c_can.c revision 524369e2391f4b422d0efdd11d526a373a11a43a
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
64
65/* test register */
66#define TEST_RX			BIT(7)
67#define TEST_TX1		BIT(6)
68#define TEST_TX2		BIT(5)
69#define TEST_LBACK		BIT(4)
70#define TEST_SILENT		BIT(3)
71#define TEST_BASIC		BIT(2)
72
73/* status register */
74#define STATUS_PDA		BIT(10)
75#define STATUS_BOFF		BIT(7)
76#define STATUS_EWARN		BIT(6)
77#define STATUS_EPASS		BIT(5)
78#define STATUS_RXOK		BIT(4)
79#define STATUS_TXOK		BIT(3)
80
81/* error counter register */
82#define ERR_CNT_TEC_MASK	0xff
83#define ERR_CNT_TEC_SHIFT	0
84#define ERR_CNT_REC_SHIFT	8
85#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
86#define ERR_CNT_RP_SHIFT	15
87#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
88
89/* bit-timing register */
90#define BTR_BRP_MASK		0x3f
91#define BTR_BRP_SHIFT		0
92#define BTR_SJW_SHIFT		6
93#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
94#define BTR_TSEG1_SHIFT		8
95#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
96#define BTR_TSEG2_SHIFT		12
97#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
98
99/* brp extension register */
100#define BRP_EXT_BRPE_MASK	0x0f
101#define BRP_EXT_BRPE_SHIFT	0
102
103/* IFx command request */
104#define IF_COMR_BUSY		BIT(15)
105
106/* IFx command mask */
107#define IF_COMM_WR		BIT(7)
108#define IF_COMM_MASK		BIT(6)
109#define IF_COMM_ARB		BIT(5)
110#define IF_COMM_CONTROL		BIT(4)
111#define IF_COMM_CLR_INT_PND	BIT(3)
112#define IF_COMM_TXRQST		BIT(2)
113#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114#define IF_COMM_DATAA		BIT(1)
115#define IF_COMM_DATAB		BIT(0)
116
117/* TX buffer setup */
118#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
119				 IF_COMM_TXRQST |		 \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the low buffers we clear the interrupt bit, but keep newdat */
123#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
124				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
125				 IF_COMM_DATAA | IF_COMM_DATAB)
126
127/* For the high buffers we clear the interrupt bit and newdat */
128#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
129
130
131/* Receive setup of message objects */
132#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
133
134/* Invalidation of message objects */
135#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
136
137/* IFx arbitration */
138#define IF_ARB_MSGVAL		BIT(31)
139#define IF_ARB_MSGXTD		BIT(30)
140#define IF_ARB_TRANSMIT		BIT(29)
141
142/* IFx message control */
143#define IF_MCONT_NEWDAT		BIT(15)
144#define IF_MCONT_MSGLST		BIT(14)
145#define IF_MCONT_INTPND		BIT(13)
146#define IF_MCONT_UMASK		BIT(12)
147#define IF_MCONT_TXIE		BIT(11)
148#define IF_MCONT_RXIE		BIT(10)
149#define IF_MCONT_RMTEN		BIT(9)
150#define IF_MCONT_TXRQST		BIT(8)
151#define IF_MCONT_EOB		BIT(7)
152#define IF_MCONT_DLC_MASK	0xf
153
154#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
155#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
156
157#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
158
159/*
160 * Use IF1 for RX and IF2 for TX
161 */
162#define IF_RX			0
163#define IF_TX			1
164
165/* minimum timeout for checking BUSY status */
166#define MIN_TIMEOUT_VALUE	6
167
168/* Wait for ~1 sec for INIT bit */
169#define INIT_WAIT_MS		1000
170
171/* napi related */
172#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
173
174/* c_can lec values */
175enum c_can_lec_type {
176	LEC_NO_ERROR = 0,
177	LEC_STUFF_ERROR,
178	LEC_FORM_ERROR,
179	LEC_ACK_ERROR,
180	LEC_BIT1_ERROR,
181	LEC_BIT0_ERROR,
182	LEC_CRC_ERROR,
