c_can.c revision 64f08f2f3544eb8b6b14fd35e6087d7d3ede77cd
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* IFx arbitration */
118#define IF_ARB_MSGVAL		BIT(15)
119#define IF_ARB_MSGXTD		BIT(14)
120#define IF_ARB_TRANSMIT		BIT(13)
121
122/* IFx message control */
123#define IF_MCONT_NEWDAT		BIT(15)
124#define IF_MCONT_MSGLST		BIT(14)
125#define IF_MCONT_CLR_MSGLST	(0 << 14)
126#define IF_MCONT_INTPND		BIT(13)
127#define IF_MCONT_UMASK		BIT(12)
128#define IF_MCONT_TXIE		BIT(11)
129#define IF_MCONT_RXIE		BIT(10)
130#define IF_MCONT_RMTEN		BIT(9)
131#define IF_MCONT_TXRQST		BIT(8)
132#define IF_MCONT_EOB		BIT(7)
133#define IF_MCONT_DLC_MASK	0xf
134
135/*
136 * Use IF1 for RX and IF2 for TX
137 */
138#define IF_RX			0
139#define IF_TX			1
140
141/*
142 * IFx register masks:
143 * allow easy operation on 16-bit registers when the
144 * argument is 32-bit instead
145 */
146#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
147#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
148
149/* message object split */
150#define C_CAN_NO_OF_OBJECTS	32
151#define C_CAN_MSG_OBJ_RX_NUM	16
152#define C_CAN_MSG_OBJ_TX_NUM	16
153
154#define C_CAN_MSG_OBJ_RX_FIRST	1
155#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
156				C_CAN_MSG_OBJ_RX_NUM - 1)
157
158#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
159#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
160				C_CAN_MSG_OBJ_TX_NUM - 1)
161
162#define C_CAN_MSG_OBJ_RX_SPLIT	9
163#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
164
165#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
166#define RECEIVE_OBJECT_BITS	0x0000ffff
167
168/* status interrupt */
169#define STATUS_INTERRUPT	0x8000
170
171/* global interrupt masks */
172#define ENABLE_ALL_INTERRUPTS	1
173#define DISABLE_ALL_INTERRUPTS	0
174
175/* minimum timeout for checking BUSY status */
176#define MIN_TIMEOUT_VALUE	6
177
178/* Wait for ~1 sec for INIT bit */
179#define INIT_WAIT_MS		1000
180
181/* napi related */
182#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
183
184/* c_can lec values */
185enum c_can_lec_type {
186	LEC_NO_ERROR = 0,
187	LEC_STUFF_ERROR,
188	LEC_FORM_ERROR,
189	LEC_ACK_ERROR,
190	LEC_BIT1_ERROR,
191	LEC_BIT0_ERROR,
192	LEC_CRC_ERROR,
193	LEC_UNUSED,
194};
195
196/*
197 * c_can error types:
198 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
199 */
200enum c_can_bus_error_types {
201	C_CAN_NO_ERROR = 0,
202	C_CAN_BUS_OFF,
203	C_CAN_ERROR_WARNING,
204	C_CAN_ERROR_PASSIVE,
205};
206
207static const struct can_bittiming_const c_can_bittiming_const = {
208	.name = KBUILD_MODNAME,
209	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
210	.tseg1_max = 16,
211	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
212	.tseg2_max = 8,
213	.sjw_max = 4,
214	.brp_min = 1,
215	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
216	.brp_inc = 1,
217};
218
219static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
220{
221	if (priv->device)
222		pm_runtime_enable(priv->device);
223}
224
225static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
226{
227	if (priv->device)
228		pm_runtime_disable(priv->device);
229}
230
231static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
232{
233	if (priv->device)
234		pm_runtime_get_sync(priv->device);
235}
236
237static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
238{
239	if (priv->device)
240		pm_runtime_put_sync(priv->device);
241}
242
243static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
244{
245	if (priv->raminit)
246		priv->raminit(priv, enable);
247}
248
249static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
250{
251	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
252			C_CAN_MSG_OBJ_TX_FIRST;
253}
254
255static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
256{
257	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
258			C_CAN_MSG_OBJ_TX_FIRST;
259}
260
261static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
262{
263	u32 val = priv->read_reg(priv, index);
264	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
265	return val;
266}
267
268static void c_can_enable_all_interrupts(struct c_can_priv *priv,
269						int enable)
270{
271	unsigned int cntrl_save = priv->read_reg(priv,
272						C_CAN_CTRL_REG);
273
274	if (enable)
275		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
276	else
277		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
278
279	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
280}
281
282static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
283{
284	int count = MIN_TIMEOUT_VALUE;
285
286	while (count && priv->read_reg(priv,
287				C_CAN_IFACE(COMREQ_REG, iface)) &
288				IF_COMR_BUSY) {
289		count--;
290		udelay(1);
291	}
292
293	if (!count)
294		return 1;
295
296	return 0;
297}
298
299static inline void c_can_object_get(struct net_device *dev,
300					int iface, int objno, int mask)
301{
302	struct c_can_priv *priv = netdev_priv(dev);
303
304	/*
305	 * As per specs, after writting the message object number in the
306	 * IF command request register the transfer b/w interface
307	 * register and message RAM must be complete in 6 CAN-CLK
308	 * period.
