BIT(1)
54#define CONTROL_INIT		BIT(0)
55
56/* test register */
57#define TEST_RX			BIT(7)
58#define TEST_TX1		BIT(6)
59#define TEST_TX2		BIT(5)
60#define TEST_LBACK		BIT(4)
61#define TEST_SILENT		BIT(3)
62#define TEST_BASIC		BIT(2)
63
64/* status register */
65#define STATUS_BOFF		BIT(7)
66#define STATUS_EWARN		BIT(6)
67#define STATUS_EPASS		BIT(5)
68#define STATUS_RXOK		BIT(4)
69#define STATUS_TXOK		BIT(3)
70
71/* error counter register */
72#define ERR_CNT_TEC_MASK	0xff
73#define ERR_CNT_TEC_SHIFT	0
74#define ERR_CNT_REC_SHIFT	8
75#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
76#define ERR_CNT_RP_SHIFT	15
77#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
78
79/* bit-timing register */
80#define BTR_BRP_MASK		0x3f
81#define BTR_BRP_SHIFT		0
82#define BTR_SJW_SHIFT		6
83#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
84#define BTR_TSEG1_SHIFT		8
85#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
86#define BTR_TSEG2_SHIFT		12
87#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
88
89/* brp extension register */
90#define BRP_EXT_BRPE_MASK	0x0f
91#define BRP_EXT_BRPE_SHIFT	0
92
93/* IFx command request */
94#define IF_COMR_BUSY		BIT(15)
95
96/* IFx command mask */
97#define IF_COMM_WR		BIT(7)
98#define IF_COMM_MASK		BIT(6)
99#define IF_COMM_ARB		BIT(5)
100#define IF_COMM_CONTROL		BIT(4)
101#define IF_COMM_CLR_INT_PND	BIT(3)
102#define IF_COMM_TXRQST		BIT(2)
103#define IF_COMM_DATAA		BIT(1)
104#define IF_COMM_DATAB		BIT(0)
105#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
106				IF_COMM_CONTROL | IF_COMM_TXRQST | \
107				IF_COMM_DATAA | IF_COMM_DATAB)
108
109/* IFx arbitration */
110#define IF_ARB_MSGVAL		BIT(15)
111#define IF_ARB_MSGXTD		BIT(14)
112#define IF_ARB_TRANSMIT		BIT(13)
113
114/* IFx message control */
115#define IF_MCONT_NEWDAT		BIT(15)
116#define IF_MCONT_MSGLST		BIT(14)
117#define IF_MCONT_CLR_MSGLST	(0 << 14)
118#define IF_MCONT_INTPND		BIT(13)
119#define IF_MCONT_UMASK		BIT(12)
120#define IF_MCONT_TXIE		BIT(11)
121#define IF_MCONT_RXIE		BIT(10)
122#define IF_MCONT_RMTEN		BIT(9)
123#define IF_MCONT_TXRQST		BIT(8)
124#define IF_MCONT_EOB		BIT(7)
125#define IF_MCONT_DLC_MASK	0xf
126
127/*
128 * IFx register masks:
129 * allow easy operation on 16-bit registers when the
130 * argument is 32-bit instead
131 */
132#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
133#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
134
135/* message object split */
136#define C_CAN_NO_OF_OBJECTS	32
137#define C_CAN_MSG_OBJ_RX_NUM	16
138#define C_CAN_MSG_OBJ_TX_NUM	16
139
140#define C_CAN_MSG_OBJ_RX_FIRST	1
141#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
142				C_CAN_MSG_OBJ_RX_NUM - 1)
143
144#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
145#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
146				C_CAN_MSG_OBJ_TX_NUM - 1)
147
148#define C_CAN_MSG_OBJ_RX_SPLIT	9
149#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
150
151#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
152#define RECEIVE_OBJECT_BITS	0x0000ffff
153
154/* status interrupt */
155#define STATUS_INTERRUPT	0x8000
156
157/* global interrupt masks */
158#define ENABLE_ALL_INTERRUPTS	1
159#define DISABLE_ALL_INTERRUPTS	0
160
161/* minimum timeout for checking BUSY status */
