c_can.c revision 6ea45886865c1abb01bb861f7f6bdd5d0f398cb3
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42
43#include "c_can.h"
44
45/* Number of interface registers */
46#define IF_ENUM_REG_LEN		11
47#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
48
49/* control extension register D_CAN specific */
50#define CONTROL_EX_PDR		BIT(8)
51
52/* control register */
53#define CONTROL_TEST		BIT(7)
54#define CONTROL_CCE		BIT(6)
55#define CONTROL_DISABLE_AR	BIT(5)
56#define CONTROL_ENABLE_AR	(0 << 5)
57#define CONTROL_EIE		BIT(3)
58#define CONTROL_SIE		BIT(2)
59#define CONTROL_IE		BIT(1)
60#define CONTROL_INIT		BIT(0)
61
62/* test register */
63#define TEST_RX			BIT(7)
64#define TEST_TX1		BIT(6)
65#define TEST_TX2		BIT(5)
66#define TEST_LBACK		BIT(4)
67#define TEST_SILENT		BIT(3)
68#define TEST_BASIC		BIT(2)
69
70/* status register */
71#define STATUS_PDA		BIT(10)
72#define STATUS_BOFF		BIT(7)
73#define STATUS_EWARN		BIT(6)
74#define STATUS_EPASS		BIT(5)
75#define STATUS_RXOK		BIT(4)
76#define STATUS_TXOK		BIT(3)
77
78/* error counter register */
79#define ERR_CNT_TEC_MASK	0xff
80#define ERR_CNT_TEC_SHIFT	0
81#define ERR_CNT_REC_SHIFT	8
82#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
83#define ERR_CNT_RP_SHIFT	15
84#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
85
86/* bit-timing register */
87#define BTR_BRP_MASK		0x3f
88#define BTR_BRP_SHIFT		0
89#define BTR_SJW_SHIFT		6
90#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
91#define BTR_TSEG1_SHIFT		8
92#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
93#define BTR_TSEG2_SHIFT		12
94#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
95
96/* brp extension register */
97#define BRP_EXT_BRPE_MASK	0x0f
98#define BRP_EXT_BRPE_SHIFT	0
99
100/* IFx command request */
101#define IF_COMR_BUSY		BIT(15)
102
103/* IFx command mask */
104#define IF_COMM_WR		BIT(7)
105#define IF_COMM_MASK		BIT(6)
106#define IF_COMM_ARB		BIT(5)
107#define IF_COMM_CONTROL		BIT(4)
108#define IF_COMM_CLR_INT_PND	BIT(3)
109#define IF_COMM_TXRQST		BIT(2)
110#define IF_COMM_DATAA		BIT(1)
111#define IF_COMM_DATAB		BIT(0)
112#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
113				IF_COMM_CONTROL | IF_COMM_TXRQST | \
114				IF_COMM_DATAA | IF_COMM_DATAB)
115
116/* IFx arbitration */
117#define IF_ARB_MSGVAL		BIT(15)
118#define IF_ARB_MSGXTD		BIT(14)
119#define IF_ARB_TRANSMIT		BIT(13)
120
121/* IFx message control */
122#define IF_MCONT_NEWDAT		BIT(15)
123#define IF_MCONT_MSGLST		BIT(14)
124#define IF_MCONT_CLR_MSGLST	(0 << 14)
125#define IF_MCONT_INTPND		BIT(13)
126#define IF_MCONT_UMASK		BIT(12)
127#define IF_MCONT_TXIE		BIT(11)
128#define IF_MCONT_RXIE		BIT(10)
129#define IF_MCONT_RMTEN		BIT(9)
130#define IF_MCONT_TXRQST		BIT(8)
131#define IF_MCONT_EOB		BIT(7)
132#define IF_MCONT_DLC_MASK	0xf
133
134/*
135 * IFx register masks:
136 * allow easy operation on 16-bit registers when the
137 * argument is 32-bit instead
138 */
139#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
140#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
141
142/* message object split */
143#define C_CAN_NO_OF_OBJECTS	32
144#define C_CAN_MSG_OBJ_RX_NUM	16
145#define C_CAN_MSG_OBJ_TX_NUM	16
146
147#define C_CAN_MSG_OBJ_RX_FIRST	1
148#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
149				C_CAN_MSG_OBJ_RX_NUM - 1)
150
151#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
152#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
153				C_CAN_MSG_OBJ_TX_NUM - 1)
154
155#define C_CAN_MSG_OBJ_RX_SPLIT	9
156#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
157
158#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
159#define RECEIVE_OBJECT_BITS	0x0000ffff
160
161/* status interrupt */
162#define STATUS_INTERRUPT	0x8000
163
164/* global interrupt masks */
165#define ENABLE_ALL_INTERRUPTS	1
166#define DISABLE_ALL_INTERRUPTS	0
167
168/* minimum timeout for checking BUSY status */
169#define MIN_TIMEOUT_VALUE	6
170