183	LEC_UNUSED,
184	LEC_MASK = LEC_UNUSED,
185};
186
187/*
188 * c_can error types:
189 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
190 */
191enum c_can_bus_error_types {
192	C_CAN_NO_ERROR = 0,
193	C_CAN_BUS_OFF,
194	C_CAN_ERROR_WARNING,
195	C_CAN_ERROR_PASSIVE,
196};
197
198static const struct can_bittiming_const c_can_bittiming_const = {
199	.name = KBUILD_MODNAME,
200	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
201	.tseg1_max = 16,
202	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
203	.tseg2_max = 8,
204	.sjw_max = 4,
205	.brp_min = 1,
206	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
207	.brp_inc = 1,
208};
209
210static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
211{
212	if (priv->device)
213		pm_runtime_enable(priv->device);
214}
215
216static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
217{
218	if (priv->device)
219		pm_runtime_disable(priv->device);
220}
221
222static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
223{
224	if (priv->device)
225		pm_runtime_get_sync(priv->device);
226}
227
228static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
229{
230	if (priv->device)
231		pm_runtime_put_sync(priv->device);
232}
233
234static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
235{
236	if (priv->raminit)
237		priv->raminit(priv, enable);
238}
239
240static void c_can_irq_control(struct c_can_priv *priv, bool enable)
241{
242	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
243
244	if (enable)
245		ctrl |= CONTROL_IRQMSK;
246
247	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
248}
249
250static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
251{
252	struct c_can_priv *priv = netdev_priv(dev);
253	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
254
255	priv->write_reg(priv, reg + 1, cmd);
256	priv->write_reg(priv, reg, obj);
257
258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260			return;
261		udelay(1);
262	}
263	netdev_err(dev, "Updating object timed out\n");
264
265}
266
267static inline void c_can_object_get(struct net_device *dev, int iface,
268				    u32 obj, u32 cmd)
269{
270	c_can_obj_update(dev, iface, cmd, obj);
271}
272
273static inline void c_can_object_put(struct net_device *dev, int iface,
274				    u32 obj, u32 cmd)
275{
276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277}
278
279/*
280 * Note: According to documentation clearing TXIE while MSGVAL is set
281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282 * load significantly.
283 */
284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
285{
286	struct c_can_priv *priv = netdev_priv(dev);
287
288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
290}
291
292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
293{
294	struct c_can_priv *priv = netdev_priv(dev);
295
296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
298	c_can_inval_tx_object(dev, iface, obj);
299}
300
301static void c_can_setup_tx_object(struct net_device *dev, int iface,
302				  struct can_frame *frame, int idx)
303{
304	struct c_can_priv *priv = netdev_priv(dev);
305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306	bool rtr = frame->can_id & CAN_RTR_FLAG;
307	u32 arb = IF_ARB_MSGVAL;
308	int i;
309
310	if (frame->can_id & CAN_EFF_FLAG) {
311		arb |= frame->can_id & CAN_EFF_MASK;
312		arb |= IF_ARB_MSGXTD;
313	} else {
314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
315	}
316
317	if (!rtr)
318		arb |= IF_ARB_TRANSMIT;
319
320	/*
321	 * If we change the DIR bit, we need to invalidate the buffer
322	 * first, i.e. clear the MSGVAL flag in the arbiter.