309	 */
310	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
311			IFX_WRITE_LOW_16BIT(mask));
312	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
313			IFX_WRITE_LOW_16BIT(objno));
314
315	if (c_can_msg_obj_is_busy(priv, iface))
316		netdev_err(dev, "timed out in object get\n");
317}
318
319static inline void c_can_object_put(struct net_device *dev,
320					int iface, int objno, int mask)
321{
322	struct c_can_priv *priv = netdev_priv(dev);
323
324	/*
325	 * As per specs, after writting the message object number in the
326	 * IF command request register the transfer b/w interface
327	 * register and message RAM must be complete in 6 CAN-CLK
328	 * period.
329	 */
330	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
331			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
332	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
333			IFX_WRITE_LOW_16BIT(objno));
334
335	if (c_can_msg_obj_is_busy(priv, iface))
336		netdev_err(dev, "timed out in object put\n");
337}
338
339static void c_can_write_msg_object(struct net_device *dev,
340			int iface, struct can_frame *frame, int objno)
341{
342	int i;
343	u16 flags = 0;
344	unsigned int id;
345	struct c_can_priv *priv = netdev_priv(dev);
346
347	if (!(frame->can_id & CAN_RTR_FLAG))
348		flags |= IF_ARB_TRANSMIT;
349
350	if (frame->can_id & CAN_EFF_FLAG) {
351		id = frame->can_id & CAN_EFF_MASK;
352		flags |= IF_ARB_MSGXTD;
353	} else
354		id = ((frame->can_id & CAN_SFF_MASK) << 18);
355
356	flags |= IF_ARB_MSGVAL;
357
358	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
359				IFX_WRITE_LOW_16BIT(id));
360	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
361				IFX_WRITE_HIGH_16BIT(id));
362
363	for (i = 0; i < frame->can_dlc; i += 2) {
364		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
365				frame->data[i] | (frame->data[i + 1] << 8));
366	}
367
368	/* enable interrupt for this message object */
369	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
370			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
371			frame->can_dlc);
372	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
373}
374
375static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
376						int iface, int ctrl_mask,
377						int obj)
378{
379	struct c_can_priv *priv = netdev_priv(dev);
380
381	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
382			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
383	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
384
385}
386
387static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
388						int iface,
389						int ctrl_mask)
390{
391	int i;
392	struct c_can_priv *priv = netdev_priv(dev);
393
394	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
395		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
396				ctrl_mask & ~(IF_MCONT_MSGLST |
397					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
398		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
399	}
400}
401
402static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
403						int iface, int ctrl_mask,
404						int obj)
405{
406	struct c_can_priv *priv = netdev_priv(dev);
407
408	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
409			ctrl_mask & ~(IF_MCONT_MSGLST |
410				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
411	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
412}
413
414static void c_can_handle_lost_msg_obj(struct net_device *dev,
415					int iface, int objno)
416{
417	struct c_can_priv *priv = netdev_priv(dev);
418	struct net_device_stats *stats = &dev->stats;
419	struct sk_buff *skb;
420	struct can_frame *frame;
421
422	netdev_err(dev, "msg lost in buffer %d\n", objno);
423
424	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
425
426	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
427			IF_MCONT_CLR_MSGLST);
428
429	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
430
431	/* create an error msg */
432	skb = alloc_can_err_skb(dev, &frame);
433	if (unlikely(!skb))
434		return;
435
436	frame->can_id |= CAN_ERR_CRTL;
437	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
438	stats->rx_errors++;
439	stats->rx_over_errors++;
440
441	netif_receive_skb(skb);
442}
443
444static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
445{
446	u16 flags, data;
447	int i;
448	unsigned int val;
449	struct c_can_priv *priv = netdev_priv(dev);
450	struct net_device_stats *stats = &dev->stats;
451	struct sk_buff *skb;
452	struct can_frame *frame;
453
454	skb = alloc_can_skb(dev, &frame);
455	if (!skb) {
456		stats->rx_dropped++;
457		return -ENOMEM;
458	}
459
460	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
461
462	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
463	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
464		(flags << 16);
465
466	if (flags & IF_ARB_MSGXTD)
467		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
468	else
469		frame->can_id = (val >> 18) & CAN_SFF_MASK;
470
471	if (flags & IF_ARB_TRANSMIT)
472		frame->can_id |= CAN_RTR_FLAG;
473	else {
474		for (i = 0; i < frame->can_dlc; i += 2) {
475			data = priv->read_reg(priv,