171/* Wait for ~1 sec for INIT bit */
172#define INIT_WAIT_MS		1000
173
174/* napi related */
175#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
176
177/* c_can lec values */
178enum c_can_lec_type {
179	LEC_NO_ERROR = 0,
180	LEC_STUFF_ERROR,
181	LEC_FORM_ERROR,
182	LEC_ACK_ERROR,
183	LEC_BIT1_ERROR,
184	LEC_BIT0_ERROR,
185	LEC_CRC_ERROR,
186	LEC_UNUSED,
187};
188
189/*
190 * c_can error types:
191 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
192 */
193enum c_can_bus_error_types {
194	C_CAN_NO_ERROR = 0,
195	C_CAN_BUS_OFF,
196	C_CAN_ERROR_WARNING,
197	C_CAN_ERROR_PASSIVE,
198};
199
200static const struct can_bittiming_const c_can_bittiming_const = {
201	.name = KBUILD_MODNAME,
202	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
203	.tseg1_max = 16,
204	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
205	.tseg2_max = 8,
206	.sjw_max = 4,
207	.brp_min = 1,
208	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
209	.brp_inc = 1,
210};
211
212static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
213{
214	if (priv->device)
215		pm_runtime_enable(priv->device);
216}
217
218static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
219{
220	if (priv->device)
221		pm_runtime_disable(priv->device);
222}
223
224static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
225{
226	if (priv->device)
227		pm_runtime_get_sync(priv->device);
228}
229
230static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
231{
232	if (priv->device)
233		pm_runtime_put_sync(priv->device);
234}
235
236static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
237{
238	if (priv->raminit)
239		priv->raminit(priv, enable);
240}
241
242static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
243{
244	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
245			C_CAN_MSG_OBJ_TX_FIRST;
246}
247
248static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
249{
250	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
251			C_CAN_MSG_OBJ_TX_FIRST;
252}
253
254static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
255{
256	u32 val = priv->read_reg(priv, index);
257	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
258	return val;
259}
260
261static void c_can_enable_all_interrupts(struct c_can_priv *priv,
262						int enable)
263{
264	unsigned int cntrl_save = priv->read_reg(priv,
265						C_CAN_CTRL_REG);
266
267	if (enable)
268		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
269	else
270		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
271
272	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
273}
274
275static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
276{
277	int count = MIN_TIMEOUT_VALUE;
278
279	while (count && priv->read_reg(priv,
280				C_CAN_IFACE(COMREQ_REG, iface)) &
281				IF_COMR_BUSY) {
282		count--;
283		udelay(1);
284	}
285
286	if (!count)
287		return 1;
288
289	return 0;
290}
291
292static inline void c_can_object_get(struct net_device *dev,
293					int iface, int objno, int mask)
294{
295	struct c_can_priv *priv = netdev_priv(dev);
296
297	/*
298	 * As per specs, after writting the message object number in the
299	 * IF command request register the transfer b/w interface
300	 * register and message RAM must be complete in 6 CAN-CLK
301	 * period.
302	 */
303	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
304			IFX_WRITE_LOW_16BIT(mask));
305	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
306			IFX_WRITE_LOW_16BIT(objno));
307
308	if (c_can_msg_obj_is_busy(priv, iface))
309		netdev_err(dev, "timed out in object get\n");
310}
311
312static inline void c_can_object_put(struct net_device *dev,
313					int iface, int objno, int mask)
314{
315	struct c_can_priv *priv = netdev_priv(dev);
316
317	/*
318	 * As per specs, after writting the message object number in the
319	 * IF command request register the transfer b/w interface
320	 * register and message RAM must be complete in 6 CAN-CLK
321	 * period.
