c_can.c revision 520f570c4378d23b595e52213601d62332174462
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* IFx arbitration */
118#define IF_ARB_MSGVAL		BIT(15)
119#define IF_ARB_MSGXTD		BIT(14)
120#define IF_ARB_TRANSMIT		BIT(13)
121
122/* IFx message control */
123#define IF_MCONT_NEWDAT		BIT(15)
124#define IF_MCONT_MSGLST		BIT(14)
125#define IF_MCONT_INTPND		BIT(13)
126#define IF_MCONT_UMASK		BIT(12)
127#define IF_MCONT_TXIE		BIT(11)
128#define IF_MCONT_RXIE		BIT(10)
129#define IF_MCONT_RMTEN		BIT(9)
130#define IF_MCONT_TXRQST		BIT(8)
131#define IF_MCONT_EOB		BIT(7)
132#define IF_MCONT_DLC_MASK	0xf
133
134/*
135 * Use IF1 for RX and IF2 for TX
136 */
137#define IF_RX			0
138#define IF_TX			1
139
140/*
141 * IFx register masks:
142 * allow easy operation on 16-bit registers when the
143 * argument is 32-bit instead
144 */
145#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
146#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
147
148/* message object split */
149#define C_CAN_NO_OF_OBJECTS	32
150#define C_CAN_MSG_OBJ_RX_NUM	16
151#define C_CAN_MSG_OBJ_TX_NUM	16
152
153#define C_CAN_MSG_OBJ_RX_FIRST	1
154#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
155				C_CAN_MSG_OBJ_RX_NUM - 1)
156
157#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
158#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
159				C_CAN_MSG_OBJ_TX_NUM - 1)
160
161#define C_CAN_MSG_OBJ_RX_SPLIT	9
162#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
163
164#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
165#define RECEIVE_OBJECT_BITS	0x0000ffff
166
167/* status interrupt */
168#define STATUS_INTERRUPT	0x8000
169
170/* global interrupt masks */
171#define ENABLE_ALL_INTERRUPTS	1
172#define DISABLE_ALL_INTERRUPTS	0
173
174/* minimum timeout for checking BUSY status */
175#define MIN_TIMEOUT_VALUE	6
176
177/* Wait for ~1 sec for INIT bit */
178#define INIT_WAIT_MS		1000
179
180/* napi related */
181#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
182
183/* c_can lec values */
184enum c_can_lec_type {
185	LEC_NO_ERROR = 0,
186	LEC_STUFF_ERROR,
187	LEC_FORM_ERROR,
188	LEC_ACK_ERROR,
189	LEC_BIT1_ERROR,
190	LEC_BIT0_ERROR,
191	LEC_CRC_ERROR,
192	LEC_UNUSED,
193};
194
195/*
196 * c_can error types:
197 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
198 */
199enum c_can_bus_error_types {
200	C_CAN_NO_ERROR = 0,
201	C_CAN_BUS_OFF,
202	C_CAN_ERROR_WARNING,
203	C_CAN_ERROR_PASSIVE,
204};
205
206static const struct can_bittiming_const c_can_bittiming_const = {
207	.name = KBUILD_MODNAME,
208	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
209	.tseg1_max = 16,
210	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
211	.tseg2_max = 8,
212	.sjw_max = 4,
213	.brp_min = 1,
214	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
215	.brp_inc = 1,
216};
217
218static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
219{
220	if (priv->device)
221		pm_runtime_enable(priv->device);
222}
223
224static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
225{
226	if (priv->device)
227		pm_runtime_disable(priv->device);
228}
229
230static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
231{
232	if (priv->device)
233		pm_runtime_get_sync(priv->device);
234}
235
236static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
237{
238	if (priv->device)
239		pm_runtime_put_sync(priv->device);
240}
241
242static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
243{
244	if (priv->raminit)
245		priv->raminit(priv, enable);
246}
247
248static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
249{
250	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
251			C_CAN_MSG_OBJ_TX_FIRST;
252}
253
254static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
255{
256	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
257			C_CAN_MSG_OBJ_TX_FIRST;
258}
259
260static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
261{
262	u32 val = priv->read_reg(priv, index);
263	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
264	return val;
265}
266
267static void c_can_enable_all_interrupts(struct c_can_priv *priv,
268						int enable)
269{
270	unsigned int cntrl_save = priv->read_reg(priv,
271						C_CAN_CTRL_REG);
272
273	if (enable)
274		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
275	else
276		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
277
278	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
279}
280
281static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
282{
283	int count = MIN_TIMEOUT_VALUE;
284
285	while (count && priv->read_reg(priv,
286				C_CAN_IFACE(COMREQ_REG, iface)) &
287				IF_COMR_BUSY) {
288		count--;
289		udelay(1);
290	}
291
292	if (!count)
293		return 1;
294
295	return 0;
296}
297
298static inline void c_can_object_get(struct net_device *dev,
299					int iface, int objno, int mask)
300{
301	struct c_can_priv *priv = netdev_priv(dev);
302
303	/*
304	 * As per specs, after writting the message object number in the
305	 * IF command request register the transfer b/w interface
306	 * register and message RAM must be complete in 6 CAN-CLK
307	 * period.