476				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
477			frame->data[i] = data;
478			frame->data[i + 1] = data >> 8;
479		}
480	}
481
482	netif_receive_skb(skb);
483
484	stats->rx_packets++;
485	stats->rx_bytes += frame->can_dlc;
486
487	can_led_event(dev, CAN_LED_EVENT_RX);
488
489	return 0;
490}
491
492static void c_can_setup_receive_object(struct net_device *dev, int iface,
493					int objno, unsigned int mask,
494					unsigned int id, unsigned int mcont)
495{
496	struct c_can_priv *priv = netdev_priv(dev);
497
498	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
499			IFX_WRITE_LOW_16BIT(mask));
500
501	/* According to C_CAN documentation, the reserved bit
502	 * in IFx_MASK2 register is fixed 1
503	 */
504	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
505			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
506
507	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
508			IFX_WRITE_LOW_16BIT(id));
509	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
510			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
511
512	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
513	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
514
515	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
516			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
517}
518
519static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
520{
521	struct c_can_priv *priv = netdev_priv(dev);
522
523	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
524	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
525	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
526
527	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
528
529	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
530			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
531}
532
533static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
534{
535	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
536
537	/*
538	 * as transmission request register's bit n-1 corresponds to
539	 * message object n, we need to handle the same properly.
540	 */
541	if (val & (1 << (objno - 1)))
542		return 1;
543
544	return 0;
545}
546
547static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
548					struct net_device *dev)
549{
550	u32 msg_obj_no;
551	struct c_can_priv *priv = netdev_priv(dev);
552	struct can_frame *frame = (struct can_frame *)skb->data;
553
554	if (can_dropped_invalid_skb(dev, skb))
555		return NETDEV_TX_OK;
556
557	msg_obj_no = get_tx_next_msg_obj(priv);
558
559	/* prepare message object for transmission */
560	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
561	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
562
563	/*
564	 * we have to stop the queue in case of a wrap around or
565	 * if the next TX message object is still in use
566	 */
567	priv->tx_next++;
568	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
569			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
570		netif_stop_queue(dev);
571
572	return NETDEV_TX_OK;
573}
574
575static int c_can_wait_for_ctrl_init(struct net_device *dev,
576				    struct c_can_priv *priv, u32 init)
577{
578	int retry = 0;
579
580	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
581		udelay(10);
582		if (retry++ > 1000) {
583			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
584			return -EIO;
585		}
586	}
587	return 0;
588}
589
590static int c_can_set_bittiming(struct net_device *dev)
591{
592	unsigned int reg_btr, reg_brpe, ctrl_save;
593	u8 brp, brpe, sjw, tseg1, tseg2;
594	u32 ten_bit_brp;
595	struct c_can_priv *priv = netdev_priv(dev);
596	const struct can_bittiming *bt = &priv->can.bittiming;
597	int res;
598
599	/* c_can provides a 6-bit brp and 4-bit brpe fields */
600	ten_bit_brp = bt->brp - 1;
601	brp = ten_bit_brp & BTR_BRP_MASK;
602	brpe = ten_bit_brp >> 6;
603
604	sjw = bt->sjw - 1;
605	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
606	tseg2 = bt->phase_seg2 - 1;
607	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
608			(tseg2 << BTR_TSEG2_SHIFT);
609	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
610
611	netdev_info(dev,
612		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
613
614	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
615	ctrl_save &= ~CONTROL_INIT;
616	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
617	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
618	if (res)
619		return res;
620
621	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
622	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
623	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
624
625	return c_can_wait_for_ctrl_init(dev, priv, 0);
626}
627
628/*
629 * Configure C_CAN message objects for Tx and Rx purposes:
630 * C_CAN provides a total of 32 message objects that can be configured
631 * either for Tx or Rx purposes. Here the first 16 message objects are used as
632 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
633 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
634 * See user guide document for further details on configuring message
635 * objects.
