c_can.c revision 5a7513adab521909e836fa5b9aaabbf22b48859f
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* For the low buffers we clear the interrupt bit, but keep newdat */
118#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
119				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the high buffers we clear the interrupt bit and newdat */
123#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)
124
125/* IFx arbitration */
126#define IF_ARB_MSGVAL		BIT(15)
127#define IF_ARB_MSGXTD		BIT(14)
128#define IF_ARB_TRANSMIT		BIT(13)
129
130/* IFx message control */
131#define IF_MCONT_NEWDAT		BIT(15)
132#define IF_MCONT_MSGLST		BIT(14)
133#define IF_MCONT_INTPND		BIT(13)
134#define IF_MCONT_UMASK		BIT(12)
135#define IF_MCONT_TXIE		BIT(11)
136#define IF_MCONT_RXIE		BIT(10)
137#define IF_MCONT_RMTEN		BIT(9)
138#define IF_MCONT_TXRQST		BIT(8)
139#define IF_MCONT_EOB		BIT(7)
140#define IF_MCONT_DLC_MASK	0xf
141
142/*
143 * Use IF1 for RX and IF2 for TX
144 */
145#define IF_RX			0
146#define IF_TX			1
147
148/* status interrupt */
149#define STATUS_INTERRUPT	0x8000
150
151/* global interrupt masks */
152#define ENABLE_ALL_INTERRUPTS	1
153#define DISABLE_ALL_INTERRUPTS	0
154
155/* minimum timeout for checking BUSY status */
156#define MIN_TIMEOUT_VALUE	6
157
158/* Wait for ~1 sec for INIT bit */
159#define INIT_WAIT_MS		1000
160
161/* napi related */
162#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
163
164/* c_can lec values */
165enum c_can_lec_type {
166	LEC_NO_ERROR = 0,
167	LEC_STUFF_ERROR,
168	LEC_FORM_ERROR,
169	LEC_ACK_ERROR,
170	LEC_BIT1_ERROR,
171	LEC_BIT0_ERROR,
172	LEC_CRC_ERROR,
173	LEC_UNUSED,
174};
175
176/*
177 * c_can error types:
178 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
179 */
180enum c_can_bus_error_types {
181	C_CAN_NO_ERROR = 0,
182	C_CAN_BUS_OFF,
183	C_CAN_ERROR_WARNING,
184	C_CAN_ERROR_PASSIVE,
185};
186
187static const struct can_bittiming_const c_can_bittiming_const = {
188	.name = KBUILD_MODNAME,
189	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
190	.tseg1_max = 16,
191	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
192	.tseg2_max = 8,
193	.sjw_max = 4,
194	.brp_min = 1,
195	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
196	.brp_inc = 1,
197};
198
199static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
200{
201	if (priv->device)
202		pm_runtime_enable(priv->device);
203}
204
205static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
206{
207	if (priv->device)
208		pm_runtime_disable(priv->device);
209}
210
211static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
212{
213	if (priv->device)
214		pm_runtime_get_sync(priv->device);
215}
216
217static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
218{
219	if (priv->device)
220		pm_runtime_put_sync(priv->device);
221}
222
223static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
224{
225	if (priv->raminit)
226		priv->raminit(priv, enable);
227}
228
229static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
230{
231	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
232			C_CAN_MSG_OBJ_TX_FIRST;
233}
234
235static inline int get_tx_echo_msg_obj(int txecho)
236{
237	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
238}
239
240static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
241{
242	u32 val = priv->read_reg(priv, index);
243	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
244	return val;
245}
246
247static void c_can_enable_all_interrupts(struct c_can_priv *priv,
248						int enable)
249{
250	unsigned int cntrl_save = priv->read_reg(priv,
251						C_CAN_CTRL_REG);
252
253	if (enable)
254		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
255	else
256		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
257
258	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
259}
260
261static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
262{
263	int count = MIN_TIMEOUT_VALUE;
264
265	while (count && priv->read_reg(priv,
266				C_CAN_IFACE(COMREQ_REG, iface)) &
267				IF_COMR_BUSY) {
268		count--;
269		udelay(1);
270	}
271
272	if (!count)
273		return 1;
274
275	return 0;
276}
277
278static inline void c_can_object_get(struct net_device *dev,
279					int iface, int objno, int mask)
280{
281	struct c_can_priv *priv = netdev_priv(dev);
282
283	/*
284	 * As per specs, after writting the message object number in the
285	 * IF command request register the transfer b/w interface
286	 * register and message RAM must be complete in 6 CAN-CLK
287	 * period.