322	 */
323	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
324			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
325	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
326			IFX_WRITE_LOW_16BIT(objno));
327
328	if (c_can_msg_obj_is_busy(priv, iface))
329		netdev_err(dev, "timed out in object put\n");
330}
331
332static void c_can_write_msg_object(struct net_device *dev,
333			int iface, struct can_frame *frame, int objno)
334{
335	int i;
336	u16 flags = 0;
337	unsigned int id;
338	struct c_can_priv *priv = netdev_priv(dev);
339
340	if (!(frame->can_id & CAN_RTR_FLAG))
341		flags |= IF_ARB_TRANSMIT;
342
343	if (frame->can_id & CAN_EFF_FLAG) {
344		id = frame->can_id & CAN_EFF_MASK;
345		flags |= IF_ARB_MSGXTD;
346	} else
347		id = ((frame->can_id & CAN_SFF_MASK) << 18);
348
349	flags |= IF_ARB_MSGVAL;
350
351	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
352				IFX_WRITE_LOW_16BIT(id));
353	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
354				IFX_WRITE_HIGH_16BIT(id));
355
356	for (i = 0; i < frame->can_dlc; i += 2) {
357		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
358				frame->data[i] | (frame->data[i + 1] << 8));
359	}
360
361	/* enable interrupt for this message object */
362	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
363			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
364			frame->can_dlc);
365	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
366}
367
368static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
369						int iface, int ctrl_mask,
370						int obj)
371{
372	struct c_can_priv *priv = netdev_priv(dev);
373
374	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
375			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
376	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
377
378}
379
380static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
381						int iface,
382						int ctrl_mask)
383{
384	int i;
385	struct c_can_priv *priv = netdev_priv(dev);
386
387	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
388		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
389				ctrl_mask & ~(IF_MCONT_MSGLST |
390					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
391		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
392	}
393}
394
395static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
396						int iface, int ctrl_mask,
397						int obj)
398{
399	struct c_can_priv *priv = netdev_priv(dev);
400
401	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
402			ctrl_mask & ~(IF_MCONT_MSGLST |
403				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
404	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
405}
406
407static void c_can_handle_lost_msg_obj(struct net_device *dev,
408					int iface, int objno)
409{
410	struct c_can_priv *priv = netdev_priv(dev);
411	struct net_device_stats *stats = &dev->stats;
412	struct sk_buff *skb;
413	struct can_frame *frame;
414
415	netdev_err(dev, "msg lost in buffer %d\n", objno);
416
417	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
418
419	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
420			IF_MCONT_CLR_MSGLST);
421
422	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
423
424	/* create an error msg */
425	skb = alloc_can_err_skb(dev, &frame);
426	if (unlikely(!skb))
427		return;
428
429	frame->can_id |= CAN_ERR_CRTL;
430	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
431	stats->rx_errors++;
432	stats->rx_over_errors++;
433
434	netif_receive_skb(skb);
435}
436
437static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
438{
439	u16 flags, data;
440	int i;
441	unsigned int val;
442	struct c_can_priv *priv = netdev_priv(dev);
443	struct net_device_stats *stats = &dev->stats;
444	struct sk_buff *skb;
445	struct can_frame *frame;
446
447	skb = alloc_can_skb(dev, &frame);
448	if (!skb) {
449		stats->rx_dropped++;
450		return -ENOMEM;
451	}
452
453	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
454
455	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
456	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
457		(flags << 16);
458
459	if (flags & IF_ARB_MSGXTD)
460		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
461	else
462		frame->can_id = (val >> 18) & CAN_SFF_MASK;
463
464	if (flags & IF_ARB_TRANSMIT)
465		frame->can_id |= CAN_RTR_FLAG;
466	else {
467		for (i = 0; i < frame->can_dlc; i += 2) {
468			data = priv->read_reg(priv,
469				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
470			frame->data[i] = data;
471			frame->data[i + 1] = data >> 8;
472		}
473	}
474
475	netif_receive_skb(skb);
476
477	stats->rx_packets++;
478	stats->rx_bytes += frame->can_dlc;
479
480	return 0;
481}
482
483static void c_can_setup_receive_object(struct net_device *dev, int iface,
484					int objno, unsigned int mask,
485					unsigned int id, unsigned int mcont)
486{
487	struct c_can_priv *priv = netdev_priv(dev);
488
489	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
490			IFX_WRITE_LOW_16BIT(mask));
491	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
492			IFX_WRITE_HIGH_16BIT(mask));
493
494	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
495			IFX_WRITE_LOW_16BIT(id));
496	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
497			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
498
499	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
500	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
501
502	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
503			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
504}
505
506static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
507{
508	struct c_can_priv *priv = netdev_priv(dev);
509
510	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
511	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
512	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
513
514	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
515
516	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
517			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
518}
519
520static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
521{
522	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
523
524	/*
525	 * as transmission request register's bit n-1 corresponds to
526	 * message object n, we need to handle the same properly.