636 */
637static void c_can_configure_msg_objects(struct net_device *dev)
638{
639	int i;
640
641	/* first invalidate all message objects */
642	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
643		c_can_inval_msg_object(dev, IF_RX, i);
644
645	/* setup receive message objects */
646	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
647		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
648			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
649
650	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
651			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
652}
653
654/*
655 * Configure C_CAN chip:
656 * - enable/disable auto-retransmission
657 * - set operating mode
658 * - configure message objects
659 */
660static int c_can_chip_config(struct net_device *dev)
661{
662	struct c_can_priv *priv = netdev_priv(dev);
663
664	/* enable automatic retransmission */
665	priv->write_reg(priv, C_CAN_CTRL_REG,
666			CONTROL_ENABLE_AR);
667
668	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
669	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
670		/* loopback + silent mode : useful for hot self-test */
671		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
672				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
673		priv->write_reg(priv, C_CAN_TEST_REG,
674				TEST_LBACK | TEST_SILENT);
675	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
676		/* loopback mode : useful for self-test function */
677		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
678				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
679		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
680	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
681		/* silent mode : bus-monitoring mode */
682		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
683				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
684		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
685	} else
686		/* normal mode*/
687		priv->write_reg(priv, C_CAN_CTRL_REG,
688				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
689
690	/* configure message objects */
691	c_can_configure_msg_objects(dev);
692
693	/* set a `lec` value so that we can check for updates later */
694	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
695
696	/* set bittiming params */
697	return c_can_set_bittiming(dev);
698}
699
700static int c_can_start(struct net_device *dev)
701{
702	struct c_can_priv *priv = netdev_priv(dev);
703	int err;
704
705	/* basic c_can configuration */
706	err = c_can_chip_config(dev);
707	if (err)
708		return err;
709
710	priv->can.state = CAN_STATE_ERROR_ACTIVE;
711
712	/* reset tx helper pointers */
713	priv->tx_next = priv->tx_echo = 0;
714
715	/* enable status change, error and module interrupts */
716	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
717
718	return 0;
719}
720
721static void c_can_stop(struct net_device *dev)
722{
723	struct c_can_priv *priv = netdev_priv(dev);
724
725	/* disable all interrupts */
726	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
727
728	/* set the state as STOPPED */
729	priv->can.state = CAN_STATE_STOPPED;
730}
731
732static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
733{
734	int err;
735
736	switch (mode) {
737	case CAN_MODE_START:
738		err = c_can_start(dev);
739		if (err)
740			return err;
741		netif_wake_queue(dev);
742		break;
743	default:
744		return -EOPNOTSUPP;
745	}
746
747	return 0;
748}
749
750static int __c_can_get_berr_counter(const struct net_device *dev,
751				    struct can_berr_counter *bec)
752{
753	unsigned int reg_err_counter;
754	struct c_can_priv *priv = netdev_priv(dev);
755
756	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
757	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
758				ERR_CNT_REC_SHIFT;
759	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
760
761	return 0;
762}
763
764static int c_can_get_berr_counter(const struct net_device *dev,
765				  struct can_berr_counter *bec)
766{
767	struct c_can_priv *priv = netdev_priv(dev);
768	int err;
769
770	c_can_pm_runtime_get_sync(priv);
771	err = __c_can_get_berr_counter(dev, bec);
772	c_can_pm_runtime_put_sync(priv);
773
774	return err;
775}
776
777/*
778 * theory of operation:
779 *
780 * priv->tx_echo holds the number of the oldest can_frame put for
781 * transmission into the hardware, but not yet ACKed by the CAN tx
782 * complete IRQ.
783 *
784 * We iterate from priv->tx_echo to priv->tx_next and check if the
785 * packet has been transmitted, echo it back to the CAN framework.
786 * If we discover a not yet transmitted packet, stop looking for more.
787 */
788static void c_can_do_tx(struct net_device *dev)
789{
790	u32 val;
791	u32 msg_obj_no;
792	struct c_can_priv *priv = netdev_priv(dev);
793	struct net_device_stats *stats = &dev->stats;
794
795	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
796		msg_obj_no = get_tx_echo_msg_obj(priv);
797		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
798		if (!(val & (1 << (msg_obj_no - 1)))) {
799			can_get_echo_skb(dev,
800					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
801			c_can_object_get(dev, IF_TX, msg_obj_no, IF_COMM_ALL);
802			stats->tx_bytes += priv->read_reg(priv,
803					C_CAN_IFACE(MSGCTRL_REG, IF_TX))
804					& IF_MCONT_DLC_MASK;
805			stats->tx_packets++;
806			can_led_event(dev, CAN_LED_EVENT_TX);
807			c_can_inval_msg_object(dev, IF_TX, msg_obj_no);
808		} else {
809			break;
810		}
811	}
812
813	/* restart queue if wrap-up or if queue stalled on last pkt */
814	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
815			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
816		netif_wake_queue(dev);
817}
818
819/*
820 * If we have a gap in the pending bits, that means we either
821 * raced with the hardware or failed to readout all upper
822 * objects in the last run due to quota limit.