288	 */
289	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
290			IFX_WRITE_LOW_16BIT(mask));
291	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
292			IFX_WRITE_LOW_16BIT(objno));
293
294	if (c_can_msg_obj_is_busy(priv, iface))
295		netdev_err(dev, "timed out in object get\n");
296}
297
298static inline void c_can_object_put(struct net_device *dev,
299					int iface, int objno, int mask)
300{
301	struct c_can_priv *priv = netdev_priv(dev);
302
303	/*
304	 * As per specs, after writting the message object number in the
305	 * IF command request register the transfer b/w interface
306	 * register and message RAM must be complete in 6 CAN-CLK
307	 * period.
308	 */
309	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
311	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312			IFX_WRITE_LOW_16BIT(objno));
313
314	if (c_can_msg_obj_is_busy(priv, iface))
315		netdev_err(dev, "timed out in object put\n");
316}
317
318static void c_can_write_msg_object(struct net_device *dev,
319			int iface, struct can_frame *frame, int objno)
320{
321	int i;
322	u16 flags = 0;
323	unsigned int id;
324	struct c_can_priv *priv = netdev_priv(dev);
325
326	if (!(frame->can_id & CAN_RTR_FLAG))
327		flags |= IF_ARB_TRANSMIT;
328
329	if (frame->can_id & CAN_EFF_FLAG) {
330		id = frame->can_id & CAN_EFF_MASK;
331		flags |= IF_ARB_MSGXTD;
332	} else
333		id = ((frame->can_id & CAN_SFF_MASK) << 18);
334
335	flags |= IF_ARB_MSGVAL;
336
337	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
338				IFX_WRITE_LOW_16BIT(id));
339	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
340				IFX_WRITE_HIGH_16BIT(id));
341
342	for (i = 0; i < frame->can_dlc; i += 2) {
343		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
344				frame->data[i] | (frame->data[i + 1] << 8));
345	}
346
347	/* enable interrupt for this message object */
348	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
349			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
350			frame->can_dlc);
351	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
352}
353
354static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
355						int iface,
356						int ctrl_mask)
357{
358	int i;
359	struct c_can_priv *priv = netdev_priv(dev);
360
361	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
362		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
363				ctrl_mask & ~IF_MCONT_NEWDAT);
364		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
365	}
366}
367
368static int c_can_handle_lost_msg_obj(struct net_device *dev,
369				     int iface, int objno, u32 ctrl)
370{
371	struct net_device_stats *stats = &dev->stats;
372	struct c_can_priv *priv = netdev_priv(dev);
373	struct can_frame *frame;
374	struct sk_buff *skb;
375
376	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
377	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
378	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
379
380	/* create an error msg */
381	skb = alloc_can_err_skb(dev, &frame);
382	if (unlikely(!skb))
383		return 0;
384
385	frame->can_id |= CAN_ERR_CRTL;
386	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
387	stats->rx_errors++;
388	stats->rx_over_errors++;
389
390	netif_receive_skb(skb);
391	return 1;
392}
393
394static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
395{
396	u16 flags, data;
397	int i;
398	unsigned int val;
399	struct c_can_priv *priv = netdev_priv(dev);
400	struct net_device_stats *stats = &dev->stats;
401	struct sk_buff *skb;
402	struct can_frame *frame;
403
404	skb = alloc_can_skb(dev, &frame);
405	if (!skb) {
406		stats->rx_dropped++;
407		return -ENOMEM;
408	}
409
410	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
411
412	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
413	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
414		(flags << 16);
415
416	if (flags & IF_ARB_MSGXTD)
417		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
418	else
419		frame->can_id = (val >> 18) & CAN_SFF_MASK;
420
421	if (flags & IF_ARB_TRANSMIT)
422		frame->can_id |= CAN_RTR_FLAG;
423	else {
424		for (i = 0; i < frame->can_dlc; i += 2) {
425			data = priv->read_reg(priv,
426				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
427			frame->data[i] = data;
428			frame->data[i + 1] = data >> 8;
429		}
430	}
431
432	netif_receive_skb(skb);
433
434	stats->rx_packets++;
435	stats->rx_bytes += frame->can_dlc;
436
437	can_led_event(dev, CAN_LED_EVENT_RX);
438
439	return 0;
440}
441
442static void c_can_setup_receive_object(struct net_device *dev, int iface,
443					int objno, unsigned int mask,
444					unsigned int id, unsigned int mcont)
445{
446	struct c_can_priv *priv = netdev_priv(dev);
447
448	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
449			IFX_WRITE_LOW_16BIT(mask));
450
451	/* According to C_CAN documentation, the reserved bit
452	 * in IFx_MASK2 register is fixed 1
453	 */
454	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
455			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
456
457	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
458			IFX_WRITE_LOW_16BIT(id));
459	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
460			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
461
462	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
463	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
464
465	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
466			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
467}
468
469static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
470{
471	struct c_can_priv *priv = netdev_priv(dev);
472
473	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
474	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
475	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
476
477	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
478
479	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
480			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
481}
482
483static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
484{
485	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
486
487	/*
488	 * as transmission request register's bit n-1 corresponds to
489	 * message object n, we need to handle the same properly.