323	 */
324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
326
327		c_can_inval_msg_object(dev, iface, obj);
328		change_bit(idx, &priv->tx_dir);
329	}
330
331	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), arb >> 16);
333
334	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
335
336	for (i = 0; i < frame->can_dlc; i += 2) {
337		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
338				frame->data[i] | (frame->data[i + 1] << 8));
339	}
340}
341
342static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
343						       int iface)
344{
345	int i;
346
347	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
348		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
349}
350
351static int c_can_handle_lost_msg_obj(struct net_device *dev,
352				     int iface, int objno, u32 ctrl)
353{
354	struct net_device_stats *stats = &dev->stats;
355	struct c_can_priv *priv = netdev_priv(dev);
356	struct can_frame *frame;
357	struct sk_buff *skb;
358
359	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
360	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
361	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
362
363	stats->rx_errors++;
364	stats->rx_over_errors++;
365
366	/* create an error msg */
367	skb = alloc_can_err_skb(dev, &frame);
368	if (unlikely(!skb))
369		return 0;
370
371	frame->can_id |= CAN_ERR_CRTL;
372	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
373
374	netif_receive_skb(skb);
375	return 1;
376}
377
378static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
379{
380	struct net_device_stats *stats = &dev->stats;
381	struct c_can_priv *priv = netdev_priv(dev);
382	struct can_frame *frame;
383	struct sk_buff *skb;
384	u32 arb, data;
385
386	skb = alloc_can_skb(dev, &frame);
387	if (!skb) {
388		stats->rx_dropped++;
389		return -ENOMEM;
390	}
391
392	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
393
394	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
395	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
396
397	if (arb & IF_ARB_MSGXTD)
398		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
399	else
400		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
401
402	if (arb & IF_ARB_TRANSMIT) {
403		frame->can_id |= CAN_RTR_FLAG;
404	} else {
405		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
406
407		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
408			data = priv->read_reg(priv, dreg);
409			frame->data[i] = data;
410			frame->data[i + 1] = data >> 8;
411		}
412	}
413
414	stats->rx_packets++;
415	stats->rx_bytes += frame->can_dlc;
416
417	netif_receive_skb(skb);
418	return 0;
419}
420
421static void c_can_setup_receive_object(struct net_device *dev, int iface,
422				       u32 obj, u32 mask, u32 id, u32 mcont)
423{
424	struct c_can_priv *priv = netdev_priv(dev);
425
426	mask |= BIT(29);
427	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
428	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
429
430	id |= IF_ARB_MSGVAL;
431	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
432	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
433
434	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
435	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
436}
437
438static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
439				    struct net_device *dev)
440{
441	struct can_frame *frame = (struct can_frame *)skb->data;
442	struct c_can_priv *priv = netdev_priv(dev);
443	u32 idx, obj;
444
445	if (can_dropped_invalid_skb(dev, skb))
446		return NETDEV_TX_OK;
447	/*
448	 * This is not a FIFO. C/D_CAN sends out the buffers
449	 * prioritized. The lowest buffer number wins.
450	 */
451	idx = fls(atomic_read(&priv->tx_active));
452	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
453
454	/* If this is the last buffer, stop the xmit queue */
455	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
456		netif_stop_queue(dev);
457	/*
458	 * Store the message in the interface so we can call
459	 * can_put_echo_skb(). We must do this before we enable
460	 * transmit as we might race against do_tx().
461	 */
462	c_can_setup_tx_object(dev, IF_TX, frame, idx);
463	priv->dlc[idx] = frame->can_dlc;
464	can_put_echo_skb(skb, dev, idx);
465
466	/* Update the active bits */
467	atomic_add((1 << idx), &priv->tx_active);
468	/* Start transmission */
469	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
470
471	return NETDEV_TX_OK;
472}
473
474static int c_can_wait_for_ctrl_init(struct net_device *dev,
475				    struct c_can_priv *priv, u32 init)
476{
477	int retry = 0;
478
479	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
480		udelay(10);
481		if (retry++ > 1000) {
482			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
483			return -EIO;
484		}
485	}
486	return 0;
487}
488
489static int c_can_set_bittiming(struct net_device *dev)
490{
491	unsigned int reg_btr, reg_brpe, ctrl_save;
492	u8 brp, brpe, sjw, tseg1, tseg2;
493	u32 ten_bit_brp;
494	struct c_can_priv *priv = netdev_priv(dev);
495	const struct can_bittiming *bt = &priv->can.bittiming;
496	int res;
497
498	/* c_can provides a 6-bit brp and 4-bit brpe fields */
499	ten_bit_brp = bt->brp - 1;
500	brp = ten_bit_brp & BTR_BRP_MASK;
501	brpe = ten_bit_brp >> 6;
502
503	sjw = bt->sjw - 1;
504	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
505	tseg2 = bt->phase_seg2 - 1;
506	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
507			(tseg2 << BTR_TSEG2_SHIFT);
508	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
509
510	netdev_info(dev,
511		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
512
513	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
514	ctrl_save &= ~CONTROL_INIT;
515	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
516	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
517	if (res)
518		return res;
519
520	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
521	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
522	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
523
524	return c_can_wait_for_ctrl_init(dev, priv, 0);
525}
526
527/*
528 * Configure C_CAN message objects for Tx and Rx purposes:
529 * C_CAN provides a total of 32 message objects that can be configured
530 * either for Tx or Rx purposes. Here the first 16 message objects are used as
531 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
532 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
533 * See user guide document for further details on configuring message
534 * objects.