823 */
824static u32 c_can_adjust_pending(u32 pend)
825{
826	u32 weight, lasts;
827
828	if (pend == RECEIVE_OBJECT_BITS)
829		return pend;
830
831	/*
832	 * If the last set bit is larger than the number of pending
833	 * bits we have a gap.
834	 */
835	weight = hweight32(pend);
836	lasts = fls(pend);
837
838	/* If the bits are linear, nothing to do */
839	if (lasts == weight)
840		return pend;
841
842	/*
843	 * Find the first set bit after the gap. We walk backwards
844	 * from the last set bit.
845	 */
846	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
847
848	return pend & ~((1 << lasts) - 1);
849}
850
851/*
852 * theory of operation:
853 *
854 * c_can core saves a received CAN message into the first free message
855 * object it finds free (starting with the lowest). Bits NEWDAT and
856 * INTPND are set for this message object indicating that a new message
857 * has arrived. To work-around this issue, we keep two groups of message
858 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
859 *
860 * To ensure in-order frame reception we use the following
861 * approach while re-activating a message object to receive further
862 * frames:
863 * - if the current message object number is lower than
864 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
865 *   the INTPND bit.
866 * - if the current message object number is equal to
867 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
868 *   receive message objects.
869 * - if the current message object number is greater than
870 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
871 *   only this message object.
872 */
873static int c_can_do_rx_poll(struct net_device *dev, int quota)
874{
875	u32 num_rx_pkts = 0;
876	unsigned int msg_obj, msg_ctrl_save;
877	struct c_can_priv *priv = netdev_priv(dev);
878	u32 val, pend = 0;
879
880	/*
881	 * It is faster to read only one 16bit register. This is only possible
882	 * for a maximum number of 16 objects.
883	 */
884	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
885			"Implementation does not support more message objects than 16");
886
887	while (quota > 0) {
888
889		if (!pend) {
890			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
891			if (!pend)
892				return num_rx_pkts;
893			/*
894			 * If the pending field has a gap, handle the
895			 * bits above the gap first.
896			 */
897			val = c_can_adjust_pending(pend);
898		} else {
899			val = pend;
900		}
901		/* Remove the bits from pend */
902		pend &= ~val;
903
904		while ((msg_obj = ffs(val)) && quota > 0) {
905			val &= ~BIT(msg_obj - 1);
906
907			c_can_object_get(dev, IF_RX, msg_obj, IF_COMM_ALL &
908					~IF_COMM_TXRQST);
909			msg_ctrl_save = priv->read_reg(priv,
910					C_CAN_IFACE(MSGCTRL_REG, IF_RX));
911
912			if (msg_ctrl_save & IF_MCONT_MSGLST) {
913				c_can_handle_lost_msg_obj(dev, IF_RX, msg_obj);
914				num_rx_pkts++;
915				quota--;
916				continue;
917			}
918
919			if (msg_ctrl_save & IF_MCONT_EOB)
920				return num_rx_pkts;
921
922			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
923				continue;
924
925			/* read the data from the message object */
926			c_can_read_msg_object(dev, IF_RX, msg_ctrl_save);
927
928			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
929				c_can_mark_rx_msg_obj(dev, IF_RX,
930						msg_ctrl_save, msg_obj);
931			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
932				/* activate this msg obj */
933				c_can_activate_rx_msg_obj(dev, IF_RX,
934						msg_ctrl_save, msg_obj);
935			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
936				/* activate all lower message objects */
937				c_can_activate_all_lower_rx_msg_obj(dev,
938						IF_RX, msg_ctrl_save);
939
940			num_rx_pkts++;
941			quota--;
942		}
943	}
944
945	return num_rx_pkts;
946}
947
948static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
949{
950	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
951		(priv->current_status & LEC_UNUSED);
952}
953
954static int c_can_handle_state_change(struct net_device *dev,
955				enum c_can_bus_error_types error_type)
956{
957	unsigned int reg_err_counter;
958	unsigned int rx_err_passive;
959	struct c_can_priv *priv = netdev_priv(dev);
960	struct net_device_stats *stats = &dev->stats;
961	struct can_frame *cf;
962	struct sk_buff *skb;
963	struct can_berr_counter bec;
964
965	/* propagate the error condition to the CAN stack */
966	skb = alloc_can_err_skb(dev, &cf);
967	if (unlikely(!skb))
968		return 0;
969
970	__c_can_get_berr_counter(dev, &bec);
971	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
972	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
973				ERR_CNT_RP_SHIFT;
974
975	switch (error_type) {
976	case C_CAN_ERROR_WARNING:
977		/* error warning state */
978		priv->can.can_stats.error_warning++;
979		priv->can.state = CAN_STATE_ERROR_WARNING;
980		cf->can_id |= CAN_ERR_CRTL;
981		cf->data[1] = (bec.txerr > bec.rxerr) ?