162#define MIN_TIMEOUT_VALUE	6
163
164/* napi related */
165#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
166
167/* c_can lec values */
168enum c_can_lec_type {
169	LEC_NO_ERROR = 0,
170	LEC_STUFF_ERROR,
171	LEC_FORM_ERROR,
172	LEC_ACK_ERROR,
173	LEC_BIT1_ERROR,
174	LEC_BIT0_ERROR,
175	LEC_CRC_ERROR,
176	LEC_UNUSED,
177};
178
179/*
180 * c_can error types:
181 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
182 */
183enum c_can_bus_error_types {
184	C_CAN_NO_ERROR = 0,
185	C_CAN_BUS_OFF,
186	C_CAN_ERROR_WARNING,
187	C_CAN_ERROR_PASSIVE,
188};
189
190static struct can_bittiming_const c_can_bittiming_const = {
191	.name = KBUILD_MODNAME,
192	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
193	.tseg1_max = 16,
194	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
195	.tseg2_max = 8,
196	.sjw_max = 4,
197	.brp_min = 1,
198	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
199	.brp_inc = 1,
200};
201
202static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
203{
204	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
205			C_CAN_MSG_OBJ_TX_FIRST;
206}
207
208static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
209{
210	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
211			C_CAN_MSG_OBJ_TX_FIRST;
212}
213
214static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
215{
216	u32 val = priv->read_reg(priv, reg);
217	val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
218	return val;
219}
220
221static void c_can_enable_all_interrupts(struct c_can_priv *priv,
222						int enable)
223{
224	unsigned int cntrl_save = priv->read_reg(priv,
225						&priv->regs->control);
226
227	if (enable)
228		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
229	else
230		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
231
232	priv->write_reg(priv, &priv->regs->control, cntrl_save);
233}
234
235static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
236{
237	int count = MIN_TIMEOUT_VALUE;
238
239	while (count && priv->read_reg(priv,
240				&priv->regs->ifregs[iface].com_req) &
241				IF_COMR_BUSY) {
242		count--;
243		udelay(1);
244	}
245
246	if (!count)
247		return 1;
248
249	return 0;
250}
251
252static inline void c_can_object_get(struct net_device *dev,
253					int iface, int objno, int mask)
254{
255	struct c_can_priv *priv = netdev_priv(dev);
256
257	/*
258	 * As per specs, after writting the message object number in the
259	 * IF command request register the transfer b/w interface
260	 * register and message RAM must be complete in 6 CAN-CLK
261	 * period.
262	 */
263	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
264			IFX_WRITE_LOW_16BIT(mask));
265	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
266			IFX_WRITE_LOW_16BIT(objno));
267
268	if (c_can_msg_obj_is_busy(priv, iface))
269		netdev_err(dev, "timed out in object get\n");
270}
271
272static inline void c_can_object_put(struct net_device *dev,
273					int iface, int objno, int mask)
274{
275	struct c_can_priv *priv = netdev_priv(dev);
276
277	/*
278	 * As per specs, after writting the message object number in the
279	 * IF command request register the transfer b/w interface
280	 * register and message RAM must be complete in 6 CAN-CLK
281	 * period.