308	 */
309	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310			IFX_WRITE_LOW_16BIT(mask));
311	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312			IFX_WRITE_LOW_16BIT(objno));
313
314	if (c_can_msg_obj_is_busy(priv, iface))
315		netdev_err(dev, "timed out in object get\n");
316}
317
318static inline void c_can_object_put(struct net_device *dev,
319					int iface, int objno, int mask)
320{
321	struct c_can_priv *priv = netdev_priv(dev);
322
323	/*
324	 * As per specs, after writting the message object number in the
325	 * IF command request register the transfer b/w interface
326	 * register and message RAM must be complete in 6 CAN-CLK
327	 * period.
328	 */
329	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
330			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
331	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
332			IFX_WRITE_LOW_16BIT(objno));
333
334	if (c_can_msg_obj_is_busy(priv, iface))
335		netdev_err(dev, "timed out in object put\n");
336}
337
338static void c_can_write_msg_object(struct net_device *dev,
339			int iface, struct can_frame *frame, int objno)
340{
341	int i;
342	u16 flags = 0;
343	unsigned int id;
344	struct c_can_priv *priv = netdev_priv(dev);
345
346	if (!(frame->can_id & CAN_RTR_FLAG))
347		flags |= IF_ARB_TRANSMIT;
348
349	if (frame->can_id & CAN_EFF_FLAG) {
350		id = frame->can_id & CAN_EFF_MASK;
351		flags |= IF_ARB_MSGXTD;
352	} else
353		id = ((frame->can_id & CAN_SFF_MASK) << 18);
354
355	flags |= IF_ARB_MSGVAL;
356
357	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
358				IFX_WRITE_LOW_16BIT(id));
359	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
360				IFX_WRITE_HIGH_16BIT(id));
361
362	for (i = 0; i < frame->can_dlc; i += 2) {
363		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
364				frame->data[i] | (frame->data[i + 1] << 8));
365	}
366
367	/* enable interrupt for this message object */
368	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
369			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
370			frame->can_dlc);
371	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
372}
373
374static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
375						int iface, int ctrl_mask,
376						int obj)
377{
378	struct c_can_priv *priv = netdev_priv(dev);
379
380	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
381			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
382	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
383
384}
385
386static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
387						int iface,
388						int ctrl_mask)
389{
390	int i;
391	struct c_can_priv *priv = netdev_priv(dev);
392
393	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
394		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
395				ctrl_mask & ~(IF_MCONT_MSGLST |
396					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
397		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
398	}
399}
400
401static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
402						int iface, int ctrl_mask,
403						int obj)
404{
405	struct c_can_priv *priv = netdev_priv(dev);
406
407	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
408			ctrl_mask & ~(IF_MCONT_MSGLST |
409				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
410	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
411}
412
413static int c_can_handle_lost_msg_obj(struct net_device *dev,
414				     int iface, int objno, u32 ctrl)
415{
416	struct net_device_stats *stats = &dev->stats;
417	struct c_can_priv *priv = netdev_priv(dev);
418	struct can_frame *frame;
419	struct sk_buff *skb;
420
421	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
422	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
423	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
424
425	/* create an error msg */
426	skb = alloc_can_err_skb(dev, &frame);
427	if (unlikely(!skb))
428		return 0;
429
430	frame->can_id |= CAN_ERR_CRTL;
431	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
432	stats->rx_errors++;
433	stats->rx_over_errors++;
434
435	netif_receive_skb(skb);
436	return 1;
437}
438
439static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
440{
441	u16 flags, data;
442	int i;
443	unsigned int val;
444	struct c_can_priv *priv = netdev_priv(dev);
445	struct net_device_stats *stats = &dev->stats;
446	struct sk_buff *skb;
447	struct can_frame *frame;
448
449	skb = alloc_can_skb(dev, &frame);
450	if (!skb) {
451		stats->rx_dropped++;
452		return -ENOMEM;
453	}
454
455	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
456
457	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
458	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
459		(flags << 16);
460
461	if (flags & IF_ARB_MSGXTD)
462		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
463	else
464		frame->can_id = (val >> 18) & CAN_SFF_MASK;
465
466	if (flags & IF_ARB_TRANSMIT)
467		frame->can_id |= CAN_RTR_FLAG;
468	else {
469		for (i = 0; i < frame->can_dlc; i += 2) {
470			data = priv->read_reg(priv,
471				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