982			CAN_ERR_CRTL_TX_WARNING :
983			CAN_ERR_CRTL_RX_WARNING;
984		cf->data[6] = bec.txerr;
985		cf->data[7] = bec.rxerr;
986
987		break;
988	case C_CAN_ERROR_PASSIVE:
989		/* error passive state */
990		priv->can.can_stats.error_passive++;
991		priv->can.state = CAN_STATE_ERROR_PASSIVE;
992		cf->can_id |= CAN_ERR_CRTL;
993		if (rx_err_passive)
994			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
995		if (bec.txerr > 127)
996			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
997
998		cf->data[6] = bec.txerr;
999		cf->data[7] = bec.rxerr;
1000		break;
1001	case C_CAN_BUS_OFF:
1002		/* bus-off state */
1003		priv->can.state = CAN_STATE_BUS_OFF;
1004		cf->can_id |= CAN_ERR_BUSOFF;
1005		/*
1006		 * disable all interrupts in bus-off mode to ensure that
1007		 * the CPU is not hogged down
1008		 */
1009		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1010		can_bus_off(dev);
1011		break;
1012	default:
1013		break;
1014	}
1015
1016	netif_receive_skb(skb);
1017	stats->rx_packets++;
1018	stats->rx_bytes += cf->can_dlc;
1019
1020	return 1;
1021}
1022
1023static int c_can_handle_bus_err(struct net_device *dev,
1024				enum c_can_lec_type lec_type)
1025{
1026	struct c_can_priv *priv = netdev_priv(dev);
1027	struct net_device_stats *stats = &dev->stats;
1028	struct can_frame *cf;
1029	struct sk_buff *skb;
1030
1031	/*
1032	 * early exit if no lec update or no error.
1033	 * no lec update means that no CAN bus event has been detected
1034	 * since CPU wrote 0x7 value to status reg.
1035	 */
1036	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1037		return 0;
1038
1039	/* propagate the error condition to the CAN stack */
1040	skb = alloc_can_err_skb(dev, &cf);
1041	if (unlikely(!skb))
1042		return 0;
1043
1044	/*
1045	 * check for 'last error code' which tells us the
1046	 * type of the last error to occur on the CAN bus
1047	 */
1048
1049	/* common for all type of bus errors */
1050	priv->can.can_stats.bus_error++;
1051	stats->rx_errors++;
1052	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1053	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1054
1055	switch (lec_type) {
1056	case LEC_STUFF_ERROR:
1057		netdev_dbg(dev, "stuff error\n");
1058		cf->data[2] |= CAN_ERR_PROT_STUFF;
1059		break;
1060	case LEC_FORM_ERROR:
1061		netdev_dbg(dev, "form error\n");
1062		cf->data[2] |= CAN_ERR_PROT_FORM;
1063		break;
1064	case LEC_ACK_ERROR:
1065		netdev_dbg(dev, "ack error\n");
1066		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1067				CAN_ERR_PROT_LOC_ACK_DEL);
1068		break;
1069	case LEC_BIT1_ERROR:
1070		netdev_dbg(dev, "bit1 error\n");
1071		cf->data[2] |= CAN_ERR_PROT_BIT1;
1072		break;
1073	case LEC_BIT0_ERROR:
1074		netdev_dbg(dev, "bit0 error\n");
1075		cf->data[2] |= CAN_ERR_PROT_BIT0;
1076		break;
1077	case LEC_CRC_ERROR:
1078		netdev_dbg(dev, "CRC error\n");
1079		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1080				CAN_ERR_PROT_LOC_CRC_DEL);
1081		break;
1082	default:
1083		break;
1084	}
1085
1086	/* set a `lec` value so that we can check for updates later */
1087	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1088
1089	netif_receive_skb(skb);
1090	stats->rx_packets++;
1091	stats->rx_bytes += cf->can_dlc;
1092
1093	return 1;
1094}
1095
1096static int c_can_poll(struct napi_struct *napi, int quota)
1097{
1098	u16 irqstatus;
1099	int lec_type = 0;
1100	int work_done = 0;
1101	struct net_device *dev = napi->dev;
1102	struct c_can_priv *priv = netdev_priv(dev);
1103
1104	irqstatus = priv->irqstatus;
1105	if (!irqstatus)
1106		goto end;
1107
1108	/* status events have the highest priority */
1109	if (irqstatus == STATUS_INTERRUPT) {
1110		priv->current_status = priv->read_reg(priv,
1111					C_CAN_STS_REG);
1112
1113		/* handle Tx/Rx events */
1114		if (priv->current_status & STATUS_TXOK)
1115			priv->write_reg(priv, C_CAN_STS_REG,
1116					priv->current_status & ~STATUS_TXOK);
1117
1118		if (priv->current_status & STATUS_RXOK)
1119			priv->write_reg(priv, C_CAN_STS_REG,
1120					priv->current_status & ~STATUS_RXOK);