282	 */
283	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
284			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
285	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
286			IFX_WRITE_LOW_16BIT(objno));
287
288	if (c_can_msg_obj_is_busy(priv, iface))
289		netdev_err(dev, "timed out in object put\n");
290}
291
292static void c_can_write_msg_object(struct net_device *dev,
293			int iface, struct can_frame *frame, int objno)
294{
295	int i;
296	u16 flags = 0;
297	unsigned int id;
298	struct c_can_priv *priv = netdev_priv(dev);
299
300	if (!(frame->can_id & CAN_RTR_FLAG))
301		flags |= IF_ARB_TRANSMIT;
302
303	if (frame->can_id & CAN_EFF_FLAG) {
304		id = frame->can_id & CAN_EFF_MASK;
305		flags |= IF_ARB_MSGXTD;
306	} else
307		id = ((frame->can_id & CAN_SFF_MASK) << 18);
308
309	flags |= IF_ARB_MSGVAL;
310
311	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
312				IFX_WRITE_LOW_16BIT(id));
313	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
314				IFX_WRITE_HIGH_16BIT(id));
315
316	for (i = 0; i < frame->can_dlc; i += 2) {
317		priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
318				frame->data[i] | (frame->data[i + 1] << 8));
319	}
320
321	/* enable interrupt for this message object */
322	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
323			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
324			frame->can_dlc);
325	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
326}
327
328static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
329						int iface, int ctrl_mask,
330						int obj)
331{
332	struct c_can_priv *priv = netdev_priv(dev);
333
334	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
335			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
336	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
337
338}
339
340static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
341						int iface,
342						int ctrl_mask)
343{
344	int i;
345	struct c_can_priv *priv = netdev_priv(dev);
346
347	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
348		priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
349				ctrl_mask & ~(IF_MCONT_MSGLST |
350					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
351		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
352	}
353}
354
355static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
356						int iface, int ctrl_mask,
357						int obj)
358{
359	struct c_can_priv *priv = netdev_priv(dev);
360
361	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
362			ctrl_mask & ~(IF_MCONT_MSGLST |
363				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
364	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
365}
366
367static void c_can_handle_lost_msg_obj(struct net_device *dev,
368					int iface, int objno)
369{
370	struct c_can_priv *priv = netdev_priv(dev);
371	struct net_device_stats *stats = &dev->stats;
372	struct sk_buff *skb;
373	struct can_frame *frame;
374
375	netdev_err(dev, "msg lost in buffer %d\n", objno);
376
377	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
378
379	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
380			IF_MCONT_CLR_MSGLST);
381
382	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
383
384	/* create an error msg */
385	skb = alloc_can_err_skb(dev, &frame);
386	if (unlikely(!skb))
387		return;
388
389	frame->can_id |= CAN_ERR_CRTL;
390	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
391	stats->rx_errors++;
392	stats->rx_over_errors++;
393
394	netif_receive_skb(skb);
395}
396
397static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
398{
399	u16 flags, data;
400	int i;
401	unsigned int val;
402	struct c_can_priv *priv = netdev_priv(dev);
403	struct net_device_stats *stats = &dev->stats;
404	struct sk_buff *skb;
405	struct can_frame *frame;
406
407	skb = alloc_can_skb(dev, &frame);
408	if (!skb) {
409		stats->rx_dropped++;
410		return -ENOMEM;
411	}
412
413	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
414
415	flags =	priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
416	val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
417		(flags << 16);
418
419	if (flags & IF_ARB_MSGXTD)
420		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
421	else
422		frame->can_id = (val >> 18) & CAN_SFF_MASK;
423
424	if (flags & IF_ARB_TRANSMIT)
425		frame->can_id |= CAN_RTR_FLAG;
426	else {
427		for (i = 0; i < frame->can_dlc; i += 2) {
428			data = priv->read_reg(priv,
429				&priv->regs->ifregs[iface].data[i / 2]);
430			frame->data[i] = data;
431			frame->data[i + 1] = data >> 8;
432		}
433	}
434
435	netif_receive_skb(skb);
436
437	stats->rx_packets++;
438	stats->rx_bytes += frame->can_dlc;
439
440	return 0;
441}
442
443static void c_can_setup_receive_object(struct net_device *dev, int iface,
444					int objno, unsigned int mask,
445					unsigned int id, unsigned int mcont)
446{
447	struct c_can_priv *priv = netdev_priv(dev);
448
449	priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
450			IFX_WRITE_LOW_16BIT(mask));
451	priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
452			IFX_WRITE_HIGH_16BIT(mask));
453
454	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
455			IFX_WRITE_LOW_16BIT(id));
456	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
457			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
458
459	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
460	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
461
462	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
463			c_can_read_reg32(priv, &priv->regs->msgval1));
464}
465
466static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
467{
468	struct c_can_priv *priv = netdev_priv(dev);
469
470	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
471	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
472	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
473
474	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
475
476	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
477			c_can_read_reg32(priv, &priv->regs->msgval1));
478}
479
480static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
481{
482	int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
483
484	/*
485	 * as transmission request register's bit n-1 corresponds to
486	 * message object n, we need to handle the same properly.