472			frame->data[i] = data;
473			frame->data[i + 1] = data >> 8;
474		}
475	}
476
477	netif_receive_skb(skb);
478
479	stats->rx_packets++;
480	stats->rx_bytes += frame->can_dlc;
481
482	can_led_event(dev, CAN_LED_EVENT_RX);
483
484	return 0;
485}
486
487static void c_can_setup_receive_object(struct net_device *dev, int iface,
488					int objno, unsigned int mask,
489					unsigned int id, unsigned int mcont)
490{
491	struct c_can_priv *priv = netdev_priv(dev);
492
493	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
494			IFX_WRITE_LOW_16BIT(mask));
495
496	/* According to C_CAN documentation, the reserved bit
497	 * in IFx_MASK2 register is fixed 1
498	 */
499	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
500			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
501
502	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
503			IFX_WRITE_LOW_16BIT(id));
504	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
505			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
506
507	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
508	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
509
510	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
511			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
512}
513
514static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
515{
516	struct c_can_priv *priv = netdev_priv(dev);
517
518	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
519	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
520	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
521
522	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
523
524	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
525			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
526}
527
528static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
529{
530	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
531
532	/*
533	 * as transmission request register's bit n-1 corresponds to
534	 * message object n, we need to handle the same properly.
535	 */
536	if (val & (1 << (objno - 1)))
537		return 1;
538
539	return 0;
540}
541
542static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
543					struct net_device *dev)
544{
545	u32 msg_obj_no;
546	struct c_can_priv *priv = netdev_priv(dev);
547	struct can_frame *frame = (struct can_frame *)skb->data;
548
549	if (can_dropped_invalid_skb(dev, skb))
550		return NETDEV_TX_OK;
551
552	spin_lock_bh(&priv->xmit_lock);
553	msg_obj_no = get_tx_next_msg_obj(priv);
554
555	/* prepare message object for transmission */
556	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
557	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
558
559	/*
560	 * we have to stop the queue in case of a wrap around or
561	 * if the next TX message object is still in use
562	 */
563	priv->tx_next++;
564	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
565			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
566		netif_stop_queue(dev);
567	spin_unlock_bh(&priv->xmit_lock);
568
569	return NETDEV_TX_OK;
570}
571
572static int c_can_wait_for_ctrl_init(struct net_device *dev,
573				    struct c_can_priv *priv, u32 init)
574{
575	int retry = 0;
576
577	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
578		udelay(10);
579		if (retry++ > 1000) {
580			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
581			return -EIO;
582		}
583	}
584	return 0;
585}
586
587static int c_can_set_bittiming(struct net_device *dev)
588{
589	unsigned int reg_btr, reg_brpe, ctrl_save;
590	u8 brp, brpe, sjw, tseg1, tseg2;
591	u32 ten_bit_brp;
592	struct c_can_priv *priv = netdev_priv(dev);
593	const struct can_bittiming *bt = &priv->can.bittiming;
594	int res;
595
596	/* c_can provides a 6-bit brp and 4-bit brpe fields */
597	ten_bit_brp = bt->brp - 1;
598	brp = ten_bit_brp & BTR_BRP_MASK;
599	brpe = ten_bit_brp >> 6;
600
601	sjw = bt->sjw - 1;
602	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
603	tseg2 = bt->phase_seg2 - 1;
604	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
605			(tseg2 << BTR_TSEG2_SHIFT);
606	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
607
608	netdev_info(dev,
609		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
610
611	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
612	ctrl_save &= ~CONTROL_INIT;
613	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
614	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
615	if (res)
616		return res;
617
618	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
619	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
620	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
621
622	return c_can_wait_for_ctrl_init(dev, priv, 0);
623}
624
625/*
626 * Configure C_CAN message objects for Tx and Rx purposes:
627 * C_CAN provides a total of 32 message objects that can be configured
628 * either for Tx or Rx purposes. Here the first 16 message objects are used as
629 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
630 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
631 * See user guide document for further details on configuring message
632 * objects.