527	 */
528	if (val & (1 << (objno - 1)))
529		return 1;
530
531	return 0;
532}
533
534static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
535					struct net_device *dev)
536{
537	u32 msg_obj_no;
538	struct c_can_priv *priv = netdev_priv(dev);
539	struct can_frame *frame = (struct can_frame *)skb->data;
540
541	if (can_dropped_invalid_skb(dev, skb))
542		return NETDEV_TX_OK;
543
544	msg_obj_no = get_tx_next_msg_obj(priv);
545
546	/* prepare message object for transmission */
547	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
548	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
549
550	/*
551	 * we have to stop the queue in case of a wrap around or
552	 * if the next TX message object is still in use
553	 */
554	priv->tx_next++;
555	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
556			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
557		netif_stop_queue(dev);
558
559	return NETDEV_TX_OK;
560}
561
562static int c_can_set_bittiming(struct net_device *dev)
563{
564	unsigned int reg_btr, reg_brpe, ctrl_save;
565	u8 brp, brpe, sjw, tseg1, tseg2;
566	u32 ten_bit_brp;
567	struct c_can_priv *priv = netdev_priv(dev);
568	const struct can_bittiming *bt = &priv->can.bittiming;
569
570	/* c_can provides a 6-bit brp and 4-bit brpe fields */
571	ten_bit_brp = bt->brp - 1;
572	brp = ten_bit_brp & BTR_BRP_MASK;
573	brpe = ten_bit_brp >> 6;
574
575	sjw = bt->sjw - 1;
576	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
577	tseg2 = bt->phase_seg2 - 1;
578	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
579			(tseg2 << BTR_TSEG2_SHIFT);
580	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
581
582	netdev_info(dev,
583		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
584
585	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
586	priv->write_reg(priv, C_CAN_CTRL_REG,
587			ctrl_save | CONTROL_CCE | CONTROL_INIT);
588	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
589	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
590	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
591
592	return 0;
593}
594
595/*
596 * Configure C_CAN message objects for Tx and Rx purposes:
597 * C_CAN provides a total of 32 message objects that can be configured
598 * either for Tx or Rx purposes. Here the first 16 message objects are used as
599 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
600 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
601 * See user guide document for further details on configuring message
602 * objects.