487	 */
488	if (val & (1 << (objno - 1)))
489		return 1;
490
491	return 0;
492}
493
494static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
495					struct net_device *dev)
496{
497	u32 msg_obj_no;
498	struct c_can_priv *priv = netdev_priv(dev);
499	struct can_frame *frame = (struct can_frame *)skb->data;
500
501	if (can_dropped_invalid_skb(dev, skb))
502		return NETDEV_TX_OK;
503
504	msg_obj_no = get_tx_next_msg_obj(priv);
505
506	/* prepare message object for transmission */
507	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
508	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
509
510	/*
511	 * we have to stop the queue in case of a wrap around or
512	 * if the next TX message object is still in use
513	 */
514	priv->tx_next++;
515	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
516			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
517		netif_stop_queue(dev);
518
519	return NETDEV_TX_OK;
520}
521
522static int c_can_set_bittiming(struct net_device *dev)
523{
524	unsigned int reg_btr, reg_brpe, ctrl_save;
525	u8 brp, brpe, sjw, tseg1, tseg2;
526	u32 ten_bit_brp;
527	struct c_can_priv *priv = netdev_priv(dev);
528	const struct can_bittiming *bt = &priv->can.bittiming;
529
530	/* c_can provides a 6-bit brp and 4-bit brpe fields */
531	ten_bit_brp = bt->brp - 1;
532	brp = ten_bit_brp & BTR_BRP_MASK;
533	brpe = ten_bit_brp >> 6;
534
535	sjw = bt->sjw - 1;
536	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
537	tseg2 = bt->phase_seg2 - 1;
538	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
539			(tseg2 << BTR_TSEG2_SHIFT);
540	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
541
542	netdev_info(dev,
543		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
544
545	ctrl_save = priv->read_reg(priv, &priv->regs->control);
546	priv->write_reg(priv, &priv->regs->control,
547			ctrl_save | CONTROL_CCE | CONTROL_INIT);
548	priv->write_reg(priv, &priv->regs->btr, reg_btr);
549	priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
550	priv->write_reg(priv, &priv->regs->control, ctrl_save);
551
552	return 0;
553}
554
555/*
556 * Configure C_CAN message objects for Tx and Rx purposes:
557 * C_CAN provides a total of 32 message objects that can be configured
558 * either for Tx or Rx purposes. Here the first 16 message objects are used as
559 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
560 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
561 * See user guide document for further details on configuring message
562 * objects.
563 */
564static void c_can_configure_msg_objects(struct net_device *dev)
565{
566	int i;
567
568	/* first invalidate all message objects */
569	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
570		c_can_inval_msg_object(dev, 0, i);
571
572	/* setup receive message objects */
573	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
574		c_can_setup_receive_object(dev, 0, i, 0, 0,
575			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
576
577	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
578			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
579}
580
581/*
582 * Configure C_CAN chip:
583 * - enable/disable auto-retransmission
584 * - set operating mode
585 * - configure message objects
586 */
587static void c_can_chip_config(struct net_device *dev)
588{
589	struct c_can_priv *priv = netdev_priv(dev);
590
591	if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
592		/* disable automatic retransmission */
593		priv->write_reg(priv, &priv->regs->control,
594				CONTROL_DISABLE_AR);
595	else
596		/* enable automatic retransmission */
597		priv->write_reg(priv, &priv->regs->control,
598				CONTROL_ENABLE_AR);
599
600	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
601					CAN_CTRLMODE_LOOPBACK)) {
602		/* loopback + silent mode : useful for hot self-test */
603		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
604				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
605		priv->write_reg(priv, &priv->regs->test,
606				TEST_LBACK | TEST_SILENT);
607	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
608		/* loopback mode : useful for self-test function */
609		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
610				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
611		priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
612	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
613		/* silent mode : bus-monitoring mode */
614		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
615				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
616		priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
617	} else
618		/* normal mode*/
619		priv->write_reg(priv, &priv->regs->control,