490	 */
491	if (val & (1 << (objno - 1)))
492		return 1;
493
494	return 0;
495}
496
497static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
498					struct net_device *dev)
499{
500	u32 msg_obj_no;
501	struct c_can_priv *priv = netdev_priv(dev);
502	struct can_frame *frame = (struct can_frame *)skb->data;
503
504	if (can_dropped_invalid_skb(dev, skb))
505		return NETDEV_TX_OK;
506
507	spin_lock_bh(&priv->xmit_lock);
508	msg_obj_no = get_tx_next_msg_obj(priv);
509
510	/* prepare message object for transmission */
511	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
512	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
513	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
514
515	/*
516	 * we have to stop the queue in case of a wrap around or
517	 * if the next TX message object is still in use
518	 */
519	priv->tx_next++;
520	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
521			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
522		netif_stop_queue(dev);
523	spin_unlock_bh(&priv->xmit_lock);
524
525	return NETDEV_TX_OK;
526}
527
528static int c_can_wait_for_ctrl_init(struct net_device *dev,
529				    struct c_can_priv *priv, u32 init)
530{
531	int retry = 0;
532
533	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
534		udelay(10);
535		if (retry++ > 1000) {
536			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
537			return -EIO;
538		}
539	}
540	return 0;
541}
542
543static int c_can_set_bittiming(struct net_device *dev)
544{
545	unsigned int reg_btr, reg_brpe, ctrl_save;
546	u8 brp, brpe, sjw, tseg1, tseg2;
547	u32 ten_bit_brp;
548	struct c_can_priv *priv = netdev_priv(dev);
549	const struct can_bittiming *bt = &priv->can.bittiming;
550	int res;
551
552	/* c_can provides a 6-bit brp and 4-bit brpe fields */
553	ten_bit_brp = bt->brp - 1;
554	brp = ten_bit_brp & BTR_BRP_MASK;
555	brpe = ten_bit_brp >> 6;
556
557	sjw = bt->sjw - 1;
558	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
559	tseg2 = bt->phase_seg2 - 1;
560	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
561			(tseg2 << BTR_TSEG2_SHIFT);
562	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
563
564	netdev_info(dev,
565		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
566
567	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
568	ctrl_save &= ~CONTROL_INIT;
569	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
570	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
571	if (res)
572		return res;
573
574	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
575	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
576	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
577
578	return c_can_wait_for_ctrl_init(dev, priv, 0);
579}
580
581/*
582 * Configure C_CAN message objects for Tx and Rx purposes:
583 * C_CAN provides a total of 32 message objects that can be configured
584 * either for Tx or Rx purposes. Here the first 16 message objects are used as
585 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
586 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
587 * See user guide document for further details on configuring message
588 * objects.