603 */
604static void c_can_configure_msg_objects(struct net_device *dev)
605{
606	int i;
607
608	/* first invalidate all message objects */
609	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
610		c_can_inval_msg_object(dev, 0, i);
611
612	/* setup receive message objects */
613	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
614		c_can_setup_receive_object(dev, 0, i, 0, 0,
615			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
616
617	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
618			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
619}
620
621/*
622 * Configure C_CAN chip:
623 * - enable/disable auto-retransmission
624 * - set operating mode
625 * - configure message objects
626 */
627static void c_can_chip_config(struct net_device *dev)
628{
629	struct c_can_priv *priv = netdev_priv(dev);
630
631	/* enable automatic retransmission */
632	priv->write_reg(priv, C_CAN_CTRL_REG,
633			CONTROL_ENABLE_AR);
634
635	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
636	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
637		/* loopback + silent mode : useful for hot self-test */
638		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
639				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
640		priv->write_reg(priv, C_CAN_TEST_REG,
641				TEST_LBACK | TEST_SILENT);
642	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
643		/* loopback mode : useful for self-test function */
644		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
645				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
646		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
647	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
648		/* silent mode : bus-monitoring mode */
649		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
650				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
651		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
652	} else
653		/* normal mode*/
654		priv->write_reg(priv, C_CAN_CTRL_REG,
655				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
656
657	/* configure message objects */
658	c_can_configure_msg_objects(dev);
659
660	/* set a `lec` value so that we can check for updates later */
661	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
662
663	/* set bittiming params */
664	c_can_set_bittiming(dev);
665}
666
667static void c_can_start(struct net_device *dev)
668{
669	struct c_can_priv *priv = netdev_priv(dev);
670
671	/* basic c_can configuration */
672	c_can_chip_config(dev);
673
674	priv->can.state = CAN_STATE_ERROR_ACTIVE;
675
676	/* reset tx helper pointers */
677	priv->tx_next = priv->tx_echo = 0;
678
679	/* enable status change, error and module interrupts */
680	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
681}
682
683static void c_can_stop(struct net_device *dev)
684{
685	struct c_can_priv *priv = netdev_priv(dev);
686
687	/* disable all interrupts */
688	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
689
690	/* set the state as STOPPED */
691	priv->can.state = CAN_STATE_STOPPED;
692}
693
694static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
695{
696	switch (mode) {
697	case CAN_MODE_START:
698		c_can_start(dev);
699		netif_wake_queue(dev);
700		break;
701	default:
702		return -EOPNOTSUPP;
703	}
704
705	return 0;
706}
707
708static int c_can_get_berr_counter(const struct net_device *dev,
709					struct can_berr_counter *bec)
710{
711	unsigned int reg_err_counter;
712	struct c_can_priv *priv = netdev_priv(dev);
713
714	c_can_pm_runtime_get_sync(priv);
715
716	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
717	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
718				ERR_CNT_REC_SHIFT;
719	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
720
721	c_can_pm_runtime_put_sync(priv);
722
723	return 0;
724}
725
726/*
727 * theory of operation:
728 *
729 * priv->tx_echo holds the number of the oldest can_frame put for
730 * transmission into the hardware, but not yet ACKed by the CAN tx
731 * complete IRQ.
732 *
733 * We iterate from priv->tx_echo to priv->tx_next and check if the
734 * packet has been transmitted, echo it back to the CAN framework.
735 * If we discover a not yet transmitted packet, stop looking for more.
736 */
737static void c_can_do_tx(struct net_device *dev)
738{
739	u32 val;
740	u32 msg_obj_no;
741	struct c_can_priv *priv = netdev_priv(dev);
742	struct net_device_stats *stats = &dev->stats;
743
744	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
745		msg_obj_no = get_tx_echo_msg_obj(priv);
746		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
747		if (!(val & (1 << (msg_obj_no - 1)))) {
748			can_get_echo_skb(dev,
749					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
750			stats->tx_bytes += priv->read_reg(priv,
751					C_CAN_IFACE(MSGCTRL_REG, 0))
752					& IF_MCONT_DLC_MASK;
753			stats->tx_packets++;
754			c_can_inval_msg_object(dev, 0, msg_obj_no);
755		} else {
756			break;
757		}
758	}
759
760	/* restart queue if wrap-up or if queue stalled on last pkt */
761	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
762			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
763		netif_wake_queue(dev);
764}
765
766/*
767 * theory of operation:
768 *
769 * c_can core saves a received CAN message into the first free message
770 * object it finds free (starting with the lowest). Bits NEWDAT and
771 * INTPND are set for this message object indicating that a new message
772 * has arrived. To work-around this issue, we keep two groups of message
773 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
774 *
775 * To ensure in-order frame reception we use the following
776 * approach while re-activating a message object to receive further
777 * frames:
778 * - if the current message object number is lower than
779 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
780 *   the INTPND bit.