620				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
621
622	/* configure message objects */
623	c_can_configure_msg_objects(dev);
624
625	/* set a `lec` value so that we can check for updates later */
626	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
627
628	/* set bittiming params */
629	c_can_set_bittiming(dev);
630}
631
632static void c_can_start(struct net_device *dev)
633{
634	struct c_can_priv *priv = netdev_priv(dev);
635
636	/* basic c_can configuration */
637	c_can_chip_config(dev);
638
639	priv->can.state = CAN_STATE_ERROR_ACTIVE;
640
641	/* reset tx helper pointers */
642	priv->tx_next = priv->tx_echo = 0;
643
644	/* enable status change, error and module interrupts */
645	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
646}
647
648static void c_can_stop(struct net_device *dev)
649{
650	struct c_can_priv *priv = netdev_priv(dev);
651
652	/* disable all interrupts */
653	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
654
655	/* set the state as STOPPED */
656	priv->can.state = CAN_STATE_STOPPED;
657}
658
659static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
660{
661	switch (mode) {
662	case CAN_MODE_START:
663		c_can_start(dev);
664		netif_wake_queue(dev);
665		break;
666	default:
667		return -EOPNOTSUPP;
668	}
669
670	return 0;
671}
672
673static int c_can_get_berr_counter(const struct net_device *dev,
674					struct can_berr_counter *bec)
675{
676	unsigned int reg_err_counter;
677	struct c_can_priv *priv = netdev_priv(dev);
678
679	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
680	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
681				ERR_CNT_REC_SHIFT;
682	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
683
684	return 0;
685}
686
687/*
688 * theory of operation:
689 *
690 * priv->tx_echo holds the number of the oldest can_frame put for
691 * transmission into the hardware, but not yet ACKed by the CAN tx
692 * complete IRQ.
693 *
694 * We iterate from priv->tx_echo to priv->tx_next and check if the
695 * packet has been transmitted, echo it back to the CAN framework.
696 * If we discover a not yet transmitted package, stop looking for more.
697 */
698static void c_can_do_tx(struct net_device *dev)
699{
700	u32 val;
701	u32 msg_obj_no;
702	struct c_can_priv *priv = netdev_priv(dev);
703	struct net_device_stats *stats = &dev->stats;
704
705	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
706		msg_obj_no = get_tx_echo_msg_obj(priv);
707		c_can_inval_msg_object(dev, 0, msg_obj_no);
708		val = c_can_read_reg32(priv, &priv->regs->txrqst1);
709		if (!(val & (1 << msg_obj_no))) {
710			can_get_echo_skb(dev,
711					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
712			stats->tx_bytes += priv->read_reg(priv,
713					&priv->regs->ifregs[0].msg_cntrl)
714					& IF_MCONT_DLC_MASK;
715			stats->tx_packets++;
716		}
717	}
718
719	/* restart queue if wrap-up or if queue stalled on last pkt */
720	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
721			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
722		netif_wake_queue(dev);
723}
724
725/*
726 * theory of operation:
727 *
728 * c_can core saves a received CAN message into the first free message
729 * object it finds free (starting with the lowest). Bits NEWDAT and
730 * INTPND are set for this message object indicating that a new message
731 * has arrived. To work-around this issue, we keep two groups of message
732 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
733 *
734 * To ensure in-order frame reception we use the following
735 * approach while re-activating a message object to receive further
736 * frames:
737 * - if the current message object number is lower than
738 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
739 *   the INTPND bit.
740 * - if the current message object number is equal to
741 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
742 *   receive message objects.
743 * - if the current message object number is greater than
744 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
745 *   only this message object.
746 */
747static int c_can_do_rx_poll(struct net_device *dev, int quota)
748{
749	u32 num_rx_pkts = 0;
750	unsigned int msg_obj, msg_ctrl_save;
751	struct c_can_priv *priv = netdev_priv(dev);
752	u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
753
754	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
755			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
756			val = c_can_read_reg32(priv, &priv->regs->intpnd1),
757			msg_obj++) {
758		/*
759		 * as interrupt pending register's bit n-1 corresponds to
760		 * message object n, we need to handle the same properly.