589 */
590static void c_can_configure_msg_objects(struct net_device *dev)
591{
592	int i;
593
594	/* first invalidate all message objects */
595	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
596		c_can_inval_msg_object(dev, IF_RX, i);
597
598	/* setup receive message objects */
599	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
600		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
601			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
602
603	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
604			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
605}
606
607/*
608 * Configure C_CAN chip:
609 * - enable/disable auto-retransmission
610 * - set operating mode
611 * - configure message objects
612 */
613static int c_can_chip_config(struct net_device *dev)
614{
615	struct c_can_priv *priv = netdev_priv(dev);
616
617	/* enable automatic retransmission */
618	priv->write_reg(priv, C_CAN_CTRL_REG,
619			CONTROL_ENABLE_AR);
620
621	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
622	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
623		/* loopback + silent mode : useful for hot self-test */
624		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
625				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
626		priv->write_reg(priv, C_CAN_TEST_REG,
627				TEST_LBACK | TEST_SILENT);
628	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
629		/* loopback mode : useful for self-test function */
630		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
631				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
632		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
633	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
634		/* silent mode : bus-monitoring mode */
635		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
636				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
637		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
638	} else
639		/* normal mode*/
640		priv->write_reg(priv, C_CAN_CTRL_REG,
641				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
642
643	/* configure message objects */
644	c_can_configure_msg_objects(dev);
645
646	/* set a `lec` value so that we can check for updates later */
647	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
648
649	/* set bittiming params */
650	return c_can_set_bittiming(dev);
651}
652
653static int c_can_start(struct net_device *dev)
654{
655	struct c_can_priv *priv = netdev_priv(dev);
656	int err;
657
658	/* basic c_can configuration */
659	err = c_can_chip_config(dev);
660	if (err)
661		return err;
662
663	priv->can.state = CAN_STATE_ERROR_ACTIVE;
664
665	/* reset tx helper pointers */
666	priv->tx_next = priv->tx_echo = 0;
667
668	/* enable status change, error and module interrupts */
669	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
670
671	return 0;
672}
673
674static void c_can_stop(struct net_device *dev)
675{
676	struct c_can_priv *priv = netdev_priv(dev);
677
678	/* disable all interrupts */
679	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
680
681	/* set the state as STOPPED */
682	priv->can.state = CAN_STATE_STOPPED;
683}
684
685static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
686{
687	int err;
688
689	switch (mode) {
690	case CAN_MODE_START:
691		err = c_can_start(dev);
692		if (err)
693			return err;
694		netif_wake_queue(dev);
695		break;
696	default:
697		return -EOPNOTSUPP;
698	}
699
700	return 0;
701}
702
703static int __c_can_get_berr_counter(const struct net_device *dev,
704				    struct can_berr_counter *bec)
705{
706	unsigned int reg_err_counter;
707	struct c_can_priv *priv = netdev_priv(dev);
708
709	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
710	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
711				ERR_CNT_REC_SHIFT;
712	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
713
714	return 0;
715}
716
717static int c_can_get_berr_counter(const struct net_device *dev,
718				  struct can_berr_counter *bec)
719{
720	struct c_can_priv *priv = netdev_priv(dev);
721	int err;
722
723	c_can_pm_runtime_get_sync(priv);
724	err = __c_can_get_berr_counter(dev, bec);
725	c_can_pm_runtime_put_sync(priv);
726
727	return err;
728}
729
730/*
731 * priv->tx_echo holds the number of the oldest can_frame put for
732 * transmission into the hardware, but not yet ACKed by the CAN tx
733 * complete IRQ.
734 *
735 * We iterate from priv->tx_echo to priv->tx_next and check if the
736 * packet has been transmitted, echo it back to the CAN framework.
737 * If we discover a not yet transmitted packet, stop looking for more.
738 */
739static void c_can_do_tx(struct net_device *dev)
740{
741	struct c_can_priv *priv = netdev_priv(dev);
742	struct net_device_stats *stats = &dev->stats;
743	u32 val, obj, pkts = 0, bytes = 0;
744
745	spin_lock_bh(&priv->xmit_lock);
746
747	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
748		obj = get_tx_echo_msg_obj(priv->tx_echo);
749		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
750
751		if (val & (1 << (obj - 1)))
752			break;
753
754		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
755		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
756		pkts++;
757		c_can_inval_msg_object(dev, IF_TX, obj);
758	}
759
760	/* restart queue if wrap-up or if queue stalled on last pkt */
761	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
762			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
763		netif_wake_queue(dev);
764
765	spin_unlock_bh(&priv->xmit_lock);
766
767	if (pkts) {
768		stats->tx_bytes += bytes;
769		stats->tx_packets += pkts;
770		can_led_event(dev, CAN_LED_EVENT_TX);
771	}
772}
773
774/*
775 * If we have a gap in the pending bits, that means we either
776 * raced with the hardware or failed to readout all upper
777 * objects in the last run due to quota limit.
778 */
779static u32 c_can_adjust_pending(u32 pend)
780{
781	u32 weight, lasts;
782
783	if (pend == RECEIVE_OBJECT_BITS)
784		return pend;
785
786	/*
787	 * If the last set bit is larger than the number of pending
788	 * bits we have a gap.