535 */
536static void c_can_configure_msg_objects(struct net_device *dev)
537{
538	int i;
539
540	/* first invalidate all message objects */
541	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
542		c_can_inval_msg_object(dev, IF_RX, i);
543
544	/* setup receive message objects */
545	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
546		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
547
548	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
549				   IF_MCONT_RCV_EOB);
550}
551
552/*
553 * Configure C_CAN chip:
554 * - enable/disable auto-retransmission
555 * - set operating mode
556 * - configure message objects
557 */
558static int c_can_chip_config(struct net_device *dev)
559{
560	struct c_can_priv *priv = netdev_priv(dev);
561
562	/* enable automatic retransmission */
563	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
564
565	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
566	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
567		/* loopback + silent mode : useful for hot self-test */
568		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
569		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
571		/* loopback mode : useful for self-test function */
572		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
573		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
574	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
575		/* silent mode : bus-monitoring mode */
576		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
577		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
578	}
579
580	/* configure message objects */
581	c_can_configure_msg_objects(dev);
582
583	/* set a `lec` value so that we can check for updates later */
584	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
585
586	/* Clear all internal status */
587	atomic_set(&priv->tx_active, 0);
588	priv->rxmasked = 0;
589	priv->tx_dir = 0;
590
591	/* set bittiming params */
592	return c_can_set_bittiming(dev);
593}
594
595static int c_can_start(struct net_device *dev)
596{
597	struct c_can_priv *priv = netdev_priv(dev);
598	int err;
599
600	/* basic c_can configuration */
601	err = c_can_chip_config(dev);
602	if (err)
603		return err;
604
605	/* Setup the command for new messages */
606	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
607		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
608
609	priv->can.state = CAN_STATE_ERROR_ACTIVE;
610
611	return 0;
612}
613
614static void c_can_stop(struct net_device *dev)
615{
616	struct c_can_priv *priv = netdev_priv(dev);
617
618	c_can_irq_control(priv, false);
619	priv->can.state = CAN_STATE_STOPPED;
620}
621
622static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
623{
624	struct c_can_priv *priv = netdev_priv(dev);
625	int err;
626
627	switch (mode) {
628	case CAN_MODE_START:
629		err = c_can_start(dev);
630		if (err)
631			return err;
632		netif_wake_queue(dev);
633		c_can_irq_control(priv, true);
634		break;
635	default:
636		return -EOPNOTSUPP;
637	}
638
639	return 0;
640}
641
642static int __c_can_get_berr_counter(const struct net_device *dev,
643				    struct can_berr_counter *bec)
644{
645	unsigned int reg_err_counter;
646	struct c_can_priv *priv = netdev_priv(dev);
647
648	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
649	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
650				ERR_CNT_REC_SHIFT;
651	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
652
653	return 0;
654}
655
656static int c_can_get_berr_counter(const struct net_device *dev,
657				  struct can_berr_counter *bec)
658{
659	struct c_can_priv *priv = netdev_priv(dev);
660	int err;
661
662	c_can_pm_runtime_get_sync(priv);
663	err = __c_can_get_berr_counter(dev, bec);
664	c_can_pm_runtime_put_sync(priv);
665
666	return err;
667}
668
669static void c_can_do_tx(struct net_device *dev)
670{
671	struct c_can_priv *priv = netdev_priv(dev);
672	struct net_device_stats *stats = &dev->stats;
673	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
674
675	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
676
677	while ((idx = ffs(pend))) {
678		idx--;
679		pend &= ~(1 << idx);
680		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
681		c_can_inval_tx_object(dev, IF_RX, obj);
682		can_get_echo_skb(dev, idx);
683		bytes += priv->dlc[idx];
684		pkts++;
685	}
686
687	/* Clear the bits in the tx_active mask */
688	atomic_sub(clr, &priv->tx_active);
689
690	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
691		netif_wake_queue(dev);
692
693	if (pkts) {
694		stats->tx_bytes += bytes;
695		stats->tx_packets += pkts;
696		can_led_event(dev, CAN_LED_EVENT_TX);
697	}
698}
699
700/*
701 * If we have a gap in the pending bits, that means we either
702 * raced with the hardware or failed to readout all upper
703 * objects in the last run due to quota limit.