633 */
634static void c_can_configure_msg_objects(struct net_device *dev)
635{
636	int i;
637
638	/* first invalidate all message objects */
639	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
640		c_can_inval_msg_object(dev, IF_RX, i);
641
642	/* setup receive message objects */
643	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
644		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
645			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
646
647	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
648			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
649}
650
651/*
652 * Configure C_CAN chip:
653 * - enable/disable auto-retransmission
654 * - set operating mode
655 * - configure message objects
656 */
657static int c_can_chip_config(struct net_device *dev)
658{
659	struct c_can_priv *priv = netdev_priv(dev);
660
661	/* enable automatic retransmission */
662	priv->write_reg(priv, C_CAN_CTRL_REG,
663			CONTROL_ENABLE_AR);
664
665	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
666	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
667		/* loopback + silent mode : useful for hot self-test */
668		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
669				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
670		priv->write_reg(priv, C_CAN_TEST_REG,
671				TEST_LBACK | TEST_SILENT);
672	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
673		/* loopback mode : useful for self-test function */
674		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
675				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
676		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
677	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
678		/* silent mode : bus-monitoring mode */
679		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
680				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
681		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
682	} else
683		/* normal mode*/
684		priv->write_reg(priv, C_CAN_CTRL_REG,
685				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
686
687	/* configure message objects */
688	c_can_configure_msg_objects(dev);
689
690	/* set a `lec` value so that we can check for updates later */
691	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
692
693	/* set bittiming params */
694	return c_can_set_bittiming(dev);
695}
696
697static int c_can_start(struct net_device *dev)
698{
699	struct c_can_priv *priv = netdev_priv(dev);
700	int err;
701
702	/* basic c_can configuration */
703	err = c_can_chip_config(dev);
704	if (err)
705		return err;
706
707	priv->can.state = CAN_STATE_ERROR_ACTIVE;
708
709	/* reset tx helper pointers */
710	priv->tx_next = priv->tx_echo = 0;
711
712	/* enable status change, error and module interrupts */
713	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
714
715	return 0;
716}
717
718static void c_can_stop(struct net_device *dev)
719{
720	struct c_can_priv *priv = netdev_priv(dev);
721
722	/* disable all interrupts */
723	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
724
725	/* set the state as STOPPED */
726	priv->can.state = CAN_STATE_STOPPED;
727}
728
729static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
730{
731	int err;
732
733	switch (mode) {
734	case CAN_MODE_START:
735		err = c_can_start(dev);
736		if (err)
737			return err;
738		netif_wake_queue(dev);
739		break;
740	default:
741		return -EOPNOTSUPP;
742	}
743
744	return 0;
745}
746
747static int __c_can_get_berr_counter(const struct net_device *dev,
748				    struct can_berr_counter *bec)
749{
750	unsigned int reg_err_counter;
751	struct c_can_priv *priv = netdev_priv(dev);
752
753	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
754	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
755				ERR_CNT_REC_SHIFT;
756	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
757
758	return 0;
759}
760
761static int c_can_get_berr_counter(const struct net_device *dev,
762				  struct can_berr_counter *bec)
763{
764	struct c_can_priv *priv = netdev_priv(dev);
765	int err;
766
767	c_can_pm_runtime_get_sync(priv);
768	err = __c_can_get_berr_counter(dev, bec);
769	c_can_pm_runtime_put_sync(priv);
770
771	return err;
772}
773
774/*
775 * theory of operation:
776 *
777 * priv->tx_echo holds the number of the oldest can_frame put for
778 * transmission into the hardware, but not yet ACKed by the CAN tx
779 * complete IRQ.
780 *
781 * We iterate from priv->tx_echo to priv->tx_next and check if the
782 * packet has been transmitted, echo it back to the CAN framework.
783 * If we discover a not yet transmitted packet, stop looking for more.
784 */
785static void c_can_do_tx(struct net_device *dev)
786{
787	u32 val;
788	u32 msg_obj_no;
789	struct c_can_priv *priv = netdev_priv(dev);
790	struct net_device_stats *stats = &dev->stats;
791
792	spin_lock_bh(&priv->xmit_lock);
793
794	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
795		msg_obj_no = get_tx_echo_msg_obj(priv);
796		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
797		if (!(val & (1 << (msg_obj_no - 1)))) {
798			can_get_echo_skb(dev,
799					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
800			c_can_object_get(dev, IF_TX, msg_obj_no, IF_COMM_ALL);
801			stats->tx_bytes += priv->read_reg(priv,
802					C_CAN_IFACE(MSGCTRL_REG, IF_TX))
803					& IF_MCONT_DLC_MASK;
804			stats->tx_packets++;
805			can_led_event(dev, CAN_LED_EVENT_TX);
806			c_can_inval_msg_object(dev, IF_TX, msg_obj_no);
807		} else {
808			break;
809		}
810	}
811
812	/* restart queue if wrap-up or if queue stalled on last pkt */
813	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
814			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
815		netif_wake_queue(dev);
816
817	spin_unlock_bh(&priv->xmit_lock);
818}
819
820/*
821 * If we have a gap in the pending bits, that means we either
822 * raced with the hardware or failed to readout all upper
823 * objects in the last run due to quota limit.