789	 */
790	weight = hweight32(pend);
791	lasts = fls(pend);
792
793	/* If the bits are linear, nothing to do */
794	if (lasts == weight)
795		return pend;
796
797	/*
798	 * Find the first set bit after the gap. We walk backwards
799	 * from the last set bit.
800	 */
801	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
802
803	return pend & ~((1 << lasts) - 1);
804}
805
806static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
807			      u32 pend, int quota)
808{
809	u32 pkts = 0, ctrl, obj, mcmd;
810
811	while ((obj = ffs(pend)) && quota > 0) {
812		pend &= ~BIT(obj - 1);
813
814		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
815			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
816
817		c_can_object_get(dev, IF_RX, obj, mcmd);
818		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
819
820		if (ctrl & IF_MCONT_MSGLST) {
821			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
822
823			pkts += n;
824			quota -= n;
825			continue;
826		}
827
828		/*
829		 * This really should not happen, but this covers some
830		 * odd HW behaviour. Do not remove that unless you
831		 * want to brick your machine.
832		 */
833		if (!(ctrl & IF_MCONT_NEWDAT))
834			continue;
835
836		/* read the data from the message object */
837		c_can_read_msg_object(dev, IF_RX, ctrl);
838
839		if (obj == C_CAN_MSG_RX_LOW_LAST)
840			/* activate all lower message objects */
841			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);
842
843		pkts++;
844		quota--;
845	}
846
847	return pkts;
848}
849
850/*
851 * theory of operation:
852 *
853 * c_can core saves a received CAN message into the first free message
854 * object it finds free (starting with the lowest). Bits NEWDAT and
855 * INTPND are set for this message object indicating that a new message
856 * has arrived. To work-around this issue, we keep two groups of message
857 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
858 *
859 * To ensure in-order frame reception we use the following
860 * approach while re-activating a message object to receive further
861 * frames:
862 * - if the current message object number is lower than
863 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
864 *   the INTPND bit.
865 * - if the current message object number is equal to
866 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
867 *   receive message objects.
868 * - if the current message object number is greater than
869 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
870 *   only this message object.
871 */
872static int c_can_do_rx_poll(struct net_device *dev, int quota)
873{
874	struct c_can_priv *priv = netdev_priv(dev);
875	u32 pkts = 0, pend = 0, toread, n;
876
877	/*
878	 * It is faster to read only one 16bit register. This is only possible
879	 * for a maximum number of 16 objects.
880	 */
881	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
882			"Implementation does not support more message objects than 16");
883
884	while (quota > 0) {
885		if (!pend) {
886			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
887			if (!pend)
888				break;
889			/*
890			 * If the pending field has a gap, handle the
891			 * bits above the gap first.
892			 */
893			toread = c_can_adjust_pending(pend);
894		} else {
895			toread = pend;
896		}
897		/* Remove the bits from pend */
898		pend &= ~toread;
899		/* Read the objects */
900		n = c_can_read_objects(dev, priv, toread, quota);
901		pkts += n;
902		quota -= n;
903	}
904	return pkts;
905}
906
907static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
908{
909	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
910		(priv->current_status & LEC_UNUSED);
911}
912
913static int c_can_handle_state_change(struct net_device *dev,
914				enum c_can_bus_error_types error_type)
915{
916	unsigned int reg_err_counter;
917	unsigned int rx_err_passive;
918	struct c_can_priv *priv = netdev_priv(dev);
919	struct net_device_stats *stats = &dev->stats;
920	struct can_frame *cf;
921	struct sk_buff *skb;
922	struct can_berr_counter bec;
923
924	/* propagate the error condition to the CAN stack */
925	skb = alloc_can_err_skb(dev, &cf);
926	if (unlikely(!skb))
927		return 0;
928
929	__c_can_get_berr_counter(dev, &bec);
930	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
931	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
932				ERR_CNT_RP_SHIFT;
933
934	switch (error_type) {
935	case C_CAN_ERROR_WARNING:
936		/* error warning state */
937		priv->can.can_stats.error_warning++;
938		priv->can.state = CAN_STATE_ERROR_WARNING;
939		cf->can_id |= CAN_ERR_CRTL;
940		cf->data[1] = (bec.txerr > bec.rxerr) ?