704 */
705static u32 c_can_adjust_pending(u32 pend)
706{
707	u32 weight, lasts;
708
709	if (pend == RECEIVE_OBJECT_BITS)
710		return pend;
711
712	/*
713	 * If the last set bit is larger than the number of pending
714	 * bits we have a gap.
715	 */
716	weight = hweight32(pend);
717	lasts = fls(pend);
718
719	/* If the bits are linear, nothing to do */
720	if (lasts == weight)
721		return pend;
722
723	/*
724	 * Find the first set bit after the gap. We walk backwards
725	 * from the last set bit.
726	 */
727	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
728
729	return pend & ~((1 << lasts) - 1);
730}
731
732static inline void c_can_rx_object_get(struct net_device *dev,
733				       struct c_can_priv *priv, u32 obj)
734{
735		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
736}
737
738static inline void c_can_rx_finalize(struct net_device *dev,
739				     struct c_can_priv *priv, u32 obj)
740{
741	if (priv->type != BOSCH_D_CAN)
742		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
743}
744
745static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
746			      u32 pend, int quota)
747{
748	u32 pkts = 0, ctrl, obj;
749
750	while ((obj = ffs(pend)) && quota > 0) {
751		pend &= ~BIT(obj - 1);
752
753		c_can_rx_object_get(dev, priv, obj);
754		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
755
756		if (ctrl & IF_MCONT_MSGLST) {
757			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
758
759			pkts += n;
760			quota -= n;
761			continue;
762		}
763
764		/*
765		 * This really should not happen, but this covers some
766		 * odd HW behaviour. Do not remove that unless you
767		 * want to brick your machine.
768		 */
769		if (!(ctrl & IF_MCONT_NEWDAT))
770			continue;
771
772		/* read the data from the message object */
773		c_can_read_msg_object(dev, IF_RX, ctrl);
774
775		c_can_rx_finalize(dev, priv, obj);
776
777		pkts++;
778		quota--;
779	}
780
781	return pkts;
782}
783
784static inline u32 c_can_get_pending(struct c_can_priv *priv)
785{
786	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
787
788	return pend;
789}
790
791/*
792 * theory of operation:
793 *
794 * c_can core saves a received CAN message into the first free message
795 * object it finds free (starting with the lowest). Bits NEWDAT and
796 * INTPND are set for this message object indicating that a new message
797 * has arrived. To work-around this issue, we keep two groups of message
798 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
799 *
800 * We clear the newdat bit right away.
801 *
802 * This can result in packet reordering when the readout is slow.
803 */
804static int c_can_do_rx_poll(struct net_device *dev, int quota)
805{
806	struct c_can_priv *priv = netdev_priv(dev);
807	u32 pkts = 0, pend = 0, toread, n;
808
809	/*
810	 * It is faster to read only one 16bit register. This is only possible
811	 * for a maximum number of 16 objects.
812	 */
813	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
814			"Implementation does not support more message objects than 16");
815
816	while (quota > 0) {
817		if (!pend) {
818			pend = c_can_get_pending(priv);
819			if (!pend)
820				break;
821			/*
822			 * If the pending field has a gap, handle the
823			 * bits above the gap first.
824			 */
825			toread = c_can_adjust_pending(pend);
826		} else {
827			toread = pend;
828		}
829		/* Remove the bits from pend */
830		pend &= ~toread;
831		/* Read the objects */
832		n = c_can_read_objects(dev, priv, toread, quota);
833		pkts += n;
834		quota -= n;
835	}
836
837	if (pkts)
838		can_led_event(dev, CAN_LED_EVENT_RX);
839
840	return pkts;
841}
842
843static int c_can_handle_state_change(struct net_device *dev,
844				enum c_can_bus_error_types error_type)
845{
846	unsigned int reg_err_counter;
847	unsigned int rx_err_passive;
848	struct c_can_priv *priv = netdev_priv(dev);
849	struct net_device_stats *stats = &dev->stats;
850	struct can_frame *cf;
851	struct sk_buff *skb;
852	struct can_berr_counter bec;
853
854	switch (error_type) {
855	case C_CAN_ERROR_WARNING:
856		/* error warning state */
857		priv->can.can_stats.error_warning++;
858		priv->can.state = CAN_STATE_ERROR_WARNING;
859		break;
860	case C_CAN_ERROR_PASSIVE:
861		/* error passive state */
862		priv->can.can_stats.error_passive++;
863		priv->can.state = CAN_STATE_ERROR_PASSIVE;
864		break;
865	case C_CAN_BUS_OFF:
866		/* bus-off state */
867		priv->can.state = CAN_STATE_BUS_OFF;
868		can_bus_off(dev);
869		break;
870	default:
871		break;
872	}
873
874	/* propagate the error condition to the CAN stack */
875	skb = alloc_can_err_skb(dev, &cf);
876	if (unlikely(!skb))
877		return 0;
878
879	__c_can_get_berr_counter(dev, &bec);
880	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
881	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
882				ERR_CNT_RP_SHIFT;
883
884	switch (error_type) {
885	case C_CAN_ERROR_WARNING:
886		/* error warning state */
887		cf->can_id |= CAN_ERR_CRTL;
888		cf->data[1] = (bec.txerr > bec.rxerr) ?