824 */
825static u32 c_can_adjust_pending(u32 pend)
826{
827	u32 weight, lasts;
828
829	if (pend == RECEIVE_OBJECT_BITS)
830		return pend;
831
832	/*
833	 * If the last set bit is larger than the number of pending
834	 * bits we have a gap.
835	 */
836	weight = hweight32(pend);
837	lasts = fls(pend);
838
839	/* If the bits are linear, nothing to do */
840	if (lasts == weight)
841		return pend;
842
843	/*
844	 * Find the first set bit after the gap. We walk backwards
845	 * from the last set bit.
846	 */
847	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
848
849	return pend & ~((1 << lasts) - 1);
850}
851
852static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
853			      u32 pend, int quota)
854{
855	u32 pkts = 0, ctrl, obj;
856
857	while ((obj = ffs(pend)) && quota > 0) {
858		pend &= ~BIT(obj - 1);
859
860		c_can_object_get(dev, IF_RX, obj, IF_COMM_ALL &	~IF_COMM_TXRQST);
861		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
862
863		if (ctrl & IF_MCONT_MSGLST) {
864			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
865
866			pkts += n;
867			quota -= n;
868			continue;
869		}
870
871		/*
872		 * This really should not happen, but this covers some
873		 * odd HW behaviour. Do not remove that unless you
874		 * want to brick your machine.
875		 */
876		if (!(ctrl & IF_MCONT_NEWDAT))
877			continue;
878
879		/* read the data from the message object */
880		c_can_read_msg_object(dev, IF_RX, ctrl);
881
882		if (obj < C_CAN_MSG_RX_LOW_LAST)
883			c_can_mark_rx_msg_obj(dev, IF_RX, ctrl, obj);
884		else if (obj > C_CAN_MSG_RX_LOW_LAST)
885			/* activate this msg obj */
886			c_can_activate_rx_msg_obj(dev, IF_RX, ctrl, obj);
887		else if (obj == C_CAN_MSG_RX_LOW_LAST)
888			/* activate all lower message objects */
889			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);
890
891		pkts++;
892		quota--;
893	}
894
895	return pkts;
896}
897
898/*
899 * theory of operation:
900 *
901 * c_can core saves a received CAN message into the first free message
902 * object it finds free (starting with the lowest). Bits NEWDAT and
903 * INTPND are set for this message object indicating that a new message
904 * has arrived. To work-around this issue, we keep two groups of message
905 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
906 *
907 * To ensure in-order frame reception we use the following
908 * approach while re-activating a message object to receive further
909 * frames:
910 * - if the current message object number is lower than
911 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
912 *   the INTPND bit.
913 * - if the current message object number is equal to
914 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
915 *   receive message objects.
916 * - if the current message object number is greater than
917 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
918 *   only this message object.
919 */
920static int c_can_do_rx_poll(struct net_device *dev, int quota)
921{
922	struct c_can_priv *priv = netdev_priv(dev);
923	u32 pkts = 0, pend = 0, toread, n;
924
925	/*
926	 * It is faster to read only one 16bit register. This is only possible
927	 * for a maximum number of 16 objects.
928	 */
929	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
930			"Implementation does not support more message objects than 16");
931
932	while (quota > 0) {
933		if (!pend) {
934			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
935			if (!pend)
936				break;
937			/*
938			 * If the pending field has a gap, handle the
939			 * bits above the gap first.
940			 */
941			toread = c_can_adjust_pending(pend);
942		} else {
943			toread = pend;
944		}
945		/* Remove the bits from pend */
946		pend &= ~toread;
947		/* Read the objects */
948		n = c_can_read_objects(dev, priv, toread, quota);
949		pkts += n;
950		quota -= n;
951	}
952	return pkts;
953}
954
955static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
956{
957	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
958		(priv->current_status & LEC_UNUSED);
959}
960
961static int c_can_handle_state_change(struct net_device *dev,
962				enum c_can_bus_error_types error_type)
963{
964	unsigned int reg_err_counter;
965	unsigned int rx_err_passive;
966	struct c_can_priv *priv = netdev_priv(dev);
967	struct net_device_stats *stats = &dev->stats;
968	struct can_frame *cf;
969	struct sk_buff *skb;
970	struct can_berr_counter bec;
971
972	/* propagate the error condition to the CAN stack */
973	skb = alloc_can_err_skb(dev, &cf);
974	if (unlikely(!skb))
975		return 0;
976
977	__c_can_get_berr_counter(dev, &bec);
978	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
979	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
980				ERR_CNT_RP_SHIFT;
981
982	switch (error_type) {
983	case C_CAN_ERROR_WARNING:
984		/* error warning state */
985		priv->can.can_stats.error_warning++;
986		priv->can.state = CAN_STATE_ERROR_WARNING;
987		cf->can_id |= CAN_ERR_CRTL;
988		cf->data[1] = (bec.txerr > bec.rxerr) ?