941			CAN_ERR_CRTL_TX_WARNING :
942			CAN_ERR_CRTL_RX_WARNING;
943		cf->data[6] = bec.txerr;
944		cf->data[7] = bec.rxerr;
945
946		break;
947	case C_CAN_ERROR_PASSIVE:
948		/* error passive state */
949		priv->can.can_stats.error_passive++;
950		priv->can.state = CAN_STATE_ERROR_PASSIVE;
951		cf->can_id |= CAN_ERR_CRTL;
952		if (rx_err_passive)
953			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
954		if (bec.txerr > 127)
955			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
956
957		cf->data[6] = bec.txerr;
958		cf->data[7] = bec.rxerr;
959		break;
960	case C_CAN_BUS_OFF:
961		/* bus-off state */
962		priv->can.state = CAN_STATE_BUS_OFF;
963		cf->can_id |= CAN_ERR_BUSOFF;
964		/*
965		 * disable all interrupts in bus-off mode to ensure that
966		 * the CPU is not hogged down
967		 */
968		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
969		can_bus_off(dev);
970		break;
971	default:
972		break;
973	}
974
975	netif_receive_skb(skb);
976	stats->rx_packets++;
977	stats->rx_bytes += cf->can_dlc;
978
979	return 1;
980}
981
982static int c_can_handle_bus_err(struct net_device *dev,
983				enum c_can_lec_type lec_type)
984{
985	struct c_can_priv *priv = netdev_priv(dev);
986	struct net_device_stats *stats = &dev->stats;
987	struct can_frame *cf;
988	struct sk_buff *skb;
989
990	/*
991	 * early exit if no lec update or no error.
992	 * no lec update means that no CAN bus event has been detected
993	 * since CPU wrote 0x7 value to status reg.
994	 */
995	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
996		return 0;
997
998	/* propagate the error condition to the CAN stack */
999	skb = alloc_can_err_skb(dev, &cf);
1000	if (unlikely(!skb))
1001		return 0;
1002
1003	/*
1004	 * check for 'last error code' which tells us the
1005	 * type of the last error to occur on the CAN bus
1006	 */
1007
1008	/* common for all type of bus errors */
1009	priv->can.can_stats.bus_error++;
1010	stats->rx_errors++;
1011	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1012	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1013
1014	switch (lec_type) {
1015	case LEC_STUFF_ERROR:
1016		netdev_dbg(dev, "stuff error\n");
1017		cf->data[2] |= CAN_ERR_PROT_STUFF;
1018		break;
1019	case LEC_FORM_ERROR:
1020		netdev_dbg(dev, "form error\n");
1021		cf->data[2] |= CAN_ERR_PROT_FORM;
1022		break;
1023	case LEC_ACK_ERROR:
1024		netdev_dbg(dev, "ack error\n");
1025		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1026				CAN_ERR_PROT_LOC_ACK_DEL);
1027		break;
1028	case LEC_BIT1_ERROR:
1029		netdev_dbg(dev, "bit1 error\n");
1030		cf->data[2] |= CAN_ERR_PROT_BIT1;
1031		break;
1032	case LEC_BIT0_ERROR:
1033		netdev_dbg(dev, "bit0 error\n");
1034		cf->data[2] |= CAN_ERR_PROT_BIT0;
1035		break;
1036	case LEC_CRC_ERROR:
1037		netdev_dbg(dev, "CRC error\n");
1038		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1039				CAN_ERR_PROT_LOC_CRC_DEL);
1040		break;
1041	default:
1042		break;
1043	}
1044
1045	/* set a `lec` value so that we can check for updates later */
1046	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1047
1048	netif_receive_skb(skb);
1049	stats->rx_packets++;
1050	stats->rx_bytes += cf->can_dlc;
1051
1052	return 1;
1053}
1054
1055static int c_can_poll(struct napi_struct *napi, int quota)
1056{
1057	u16 irqstatus;
1058	int lec_type = 0;
1059	int work_done = 0;
1060	struct net_device *dev = napi->dev;
1061	struct c_can_priv *priv = netdev_priv(dev);
1062
1063	irqstatus = priv->irqstatus;
1064	if (!irqstatus)
1065		goto end;
1066
1067	/* status events have the highest priority */
1068	if (irqstatus == STATUS_INTERRUPT) {
1069		priv->current_status = priv->read_reg(priv,
1070					C_CAN_STS_REG);
1071
1072		/* handle Tx/Rx events */
1073		if (priv->current_status & STATUS_TXOK)
1074			priv->write_reg(priv, C_CAN_STS_REG,
1075					priv->current_status & ~STATUS_TXOK);
1076
1077		if (priv->current_status & STATUS_RXOK)
1078			priv->write_reg(priv, C_CAN_STS_REG,
1079					priv->current_status & ~STATUS_RXOK);
1080
1081		/* handle state changes */