761		 */
762		if (val & (1 << (msg_obj - 1))) {
763			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
764					~IF_COMM_TXRQST);
765			msg_ctrl_save = priv->read_reg(priv,
766					&priv->regs->ifregs[0].msg_cntrl);
767
768			if (msg_ctrl_save & IF_MCONT_EOB)
769				return num_rx_pkts;
770
771			if (msg_ctrl_save & IF_MCONT_MSGLST) {
772				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
773				num_rx_pkts++;
774				quota--;
775				continue;
776			}
777
778			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
779				continue;
780
781			/* read the data from the message object */
782			c_can_read_msg_object(dev, 0, msg_ctrl_save);
783
784			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
785				c_can_mark_rx_msg_obj(dev, 0,
786						msg_ctrl_save, msg_obj);
787			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
788				/* activate this msg obj */
789				c_can_activate_rx_msg_obj(dev, 0,
790						msg_ctrl_save, msg_obj);
791			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
792				/* activate all lower message objects */
793				c_can_activate_all_lower_rx_msg_obj(dev,
794						0, msg_ctrl_save);
795
796			num_rx_pkts++;
797			quota--;
798		}
799	}
800
801	return num_rx_pkts;
802}
803
804static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
805{
806	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
807		(priv->current_status & LEC_UNUSED);
808}
809
810static int c_can_handle_state_change(struct net_device *dev,
811				enum c_can_bus_error_types error_type)
812{
813	unsigned int reg_err_counter;
814	unsigned int rx_err_passive;
815	struct c_can_priv *priv = netdev_priv(dev);
816	struct net_device_stats *stats = &dev->stats;
817	struct can_frame *cf;
818	struct sk_buff *skb;
819	struct can_berr_counter bec;
820
821	/* propogate the error condition to the CAN stack */
822	skb = alloc_can_err_skb(dev, &cf);
823	if (unlikely(!skb))
824		return 0;
825
826	c_can_get_berr_counter(dev, &bec);
827	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
828	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
829				ERR_CNT_RP_SHIFT;
830
831	switch (error_type) {
832	case C_CAN_ERROR_WARNING:
833		/* error warning state */
834		priv->can.can_stats.error_warning++;
835		priv->can.state = CAN_STATE_ERROR_WARNING;
836		cf->can_id |= CAN_ERR_CRTL;
837		cf->data[1] = (bec.txerr > bec.rxerr) ?
838			CAN_ERR_CRTL_TX_WARNING :
839			CAN_ERR_CRTL_RX_WARNING;
840		cf->data[6] = bec.txerr;
841		cf->data[7] = bec.rxerr;
842
843		break;
844	case C_CAN_ERROR_PASSIVE:
845		/* error passive state */
846		priv->can.can_stats.error_passive++;
847		priv->can.state = CAN_STATE_ERROR_PASSIVE;
848		cf->can_id |= CAN_ERR_CRTL;
849		if (rx_err_passive)
850			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
851		if (bec.txerr > 127)
852			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
853
854		cf->data[6] = bec.txerr;
855		cf->data[7] = bec.rxerr;
856		break;
857	case C_CAN_BUS_OFF:
858		/* bus-off state */
859		priv->can.state = CAN_STATE_BUS_OFF;
860		cf->can_id |= CAN_ERR_BUSOFF;
861		/*
862		 * disable all interrupts in bus-off mode to ensure that
863		 * the CPU is not hogged down
864		 */
865		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
866		can_bus_off(dev);
867		break;
868	default:
869		break;
870	}
871
872	netif_receive_skb(skb);
873	stats->rx_packets++;
874	stats->rx_bytes += cf->can_dlc;
875
876	return 1;
877}
878
879static int c_can_handle_bus_err(struct net_device *dev,
880				enum c_can_lec_type lec_type)
881{
882	struct c_can_priv *priv = netdev_priv(dev);
883	struct net_device_stats *stats = &dev->stats;
884	struct can_frame *cf;
885	struct sk_buff *skb;
886
887	/*
888	 * early exit if no lec update or no error.
889	 * no lec update means that no CAN bus event has been detected
890	 * since CPU wrote 0x7 value to status reg.