989			CAN_ERR_CRTL_TX_WARNING :
990			CAN_ERR_CRTL_RX_WARNING;
991		cf->data[6] = bec.txerr;
992		cf->data[7] = bec.rxerr;
993
994		break;
995	case C_CAN_ERROR_PASSIVE:
996		/* error passive state */
997		priv->can.can_stats.error_passive++;
998		priv->can.state = CAN_STATE_ERROR_PASSIVE;
999		cf->can_id |= CAN_ERR_CRTL;
1000		if (rx_err_passive)
1001			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
1002		if (bec.txerr > 127)
1003			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
1004
1005		cf->data[6] = bec.txerr;
1006		cf->data[7] = bec.rxerr;
1007		break;
1008	case C_CAN_BUS_OFF:
1009		/* bus-off state */
1010		priv->can.state = CAN_STATE_BUS_OFF;
1011		cf->can_id |= CAN_ERR_BUSOFF;
1012		/*
1013		 * disable all interrupts in bus-off mode to ensure that
1014		 * the CPU is not hogged down
1015		 */
1016		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1017		can_bus_off(dev);
1018		break;
1019	default:
1020		break;
1021	}
1022
1023	netif_receive_skb(skb);
1024	stats->rx_packets++;
1025	stats->rx_bytes += cf->can_dlc;
1026
1027	return 1;
1028}
1029
1030static int c_can_handle_bus_err(struct net_device *dev,
1031				enum c_can_lec_type lec_type)
1032{
1033	struct c_can_priv *priv = netdev_priv(dev);
1034	struct net_device_stats *stats = &dev->stats;
1035	struct can_frame *cf;
1036	struct sk_buff *skb;
1037
1038	/*
1039	 * early exit if no lec update or no error.
1040	 * no lec update means that no CAN bus event has been detected
1041	 * since CPU wrote 0x7 value to status reg.
1042	 */
1043	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1044		return 0;
1045
1046	/* propagate the error condition to the CAN stack */
1047	skb = alloc_can_err_skb(dev, &cf);
1048	if (unlikely(!skb))
1049		return 0;
1050
1051	/*
1052	 * check for 'last error code' which tells us the
1053	 * type of the last error to occur on the CAN bus
1054	 */
1055
1056	/* common for all type of bus errors */
1057	priv->can.can_stats.bus_error++;
1058	stats->rx_errors++;
1059	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1060	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1061
1062	switch (lec_type) {
1063	case LEC_STUFF_ERROR:
1064		netdev_dbg(dev, "stuff error\n");
1065		cf->data[2] |= CAN_ERR_PROT_STUFF;
1066		break;
1067	case LEC_FORM_ERROR:
1068		netdev_dbg(dev, "form error\n");
1069		cf->data[2] |= CAN_ERR_PROT_FORM;
1070		break;
1071	case LEC_ACK_ERROR:
1072		netdev_dbg(dev, "ack error\n");
1073		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1074				CAN_ERR_PROT_LOC_ACK_DEL);
1075		break;
1076	case LEC_BIT1_ERROR:
1077		netdev_dbg(dev, "bit1 error\n");
1078		cf->data[2] |= CAN_ERR_PROT_BIT1;
1079		break;
1080	case LEC_BIT0_ERROR:
1081		netdev_dbg(dev, "bit0 error\n");
1082		cf->data[2] |= CAN_ERR_PROT_BIT0;
1083		break;
1084	case LEC_CRC_ERROR:
1085		netdev_dbg(dev, "CRC error\n");
1086		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1087				CAN_ERR_PROT_LOC_CRC_DEL);
1088		break;
1089	default:
1090		break;
1091	}
1092
1093	/* set a `lec` value so that we can check for updates later */
1094	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1095
1096	netif_receive_skb(skb);
1097	stats->rx_packets++;
1098	stats->rx_bytes += cf->can_dlc;
1099
1100	return 1;
1101}
1102
1103static int c_can_poll(struct napi_struct *napi, int quota)
1104{
1105	u16 irqstatus;
1106	int lec_type = 0;
1107	int work_done = 0;
1108	struct net_device *dev = napi->dev;
1109	struct c_can_priv *priv = netdev_priv(dev);
1110
1111	irqstatus = priv->irqstatus;
1112	if (!irqstatus)
1113		goto end;
1114
1115	/* status events have the highest priority */
1116	if (irqstatus == STATUS_INTERRUPT) {
1117		priv->current_status = priv->read_reg(priv,
1118					C_CAN_STS_REG);
1119
1120		/* handle Tx/Rx events */
1121		if (priv->current_status & STATUS_TXOK)
1122			priv->write_reg(priv, C_CAN_STS_REG,
1123					priv->current_status & ~STATUS_TXOK);
1124
1125		if (priv->current_status & STATUS_RXOK)
1126			priv->write_reg(priv, C_CAN_STS_REG,
1127					priv->current_status & ~STATUS_RXOK);
1128