1121
1122		/* handle state changes */
1123		if ((priv->current_status & STATUS_EWARN) &&
1124				(!(priv->last_status & STATUS_EWARN))) {
1125			netdev_dbg(dev, "entered error warning state\n");
1126			work_done += c_can_handle_state_change(dev,
1127						C_CAN_ERROR_WARNING);
1128		}
1129		if ((priv->current_status & STATUS_EPASS) &&
1130				(!(priv->last_status & STATUS_EPASS))) {
1131			netdev_dbg(dev, "entered error passive state\n");
1132			work_done += c_can_handle_state_change(dev,
1133						C_CAN_ERROR_PASSIVE);
1134		}
1135		if ((priv->current_status & STATUS_BOFF) &&
1136				(!(priv->last_status & STATUS_BOFF))) {
1137			netdev_dbg(dev, "entered bus off state\n");
1138			work_done += c_can_handle_state_change(dev,
1139						C_CAN_BUS_OFF);
1140		}
1141
1142		/* handle bus recovery events */
1143		if ((!(priv->current_status & STATUS_BOFF)) &&
1144				(priv->last_status & STATUS_BOFF)) {
1145			netdev_dbg(dev, "left bus off state\n");
1146			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1147		}
1148		if ((!(priv->current_status & STATUS_EPASS)) &&
1149				(priv->last_status & STATUS_EPASS)) {
1150			netdev_dbg(dev, "left error passive state\n");
1151			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1152		}
1153
1154		priv->last_status = priv->current_status;
1155
1156		/* handle lec errors on the bus */
1157		lec_type = c_can_has_and_handle_berr(priv);
1158		if (lec_type)
1159			work_done += c_can_handle_bus_err(dev, lec_type);
1160	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1161			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1162		/* handle events corresponding to receive message objects */
1163		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1164	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1165			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1166		/* handle events corresponding to transmit message objects */
1167		c_can_do_tx(dev);
1168	}
1169
1170end:
1171	if (work_done < quota) {
1172		napi_complete(napi);
1173		/* enable all IRQs */
1174		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1175	}
1176
1177	return work_done;
1178}
1179
1180static irqreturn_t c_can_isr(int irq, void *dev_id)
1181{
1182	struct net_device *dev = (struct net_device *)dev_id;
1183	struct c_can_priv *priv = netdev_priv(dev);
1184
1185	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1186	if (!priv->irqstatus)
1187		return IRQ_NONE;
1188
1189	/* disable all interrupts and schedule the NAPI */
1190	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1191	napi_schedule(&priv->napi);
1192
1193	return IRQ_HANDLED;
1194}
1195
1196static int c_can_open(struct net_device *dev)
1197{
1198	int err;
1199	struct c_can_priv *priv = netdev_priv(dev);
1200
1201	c_can_pm_runtime_get_sync(priv);
1202	c_can_reset_ram(priv, true);
1203
1204	/* open the can device */
1205	err = open_candev(dev);
1206	if (err) {
1207		netdev_err(dev, "failed to open can device\n");
1208		goto exit_open_fail;
1209	}
1210
1211	/* register interrupt handler */
1212	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1213				dev);
1214	if (err < 0) {
1215		netdev_err(dev, "failed to request interrupt\n");
1216		goto exit_irq_fail;
1217	}
1218
1219	/* start the c_can controller */
1220	err = c_can_start(dev);
1221	if (err)
1222		goto exit_start_fail;
1223
1224	can_led_event(dev, CAN_LED_EVENT_OPEN);
1225
1226	napi_enable(&priv->napi);
1227	netif_start_queue(dev);
1228
1229	return 0;
1230
1231exit_start_fail:
1232	free_irq(dev->irq, dev);
1233exit_irq_fail:
1234	close_candev(dev);
1235exit_open_fail:
1236	c_can_reset_ram(priv, false);
1237	c_can_pm_runtime_put_sync(priv);
1238	return err;
1239}
1240
1241static int c_can_close(struct net_device *dev)
1242{
1243	struct c_can_priv *priv = netdev_priv(dev);
1244
1245	netif_stop_queue(dev);
1246	napi_disable(&priv->napi);
1247	c_can_stop(dev);
1248	free_irq(dev->irq, dev);
1249	close_candev(dev);
1250
1251	c_can_reset_ram(priv, false);
1252	c_can_pm_runtime_put_sync(priv);
1253