891	 */
892	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
893		return 0;
894
895	/* propogate the error condition to the CAN stack */
896	skb = alloc_can_err_skb(dev, &cf);
897	if (unlikely(!skb))
898		return 0;
899
900	/*
901	 * check for 'last error code' which tells us the
902	 * type of the last error to occur on the CAN bus
903	 */
904
905	/* common for all type of bus errors */
906	priv->can.can_stats.bus_error++;
907	stats->rx_errors++;
908	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
909	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
910
911	switch (lec_type) {
912	case LEC_STUFF_ERROR:
913		netdev_dbg(dev, "stuff error\n");
914		cf->data[2] |= CAN_ERR_PROT_STUFF;
915		break;
916	case LEC_FORM_ERROR:
917		netdev_dbg(dev, "form error\n");
918		cf->data[2] |= CAN_ERR_PROT_FORM;
919		break;
920	case LEC_ACK_ERROR:
921		netdev_dbg(dev, "ack error\n");
922		cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
923				CAN_ERR_PROT_LOC_ACK_DEL);
924		break;
925	case LEC_BIT1_ERROR:
926		netdev_dbg(dev, "bit1 error\n");
927		cf->data[2] |= CAN_ERR_PROT_BIT1;
928		break;
929	case LEC_BIT0_ERROR:
930		netdev_dbg(dev, "bit0 error\n");
931		cf->data[2] |= CAN_ERR_PROT_BIT0;
932		break;
933	case LEC_CRC_ERROR:
934		netdev_dbg(dev, "CRC error\n");
935		cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
936				CAN_ERR_PROT_LOC_CRC_DEL);
937		break;
938	default:
939		break;
940	}
941
942	/* set a `lec` value so that we can check for updates later */
943	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
944
945	netif_receive_skb(skb);
946	stats->rx_packets++;
947	stats->rx_bytes += cf->can_dlc;
948
949	return 1;
950}
951
952static int c_can_poll(struct napi_struct *napi, int quota)
953{
954	u16 irqstatus;
955	int lec_type = 0;
956	int work_done = 0;
957	struct net_device *dev = napi->dev;
958	struct c_can_priv *priv = netdev_priv(dev);
959
960	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
961	if (!irqstatus)
962		goto end;
963
964	/* status events have the highest priority */
965	if (irqstatus == STATUS_INTERRUPT) {
966		priv->current_status = priv->read_reg(priv,
967					&priv->regs->status);
968
969		/* handle Tx/Rx events */
970		if (priv->current_status & STATUS_TXOK)
971			priv->write_reg(priv, &priv->regs->status,
972					priv->current_status & ~STATUS_TXOK);
973
974		if (priv->current_status & STATUS_RXOK)
975			priv->write_reg(priv, &priv->regs->status,
976					priv->current_status & ~STATUS_RXOK);
977
978		/* handle state changes */
979		if ((priv->current_status & STATUS_EWARN) &&
980				(!(priv->last_status & STATUS_EWARN))) {
981			netdev_dbg(dev, "entered error warning state\n");
982			work_done += c_can_handle_state_change(dev,
983						C_CAN_ERROR_WARNING);
984		}
985		if ((priv->current_status & STATUS_EPASS) &&
986				(!(priv->last_status & STATUS_EPASS))) {
987			netdev_dbg(dev, "entered error passive state\n");
988			work_done += c_can_handle_state_change(dev,
989						C_CAN_ERROR_PASSIVE);
990		}
991		if ((priv->current_status & STATUS_BOFF) &&
992				(!(priv->last_status & STATUS_BOFF))) {
993			netdev_dbg(dev, "entered bus off state\n");
994			work_done += c_can_handle_state_change(dev,
995						C_CAN_BUS_OFF);
996		}
997
998		/* handle bus recovery events */
999		if ((!(priv->current_status & STATUS_BOFF)) &&
1000				(priv->last_status & STATUS_BOFF)) {
1001			netdev_dbg(dev, "left bus off state\n");
1002			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1003		}
1004		if ((!(priv->current_status & STATUS_EPASS)) &&
1005				(priv->last_status & STATUS_EPASS)) {
1006			netdev_dbg(dev, "left error passive state\n");
1007			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1008		}
1009
1010		priv->last_status = priv->current_status;
1011
1012		/* handle lec errors on the bus */
1013		lec_type = c_can_has_and_handle_berr(priv);
1014		if (lec_type)
1015			work_done += c_can_handle_bus_err(dev, lec_type);