1129		/* handle state changes */
1130		if ((priv->current_status & STATUS_EWARN) &&
1131				(!(priv->last_status & STATUS_EWARN))) {
1132			netdev_dbg(dev, "entered error warning state\n");
1133			work_done += c_can_handle_state_change(dev,
1134						C_CAN_ERROR_WARNING);
1135		}
1136		if ((priv->current_status & STATUS_EPASS) &&
1137				(!(priv->last_status & STATUS_EPASS))) {
1138			netdev_dbg(dev, "entered error passive state\n");
1139			work_done += c_can_handle_state_change(dev,
1140						C_CAN_ERROR_PASSIVE);
1141		}
1142		if ((priv->current_status & STATUS_BOFF) &&
1143				(!(priv->last_status & STATUS_BOFF))) {
1144			netdev_dbg(dev, "entered bus off state\n");
1145			work_done += c_can_handle_state_change(dev,
1146						C_CAN_BUS_OFF);
1147		}
1148
1149		/* handle bus recovery events */
1150		if ((!(priv->current_status & STATUS_BOFF)) &&
1151				(priv->last_status & STATUS_BOFF)) {
1152			netdev_dbg(dev, "left bus off state\n");
1153			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1154		}
1155		if ((!(priv->current_status & STATUS_EPASS)) &&
1156				(priv->last_status & STATUS_EPASS)) {
1157			netdev_dbg(dev, "left error passive state\n");
1158			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1159		}
1160
1161		priv->last_status = priv->current_status;
1162
1163		/* handle lec errors on the bus */
1164		lec_type = c_can_has_and_handle_berr(priv);
1165		if (lec_type)
1166			work_done += c_can_handle_bus_err(dev, lec_type);
1167	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1168			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1169		/* handle events corresponding to receive message objects */
1170		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1171	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1172			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1173		/* handle events corresponding to transmit message objects */
1174		c_can_do_tx(dev);
1175	}
1176
1177end:
1178	if (work_done < quota) {
1179		napi_complete(napi);
1180		/* enable all IRQs */
1181		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1182	}
1183
1184	return work_done;
1185}
1186
1187static irqreturn_t c_can_isr(int irq, void *dev_id)
1188{
1189	struct net_device *dev = (struct net_device *)dev_id;
1190	struct c_can_priv *priv = netdev_priv(dev);
1191
1192	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1193	if (!priv->irqstatus)
1194		return IRQ_NONE;
1195
1196	/* disable all interrupts and schedule the NAPI */
1197	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1198	napi_schedule(&priv->napi);
1199
1200	return IRQ_HANDLED;
1201}
1202
1203static int c_can_open(struct net_device *dev)
1204{
1205	int err;
1206	struct c_can_priv *priv = netdev_priv(dev);
1207
1208	c_can_pm_runtime_get_sync(priv);
1209	c_can_reset_ram(priv, true);
1210
1211	/* open the can device */
1212	err = open_candev(dev);
1213	if (err) {
1214		netdev_err(dev, "failed to open can device\n");
1215		goto exit_open_fail;
1216	}
1217
1218	/* register interrupt handler */
1219	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1220				dev);
1221	if (err < 0) {
1222		netdev_err(dev, "failed to request interrupt\n");
1223		goto exit_irq_fail;
1224	}
1225
1226	/* start the c_can controller */
1227	err = c_can_start(dev);
1228	if (err)
1229		goto exit_start_fail;
1230
1231	can_led_event(dev, CAN_LED_EVENT_OPEN);
1232
1233	napi_enable(&priv->napi);
1234	netif_start_queue(dev);
1235
1236	return 0;
1237
1238exit_start_fail:
1239	free_irq(dev->irq, dev);
1240exit_irq_fail:
1241	close_candev(dev);
1242exit_open_fail:
1243	c_can_reset_ram(priv, false);
1244	c_can_pm_runtime_put_sync(priv);
1245	return err;
1246}
1247
1248static int c_can_close(struct net_device *dev)
1249{
1250	struct c_can_priv *priv = netdev_priv(dev);
1251
1252	netif_stop_queue(dev);
1253	napi_disable(&priv->napi);
1254	c_can_stop(dev);
1255	free_irq(dev->irq, dev);
1256	close_candev(dev);
1257
1258	c_can_reset_ram(priv, false);
1259	c_can_pm_runtime_put_sync(priv);
1260
1261	can_led_event(dev, CAN_LED_EVENT_STOP);