1254	can_led_event(dev, CAN_LED_EVENT_STOP);
1255
1256	return 0;
1257}
1258
1259struct net_device *alloc_c_can_dev(void)
1260{
1261	struct net_device *dev;
1262	struct c_can_priv *priv;
1263
1264	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1265	if (!dev)
1266		return NULL;
1267
1268	priv = netdev_priv(dev);
1269	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1270
1271	priv->dev = dev;
1272	priv->can.bittiming_const = &c_can_bittiming_const;
1273	priv->can.do_set_mode = c_can_set_mode;
1274	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1275	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1276					CAN_CTRLMODE_LISTENONLY |
1277					CAN_CTRLMODE_BERR_REPORTING;
1278
1279	return dev;
1280}
1281EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1282
1283#ifdef CONFIG_PM
1284int c_can_power_down(struct net_device *dev)
1285{
1286	u32 val;
1287	unsigned long time_out;
1288	struct c_can_priv *priv = netdev_priv(dev);
1289
1290	if (!(dev->flags & IFF_UP))
1291		return 0;
1292
1293	WARN_ON(priv->type != BOSCH_D_CAN);
1294
1295	/* set PDR value so the device goes to power down mode */
1296	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1297	val |= CONTROL_EX_PDR;
1298	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1299
1300	/* Wait for the PDA bit to get set */
1301	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1302	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1303				time_after(time_out, jiffies))
1304		cpu_relax();
1305
1306	if (time_after(jiffies, time_out))
1307		return -ETIMEDOUT;
1308
1309	c_can_stop(dev);
1310
1311	c_can_reset_ram(priv, false);
1312	c_can_pm_runtime_put_sync(priv);
1313
1314	return 0;
1315}
1316EXPORT_SYMBOL_GPL(c_can_power_down);
1317
1318int c_can_power_up(struct net_device *dev)
1319{
1320	u32 val;
1321	unsigned long time_out;
1322	struct c_can_priv *priv = netdev_priv(dev);
1323
1324	if (!(dev->flags & IFF_UP))
1325		return 0;
1326
1327	WARN_ON(priv->type != BOSCH_D_CAN);
1328
1329	c_can_pm_runtime_get_sync(priv);
1330	c_can_reset_ram(priv, true);
1331
1332	/* Clear PDR and INIT bits */
1333	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1334	val &= ~CONTROL_EX_PDR;
1335	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1336	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1337	val &= ~CONTROL_INIT;
1338	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1339
1340	/* Wait for the PDA bit to get clear */
1341	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1342	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1343				time_after(time_out, jiffies))
1344		cpu_relax();
1345
1346	if (time_after(jiffies, time_out))
1347		return -ETIMEDOUT;
1348
1349	return c_can_start(dev);
1350}
1351EXPORT_SYMBOL_GPL(c_can_power_up);
1352#endif
1353
1354void free_c_can_dev(struct net_device *dev)
1355{
1356	struct c_can_priv *priv = netdev_priv(dev);
1357
1358	netif_napi_del(&priv->napi);
1359	free_candev(dev);
1360}
1361EXPORT_SYMBOL_GPL(free_c_can_dev);
1362
1363static const struct net_device_ops c_can_netdev_ops = {
1364	.ndo_open = c_can_open,
1365	.ndo_stop = c_can_close,
1366	.ndo_start_xmit = c_can_start_xmit,
1367};
1368
1369int register_c_can_dev(struct net_device *dev)
1370{
1371	struct c_can_priv *priv = netdev_priv(dev);
1372	int err;
1373
1374	c_can_pm_runtime_enable(priv);
1375
1376	dev->flags |= IFF_ECHO;	/* we support local echo */
1377	dev->netdev_ops = &c_can_netdev_ops;
1378
1379	err = register_candev(dev);
1380	if (err)
1381		c_can_pm_runtime_disable(priv);
1382	else
1383		devm_can_led_init(dev);
1384
1385	return err;
1386}
1387EXPORT_SYMBOL_GPL(register_c_can_dev);
1388
1389void unregister_c_can_dev(struct net_device *dev)
1390{
1391	struct c_can_priv *priv = netdev_priv(dev);
1392
1393	unregister_candev(dev);
1394
1395	c_can_pm_runtime_disable(priv);
1396}
1397EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1398
1399MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1400MODULE_LICENSE("GPL v2");
1401MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1402