889			CAN_ERR_CRTL_TX_WARNING :
890			CAN_ERR_CRTL_RX_WARNING;
891		cf->data[6] = bec.txerr;
892		cf->data[7] = bec.rxerr;
893
894		break;
895	case C_CAN_ERROR_PASSIVE:
896		/* error passive state */
897		cf->can_id |= CAN_ERR_CRTL;
898		if (rx_err_passive)
899			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
900		if (bec.txerr > 127)
901			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
902
903		cf->data[6] = bec.txerr;
904		cf->data[7] = bec.rxerr;
905		break;
906	case C_CAN_BUS_OFF:
907		/* bus-off state */
908		cf->can_id |= CAN_ERR_BUSOFF;
909		can_bus_off(dev);
910		break;
911	default:
912		break;
913	}
914
915	stats->rx_packets++;
916	stats->rx_bytes += cf->can_dlc;
917	netif_receive_skb(skb);
918
919	return 1;
920}
921
922static int c_can_handle_bus_err(struct net_device *dev,
923				enum c_can_lec_type lec_type)
924{
925	struct c_can_priv *priv = netdev_priv(dev);
926	struct net_device_stats *stats = &dev->stats;
927	struct can_frame *cf;
928	struct sk_buff *skb;
929
930	/*
931	 * early exit if no lec update or no error.
932	 * no lec update means that no CAN bus event has been detected
933	 * since CPU wrote 0x7 value to status reg.
934	 */
935	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
936		return 0;
937
938	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
939		return 0;
940
941	/* common for all type of bus errors */
942	priv->can.can_stats.bus_error++;
943	stats->rx_errors++;
944
945	/* propagate the error condition to the CAN stack */
946	skb = alloc_can_err_skb(dev, &cf);
947	if (unlikely(!skb))
948		return 0;
949
950	/*
951	 * check for 'last error code' which tells us the
952	 * type of the last error to occur on the CAN bus
953	 */
954	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
955	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
956
957	switch (lec_type) {
958	case LEC_STUFF_ERROR:
959		netdev_dbg(dev, "stuff error\n");
960		cf->data[2] |= CAN_ERR_PROT_STUFF;
961		break;
962	case LEC_FORM_ERROR:
963		netdev_dbg(dev, "form error\n");
964		cf->data[2] |= CAN_ERR_PROT_FORM;
965		break;
966	case LEC_ACK_ERROR:
967		netdev_dbg(dev, "ack error\n");
968		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
969				CAN_ERR_PROT_LOC_ACK_DEL);
970		break;
971	case LEC_BIT1_ERROR:
972		netdev_dbg(dev, "bit1 error\n");
973		cf->data[2] |= CAN_ERR_PROT_BIT1;
974		break;
975	case LEC_BIT0_ERROR:
976		netdev_dbg(dev, "bit0 error\n");
977		cf->data[2] |= CAN_ERR_PROT_BIT0;
978		break;
979	case LEC_CRC_ERROR:
980		netdev_dbg(dev, "CRC error\n");
981		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
982				CAN_ERR_PROT_LOC_CRC_DEL);
983		break;
984	default:
985		break;
986	}
987
988	stats->rx_packets++;
989	stats->rx_bytes += cf->can_dlc;
990	netif_receive_skb(skb);
991	return 1;
992}
993
994static int c_can_poll(struct napi_struct *napi, int quota)
995{
996	struct net_device *dev = napi->dev;
997	struct c_can_priv *priv = netdev_priv(dev);
998	u16 curr, last = priv->last_status;
999	int work_done = 0;
1000
1001	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1002	/* Ack status on C_CAN. D_CAN is self clearing */
1003	if (priv->type != BOSCH_D_CAN)
1004		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1005
1006	/* handle state changes */
1007	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1008		netdev_dbg(dev, "entered error warning state\n");
1009		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1010	}
1011
1012	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1013		netdev_dbg(dev, "entered error passive state\n");
1014		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1015	}