1262
1263	return 0;
1264}
1265
1266struct net_device *alloc_c_can_dev(void)
1267{
1268	struct net_device *dev;
1269	struct c_can_priv *priv;
1270
1271	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1272	if (!dev)
1273		return NULL;
1274
1275	priv = netdev_priv(dev);
1276	spin_lock_init(&priv->xmit_lock);
1277	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1278
1279	priv->dev = dev;
1280	priv->can.bittiming_const = &c_can_bittiming_const;
1281	priv->can.do_set_mode = c_can_set_mode;
1282	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1283	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1284					CAN_CTRLMODE_LISTENONLY |
1285					CAN_CTRLMODE_BERR_REPORTING;
1286
1287	return dev;
1288}
1289EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1290
1291#ifdef CONFIG_PM
1292int c_can_power_down(struct net_device *dev)
1293{
1294	u32 val;
1295	unsigned long time_out;
1296	struct c_can_priv *priv = netdev_priv(dev);
1297
1298	if (!(dev->flags & IFF_UP))
1299		return 0;
1300
1301	WARN_ON(priv->type != BOSCH_D_CAN);
1302
1303	/* set PDR value so the device goes to power down mode */
1304	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1305	val |= CONTROL_EX_PDR;
1306	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1307
1308	/* Wait for the PDA bit to get set */
1309	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1310	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1311				time_after(time_out, jiffies))
1312		cpu_relax();
1313
1314	if (time_after(jiffies, time_out))
1315		return -ETIMEDOUT;
1316
1317	c_can_stop(dev);
1318
1319	c_can_reset_ram(priv, false);
1320	c_can_pm_runtime_put_sync(priv);
1321
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(c_can_power_down);
1325
1326int c_can_power_up(struct net_device *dev)
1327{
1328	u32 val;
1329	unsigned long time_out;
1330	struct c_can_priv *priv = netdev_priv(dev);
1331
1332	if (!(dev->flags & IFF_UP))
1333		return 0;
1334
1335	WARN_ON(priv->type != BOSCH_D_CAN);
1336
1337	c_can_pm_runtime_get_sync(priv);
1338	c_can_reset_ram(priv, true);
1339
1340	/* Clear PDR and INIT bits */
1341	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1342	val &= ~CONTROL_EX_PDR;
1343	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1344	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1345	val &= ~CONTROL_INIT;
1346	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1347
1348	/* Wait for the PDA bit to get clear */
1349	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1350	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1351				time_after(time_out, jiffies))
1352		cpu_relax();
1353
1354	if (time_after(jiffies, time_out))
1355		return -ETIMEDOUT;
1356
1357	return c_can_start(dev);
1358}
1359EXPORT_SYMBOL_GPL(c_can_power_up);
1360#endif
1361
1362void free_c_can_dev(struct net_device *dev)
1363{
1364	struct c_can_priv *priv = netdev_priv(dev);
1365
1366	netif_napi_del(&priv->napi);
1367	free_candev(dev);
1368}
1369EXPORT_SYMBOL_GPL(free_c_can_dev);
1370
1371static const struct net_device_ops c_can_netdev_ops = {
1372	.ndo_open = c_can_open,
1373	.ndo_stop = c_can_close,
1374	.ndo_start_xmit = c_can_start_xmit,
1375};
1376
1377int register_c_can_dev(struct net_device *dev)
1378{
1379	struct c_can_priv *priv = netdev_priv(dev);
1380	int err;
1381
1382	c_can_pm_runtime_enable(priv);
1383
1384	dev->flags |= IFF_ECHO;	/* we support local echo */
1385	dev->netdev_ops = &c_can_netdev_ops;
1386
1387	err = register_candev(dev);
1388	if (err)
1389		c_can_pm_runtime_disable(priv);
1390	else
1391		devm_can_led_init(dev);
1392
1393	return err;
1394}
1395EXPORT_SYMBOL_GPL(register_c_can_dev);
1396
1397void unregister_c_can_dev(struct net_device *dev)
1398{
1399	struct c_can_priv *priv = netdev_priv(dev);
1400
1401	unregister_candev(dev);
1402
1403	c_can_pm_runtime_disable(priv);
1404}
1405EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1406
1407MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1408MODULE_LICENSE("GPL v2");
1409MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1410