781 * - if the current message object number is equal to
782 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
783 *   receive message objects.
784 * - if the current message object number is greater than
785 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
786 *   only this message object.
787 */
788static int c_can_do_rx_poll(struct net_device *dev, int quota)
789{
790	u32 num_rx_pkts = 0;
791	unsigned int msg_obj, msg_ctrl_save;
792	struct c_can_priv *priv = netdev_priv(dev);
793	u32 val = c_can_read_reg32(priv, C_CAN_INTPND1_REG);
794
795	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
796			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
797			val = c_can_read_reg32(priv, C_CAN_INTPND1_REG),
798			msg_obj++) {
799		/*
800		 * as interrupt pending register's bit n-1 corresponds to
801		 * message object n, we need to handle the same properly.
802		 */
803		if (val & (1 << (msg_obj - 1))) {
804			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
805					~IF_COMM_TXRQST);
806			msg_ctrl_save = priv->read_reg(priv,
807					C_CAN_IFACE(MSGCTRL_REG, 0));
808
809			if (msg_ctrl_save & IF_MCONT_EOB)
810				return num_rx_pkts;
811
812			if (msg_ctrl_save & IF_MCONT_MSGLST) {
813				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
814				num_rx_pkts++;
815				quota--;
816				continue;
817			}
818
819			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
820				continue;
821
822			/* read the data from the message object */
823			c_can_read_msg_object(dev, 0, msg_ctrl_save);
824
825			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
826				c_can_mark_rx_msg_obj(dev, 0,
827						msg_ctrl_save, msg_obj);
828			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
829				/* activate this msg obj */
830				c_can_activate_rx_msg_obj(dev, 0,
831						msg_ctrl_save, msg_obj);
832			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
833				/* activate all lower message objects */
834				c_can_activate_all_lower_rx_msg_obj(dev,
835						0, msg_ctrl_save);
836
837			num_rx_pkts++;
838			quota--;
839		}
840	}
841
842	return num_rx_pkts;
843}
844
845static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
846{
847	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
848		(priv->current_status & LEC_UNUSED);
849}
850
851static int c_can_handle_state_change(struct net_device *dev,
852				enum c_can_bus_error_types error_type)
853{
854	unsigned int reg_err_counter;
855	unsigned int rx_err_passive;
856	struct c_can_priv *priv = netdev_priv(dev);
857	struct net_device_stats *stats = &dev->stats;
858	struct can_frame *cf;
859	struct sk_buff *skb;
860	struct can_berr_counter bec;
861
862	/* propagate the error condition to the CAN stack */
863	skb = alloc_can_err_skb(dev, &cf);
864	if (unlikely(!skb))
865		return 0;
866
867	c_can_get_berr_counter(dev, &bec);
868	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
869	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
870				ERR_CNT_RP_SHIFT;
871
872	switch (error_type) {
873	case C_CAN_ERROR_WARNING:
874		/* error warning state */
875		priv->can.can_stats.error_warning++;
876		priv->can.state = CAN_STATE_ERROR_WARNING;
877		cf->can_id |= CAN_ERR_CRTL;
878		cf->data[1] = (bec.txerr > bec.rxerr) ?
879			CAN_ERR_CRTL_TX_WARNING :
880			CAN_ERR_CRTL_RX_WARNING;
881		cf->data[6] = bec.txerr;
882		cf->data[7] = bec.rxerr;
883
884		break;
885	case C_CAN_ERROR_PASSIVE:
886		/* error passive state */
887		priv->can.can_stats.error_passive++;
888		priv->can.state = CAN_STATE_ERROR_PASSIVE;
889		cf->can_id |= CAN_ERR_CRTL;
890		if (rx_err_passive)
891			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
892		if (bec.txerr > 127)
893			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
894
895		cf->data[6] = bec.txerr;
896		cf->data[7] = bec.rxerr;
897		break;
898	case C_CAN_BUS_OFF:
899		/* bus-off state */
900		priv->can.state = CAN_STATE_BUS_OFF;
901		cf->can_id |= CAN_ERR_BUSOFF;
902		/*
903		 * disable all interrupts in bus-off mode to ensure that
904		 * the CPU is not hogged down
905		 */
906		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
907		can_bus_off(dev);
908		break;
909	default:
910		break;
911	}
912
913	netif_receive_skb(skb);
914	stats->rx_packets++;
915	stats->rx_bytes += cf->can_dlc;
916
917	return 1;
918}
919
920static int c_can_handle_bus_err(struct net_device *dev,
921				enum c_can_lec_type lec_type)
922{
923	struct c_can_priv *priv = netdev_priv(dev);
924	struct net_device_stats *stats = &dev->stats;
925	struct can_frame *cf;
926	struct sk_buff *skb;
927
928	/*
929	 * early exit if no lec update or no error.