1016	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1017			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1018		/* handle events corresponding to receive message objects */
1019		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1020	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1021			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1022		/* handle events corresponding to transmit message objects */
1023		c_can_do_tx(dev);
1024	}
1025
1026end:
1027	if (work_done < quota) {
1028		napi_complete(napi);
1029		/* enable all IRQs */
1030		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1031	}
1032
1033	return work_done;
1034}
1035
1036static irqreturn_t c_can_isr(int irq, void *dev_id)
1037{
1038	u16 irqstatus;
1039	struct net_device *dev = (struct net_device *)dev_id;
1040	struct c_can_priv *priv = netdev_priv(dev);
1041
1042	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1043	if (!irqstatus)
1044		return IRQ_NONE;
1045
1046	/* disable all interrupts and schedule the NAPI */
1047	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1048	napi_schedule(&priv->napi);
1049
1050	return IRQ_HANDLED;
1051}
1052
1053static int c_can_open(struct net_device *dev)
1054{
1055	int err;
1056	struct c_can_priv *priv = netdev_priv(dev);
1057
1058	/* open the can device */
1059	err = open_candev(dev);
1060	if (err) {
1061		netdev_err(dev, "failed to open can device\n");
1062		return err;
1063	}
1064
1065	/* register interrupt handler */
1066	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1067				dev);
1068	if (err < 0) {
1069		netdev_err(dev, "failed to request interrupt\n");
1070		goto exit_irq_fail;
1071	}
1072
1073	/* start the c_can controller */
1074	c_can_start(dev);
1075
1076	napi_enable(&priv->napi);
1077	netif_start_queue(dev);
1078
1079	return 0;
1080
1081exit_irq_fail:
1082	close_candev(dev);
1083	return err;
1084}
1085
1086static int c_can_close(struct net_device *dev)
1087{
1088	struct c_can_priv *priv = netdev_priv(dev);
1089
1090	netif_stop_queue(dev);
1091	napi_disable(&priv->napi);
1092	c_can_stop(dev);
1093	free_irq(dev->irq, dev);
1094	close_candev(dev);
1095
1096	return 0;
1097}
1098
1099struct net_device *alloc_c_can_dev(void)
1100{
1101	struct net_device *dev;
1102	struct c_can_priv *priv;
1103
1104	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1105	if (!dev)
1106		return NULL;
1107
1108	priv = netdev_priv(dev);
1109	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1110
1111	priv->dev = dev;
1112	priv->can.bittiming_const = &c_can_bittiming_const;
1113	priv->can.do_set_mode = c_can_set_mode;
1114	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1115	priv->can.ctrlmode_supported = CAN_CTRLMODE_ONE_SHOT |
1116					CAN_CTRLMODE_LOOPBACK |
1117					CAN_CTRLMODE_LISTENONLY |
1118					CAN_CTRLMODE_BERR_REPORTING;
1119
1120	return dev;
1121}
1122EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1123
1124void free_c_can_dev(struct net_device *dev)
1125{
1126	free_candev(dev);
1127}
1128EXPORT_SYMBOL_GPL(free_c_can_dev);
1129
1130static const struct net_device_ops c_can_netdev_ops = {
1131	.ndo_open = c_can_open,
1132	.ndo_stop = c_can_close,
1133	.ndo_start_xmit = c_can_start_xmit,
1134};
1135
1136int register_c_can_dev(struct net_device *dev)
1137{
1138	dev->flags |= IFF_ECHO;	/* we support local echo */
1139	dev->netdev_ops = &c_can_netdev_ops;
1140
1141	return register_candev(dev);
1142}
1143EXPORT_SYMBOL_GPL(register_c_can_dev);
1144
1145void unregister_c_can_dev(struct net_device *dev)
1146{
1147	struct c_can_priv *priv = netdev_priv(dev);
1148
1149	/* disable all interrupts */
1150	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1151
1152	unregister_candev(dev);
1153}
1154EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1155
1156MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1157MODULE_LICENSE("GPL v2");
1158MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1159