1082		if ((priv->current_status & STATUS_EWARN) &&
1083				(!(priv->last_status & STATUS_EWARN))) {
1084			netdev_dbg(dev, "entered error warning state\n");
1085			work_done += c_can_handle_state_change(dev,
1086						C_CAN_ERROR_WARNING);
1087		}
1088		if ((priv->current_status & STATUS_EPASS) &&
1089				(!(priv->last_status & STATUS_EPASS))) {
1090			netdev_dbg(dev, "entered error passive state\n");
1091			work_done += c_can_handle_state_change(dev,
1092						C_CAN_ERROR_PASSIVE);
1093		}
1094		if ((priv->current_status & STATUS_BOFF) &&
1095				(!(priv->last_status & STATUS_BOFF))) {
1096			netdev_dbg(dev, "entered bus off state\n");
1097			work_done += c_can_handle_state_change(dev,
1098						C_CAN_BUS_OFF);
1099		}
1100
1101		/* handle bus recovery events */
1102		if ((!(priv->current_status & STATUS_BOFF)) &&
1103				(priv->last_status & STATUS_BOFF)) {
1104			netdev_dbg(dev, "left bus off state\n");
1105			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1106		}
1107		if ((!(priv->current_status & STATUS_EPASS)) &&
1108				(priv->last_status & STATUS_EPASS)) {
1109			netdev_dbg(dev, "left error passive state\n");
1110			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1111		}
1112
1113		priv->last_status = priv->current_status;
1114
1115		/* handle lec errors on the bus */
1116		lec_type = c_can_has_and_handle_berr(priv);
1117		if (lec_type)
1118			work_done += c_can_handle_bus_err(dev, lec_type);
1119	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1120			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1121		/* handle events corresponding to receive message objects */
1122		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1123	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1124			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1125		/* handle events corresponding to transmit message objects */
1126		c_can_do_tx(dev);
1127	}
1128
1129end:
1130	if (work_done < quota) {
1131		napi_complete(napi);
1132		/* enable all IRQs */
1133		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1134	}
1135
1136	return work_done;
1137}
1138
1139static irqreturn_t c_can_isr(int irq, void *dev_id)
1140{
1141	struct net_device *dev = (struct net_device *)dev_id;
1142	struct c_can_priv *priv = netdev_priv(dev);
1143
1144	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1145	if (!priv->irqstatus)
1146		return IRQ_NONE;
1147
1148	/* disable all interrupts and schedule the NAPI */
1149	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1150	napi_schedule(&priv->napi);
1151
1152	return IRQ_HANDLED;
1153}
1154
1155static int c_can_open(struct net_device *dev)
1156{
1157	int err;
1158	struct c_can_priv *priv = netdev_priv(dev);
1159
1160	c_can_pm_runtime_get_sync(priv);
1161	c_can_reset_ram(priv, true);
1162
1163	/* open the can device */
1164	err = open_candev(dev);
1165	if (err) {
1166		netdev_err(dev, "failed to open can device\n");
1167		goto exit_open_fail;
1168	}
1169
1170	/* register interrupt handler */
1171	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1172				dev);
1173	if (err < 0) {
1174		netdev_err(dev, "failed to request interrupt\n");
1175		goto exit_irq_fail;
1176	}
1177
1178	/* start the c_can controller */
1179	err = c_can_start(dev);
1180	if (err)
1181		goto exit_start_fail;
1182
1183	can_led_event(dev, CAN_LED_EVENT_OPEN);
1184
1185	napi_enable(&priv->napi);
1186	netif_start_queue(dev);
1187
1188	return 0;
1189
1190exit_start_fail:
1191	free_irq(dev->irq, dev);
1192exit_irq_fail:
1193	close_candev(dev);
1194exit_open_fail:
1195	c_can_reset_ram(priv, false);
1196	c_can_pm_runtime_put_sync(priv);
1197	return err;
1198}
1199
1200static int c_can_close(struct net_device *dev)
1201{
1202	struct c_can_priv *priv = netdev_priv(dev);
1203
1204	netif_stop_queue(dev);
1205	napi_disable(&priv->napi);
1206	c_can_stop(dev);
1207	free_irq(dev->irq, dev);
1208	close_candev(dev);
1209
1210	c_can_reset_ram(priv, false);
1211	c_can_pm_runtime_put_sync(priv);
1212
1213	can_led_event(dev, CAN_LED_EVENT_STOP);
1214