1016
1017	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1018		netdev_dbg(dev, "entered bus off state\n");
1019		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1020		goto end;
1021	}
1022
1023	/* handle bus recovery events */
1024	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1025		netdev_dbg(dev, "left bus off state\n");
1026		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1027	}
1028	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1029		netdev_dbg(dev, "left error passive state\n");
1030		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1031	}
1032
1033	/* handle lec errors on the bus */
1034	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1035
1036	/* Handle Tx/Rx events. We do this unconditionally */
1037	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1038	c_can_do_tx(dev);
1039
1040end:
1041	if (work_done < quota) {
1042		napi_complete(napi);
1043		/* enable all IRQs if we are not in bus off state */
1044		if (priv->can.state != CAN_STATE_BUS_OFF)
1045			c_can_irq_control(priv, true);
1046	}
1047
1048	return work_done;
1049}
1050
1051static irqreturn_t c_can_isr(int irq, void *dev_id)
1052{
1053	struct net_device *dev = (struct net_device *)dev_id;
1054	struct c_can_priv *priv = netdev_priv(dev);
1055
1056	if (!priv->read_reg(priv, C_CAN_INT_REG))
1057		return IRQ_NONE;
1058
1059	/* disable all interrupts and schedule the NAPI */
1060	c_can_irq_control(priv, false);
1061	napi_schedule(&priv->napi);
1062
1063	return IRQ_HANDLED;
1064}
1065
1066static int c_can_open(struct net_device *dev)
1067{
1068	int err;
1069	struct c_can_priv *priv = netdev_priv(dev);
1070
1071	c_can_pm_runtime_get_sync(priv);
1072	c_can_reset_ram(priv, true);
1073
1074	/* open the can device */
1075	err = open_candev(dev);
1076	if (err) {
1077		netdev_err(dev, "failed to open can device\n");
1078		goto exit_open_fail;
1079	}
1080
1081	/* register interrupt handler */
1082	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1083				dev);
1084	if (err < 0) {
1085		netdev_err(dev, "failed to request interrupt\n");
1086		goto exit_irq_fail;
1087	}
1088
1089	/* start the c_can controller */
1090	err = c_can_start(dev);
1091	if (err)
1092		goto exit_start_fail;
1093
1094	can_led_event(dev, CAN_LED_EVENT_OPEN);
1095
1096	napi_enable(&priv->napi);
1097	/* enable status change, error and module interrupts */
1098	c_can_irq_control(priv, true);
1099	netif_start_queue(dev);
1100
1101	return 0;
1102
1103exit_start_fail:
1104	free_irq(dev->irq, dev);
1105exit_irq_fail:
1106	close_candev(dev);
1107exit_open_fail:
1108	c_can_reset_ram(priv, false);
1109	c_can_pm_runtime_put_sync(priv);
1110	return err;
1111}
1112
1113static int c_can_close(struct net_device *dev)
1114{
1115	struct c_can_priv *priv = netdev_priv(dev);
1116
1117	netif_stop_queue(dev);
1118	napi_disable(&priv->napi);
1119	c_can_stop(dev);
1120	free_irq(dev->irq, dev);
1121	close_candev(dev);
1122
1123	c_can_reset_ram(priv, false);
1124	c_can_pm_runtime_put_sync(priv);
1125
1126	can_led_event(dev, CAN_LED_EVENT_STOP);
1127
1128	return 0;
1129}
1130
1131struct net_device *alloc_c_can_dev(void)
1132{
1133	struct net_device *dev;
1134	struct c_can_priv *priv;
1135
1136	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1137	if (!dev)
1138		return NULL;
1139
1140	priv = netdev_priv(dev);
1141	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1142
1143	priv->dev = dev;
1144	priv->can.bittiming_const = &c_can_bittiming_const;
1145	priv->can.do_set_mode = c_can_set_mode;