1215	return 0;
1216}
1217
1218struct net_device *alloc_c_can_dev(void)
1219{
1220	struct net_device *dev;
1221	struct c_can_priv *priv;
1222
1223	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1224	if (!dev)
1225		return NULL;
1226
1227	priv = netdev_priv(dev);
1228	spin_lock_init(&priv->xmit_lock);
1229	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1230
1231	priv->dev = dev;
1232	priv->can.bittiming_const = &c_can_bittiming_const;
1233	priv->can.do_set_mode = c_can_set_mode;
1234	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1235	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1236					CAN_CTRLMODE_LISTENONLY |
1237					CAN_CTRLMODE_BERR_REPORTING;
1238
1239	return dev;
1240}
1241EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1242
1243#ifdef CONFIG_PM
1244int c_can_power_down(struct net_device *dev)
1245{
1246	u32 val;
1247	unsigned long time_out;
1248	struct c_can_priv *priv = netdev_priv(dev);
1249
1250	if (!(dev->flags & IFF_UP))
1251		return 0;
1252
1253	WARN_ON(priv->type != BOSCH_D_CAN);
1254
1255	/* set PDR value so the device goes to power down mode */
1256	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1257	val |= CONTROL_EX_PDR;
1258	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1259
1260	/* Wait for the PDA bit to get set */
1261	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1262	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1263				time_after(time_out, jiffies))
1264		cpu_relax();
1265
1266	if (time_after(jiffies, time_out))
1267		return -ETIMEDOUT;
1268
1269	c_can_stop(dev);
1270
1271	c_can_reset_ram(priv, false);
1272	c_can_pm_runtime_put_sync(priv);
1273
1274	return 0;
1275}
1276EXPORT_SYMBOL_GPL(c_can_power_down);
1277
1278int c_can_power_up(struct net_device *dev)
1279{
1280	u32 val;
1281	unsigned long time_out;
1282	struct c_can_priv *priv = netdev_priv(dev);
1283
1284	if (!(dev->flags & IFF_UP))
1285		return 0;
1286
1287	WARN_ON(priv->type != BOSCH_D_CAN);
1288
1289	c_can_pm_runtime_get_sync(priv);
1290	c_can_reset_ram(priv, true);
1291
1292	/* Clear PDR and INIT bits */
1293	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1294	val &= ~CONTROL_EX_PDR;
1295	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1296	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1297	val &= ~CONTROL_INIT;
1298	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1299
1300	/* Wait for the PDA bit to get clear */
1301	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1302	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1303				time_after(time_out, jiffies))
1304		cpu_relax();
1305
1306	if (time_after(jiffies, time_out))
1307		return -ETIMEDOUT;
1308
1309	return c_can_start(dev);
1310}
1311EXPORT_SYMBOL_GPL(c_can_power_up);
1312#endif
1313
1314void free_c_can_dev(struct net_device *dev)
1315{
1316	struct c_can_priv *priv = netdev_priv(dev);
1317
1318	netif_napi_del(&priv->napi);
1319	free_candev(dev);
1320}
1321EXPORT_SYMBOL_GPL(free_c_can_dev);
1322
1323static const struct net_device_ops c_can_netdev_ops = {
1324	.ndo_open = c_can_open,
1325	.ndo_stop = c_can_close,
1326	.ndo_start_xmit = c_can_start_xmit,
1327};
1328
1329int register_c_can_dev(struct net_device *dev)
1330{
1331	struct c_can_priv *priv = netdev_priv(dev);
1332	int err;
1333
1334	c_can_pm_runtime_enable(priv);
1335
1336	dev->flags |= IFF_ECHO;	/* we support local echo */
1337	dev->netdev_ops = &c_can_netdev_ops;
1338
1339	err = register_candev(dev);
1340	if (err)
1341		c_can_pm_runtime_disable(priv);
1342	else
1343		devm_can_led_init(dev);
1344
1345	return err;
1346}
1347EXPORT_SYMBOL_GPL(register_c_can_dev);
1348
1349void unregister_c_can_dev(struct net_device *dev)
1350{
1351	struct c_can_priv *priv = netdev_priv(dev);
1352
1353	unregister_candev(dev);
1354
1355	c_can_pm_runtime_disable(priv);
1356}
1357EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1358
1359MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1360MODULE_LICENSE("GPL v2");
1361MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1362