1146	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1147	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1148					CAN_CTRLMODE_LISTENONLY |
1149					CAN_CTRLMODE_BERR_REPORTING;
1150
1151	return dev;
1152}
1153EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1154
1155#ifdef CONFIG_PM
1156int c_can_power_down(struct net_device *dev)
1157{
1158	u32 val;
1159	unsigned long time_out;
1160	struct c_can_priv *priv = netdev_priv(dev);
1161
1162	if (!(dev->flags & IFF_UP))
1163		return 0;
1164
1165	WARN_ON(priv->type != BOSCH_D_CAN);
1166
1167	/* set PDR value so the device goes to power down mode */
1168	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1169	val |= CONTROL_EX_PDR;
1170	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1171
1172	/* Wait for the PDA bit to get set */
1173	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1174	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1175				time_after(time_out, jiffies))
1176		cpu_relax();
1177
1178	if (time_after(jiffies, time_out))
1179		return -ETIMEDOUT;
1180
1181	c_can_stop(dev);
1182
1183	c_can_reset_ram(priv, false);
1184	c_can_pm_runtime_put_sync(priv);
1185
1186	return 0;
1187}
1188EXPORT_SYMBOL_GPL(c_can_power_down);
1189
1190int c_can_power_up(struct net_device *dev)
1191{
1192	u32 val;
1193	unsigned long time_out;
1194	struct c_can_priv *priv = netdev_priv(dev);
1195	int ret;
1196
1197	if (!(dev->flags & IFF_UP))
1198		return 0;
1199
1200	WARN_ON(priv->type != BOSCH_D_CAN);
1201
1202	c_can_pm_runtime_get_sync(priv);
1203	c_can_reset_ram(priv, true);
1204
1205	/* Clear PDR and INIT bits */
1206	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1207	val &= ~CONTROL_EX_PDR;
1208	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1209	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1210	val &= ~CONTROL_INIT;
1211	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1212
1213	/* Wait for the PDA bit to get clear */
1214	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1215	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1216				time_after(time_out, jiffies))
1217		cpu_relax();
1218
1219	if (time_after(jiffies, time_out))
1220		return -ETIMEDOUT;
1221
1222	ret = c_can_start(dev);
1223	if (!ret)
1224		c_can_irq_control(priv, true);
1225
1226	return ret;
1227}
1228EXPORT_SYMBOL_GPL(c_can_power_up);
1229#endif
1230
1231void free_c_can_dev(struct net_device *dev)
1232{
1233	struct c_can_priv *priv = netdev_priv(dev);
1234
1235	netif_napi_del(&priv->napi);
1236	free_candev(dev);
1237}
1238EXPORT_SYMBOL_GPL(free_c_can_dev);
1239
1240static const struct net_device_ops c_can_netdev_ops = {
1241	.ndo_open = c_can_open,
1242	.ndo_stop = c_can_close,
1243	.ndo_start_xmit = c_can_start_xmit,
1244	.ndo_change_mtu = can_change_mtu,
1245};
1246
1247int register_c_can_dev(struct net_device *dev)
1248{
1249	struct c_can_priv *priv = netdev_priv(dev);
1250	int err;
1251
1252	c_can_pm_runtime_enable(priv);
1253
1254	dev->flags |= IFF_ECHO;	/* we support local echo */
1255	dev->netdev_ops = &c_can_netdev_ops;
1256
1257	err = register_candev(dev);
1258	if (err)
1259		c_can_pm_runtime_disable(priv);
1260	else
1261		devm_can_led_init(dev);
1262
1263	return err;
1264}
1265EXPORT_SYMBOL_GPL(register_c_can_dev);
1266
1267void unregister_c_can_dev(struct net_device *dev)
1268{
1269	struct c_can_priv *priv = netdev_priv(dev);
1270
1271	unregister_candev(dev);
1272
1273	c_can_pm_runtime_disable(priv);
1274}
1275EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1276
1277MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1278MODULE_LICENSE("GPL v2");
1279MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1280