930	 * no lec update means that no CAN bus event has been detected
931	 * since CPU wrote 0x7 value to status reg.
932	 */
933	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
934		return 0;
935
936	/* propagate the error condition to the CAN stack */
937	skb = alloc_can_err_skb(dev, &cf);
938	if (unlikely(!skb))
939		return 0;
940
941	/*
942	 * check for 'last error code' which tells us the
943	 * type of the last error to occur on the CAN bus
944	 */
945
946	/* common for all type of bus errors */
947	priv->can.can_stats.bus_error++;
948	stats->rx_errors++;
949	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
950	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
951
952	switch (lec_type) {
953	case LEC_STUFF_ERROR:
954		netdev_dbg(dev, "stuff error\n");
955		cf->data[2] |= CAN_ERR_PROT_STUFF;
956		break;
957	case LEC_FORM_ERROR:
958		netdev_dbg(dev, "form error\n");
959		cf->data[2] |= CAN_ERR_PROT_FORM;
960		break;
961	case LEC_ACK_ERROR:
962		netdev_dbg(dev, "ack error\n");
963		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
964				CAN_ERR_PROT_LOC_ACK_DEL);
965		break;
966	case LEC_BIT1_ERROR:
967		netdev_dbg(dev, "bit1 error\n");
968		cf->data[2] |= CAN_ERR_PROT_BIT1;
969		break;
970	case LEC_BIT0_ERROR:
971		netdev_dbg(dev, "bit0 error\n");
972		cf->data[2] |= CAN_ERR_PROT_BIT0;
973		break;
974	case LEC_CRC_ERROR:
975		netdev_dbg(dev, "CRC error\n");
976		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
977				CAN_ERR_PROT_LOC_CRC_DEL);
978		break;
979	default:
980		break;
981	}
982
983	/* set a `lec` value so that we can check for updates later */
984	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
985
986	netif_receive_skb(skb);
987	stats->rx_packets++;
988	stats->rx_bytes += cf->can_dlc;
989
990	return 1;
991}
992
993static int c_can_poll(struct napi_struct *napi, int quota)
994{
995	u16 irqstatus;
996	int lec_type = 0;
997	int work_done = 0;
998	struct net_device *dev = napi->dev;
999	struct c_can_priv *priv = netdev_priv(dev);
1000
1001	irqstatus = priv->irqstatus;
1002	if (!irqstatus)
1003		goto end;
1004
1005	/* status events have the highest priority */
1006	if (irqstatus == STATUS_INTERRUPT) {
1007		priv->current_status = priv->read_reg(priv,
1008					C_CAN_STS_REG);
1009
1010		/* handle Tx/Rx events */
1011		if (priv->current_status & STATUS_TXOK)
1012			priv->write_reg(priv, C_CAN_STS_REG,
1013					priv->current_status & ~STATUS_TXOK);
1014
1015		if (priv->current_status & STATUS_RXOK)
1016			priv->write_reg(priv, C_CAN_STS_REG,
1017					priv->current_status & ~STATUS_RXOK);
1018
1019		/* handle state changes */
1020		if ((priv->current_status & STATUS_EWARN) &&
1021				(!(priv->last_status & STATUS_EWARN))) {
1022			netdev_dbg(dev, "entered error warning state\n");
1023			work_done += c_can_handle_state_change(dev,
1024						C_CAN_ERROR_WARNING);
1025		}
1026		if ((priv->current_status & STATUS_EPASS) &&
1027				(!(priv->last_status & STATUS_EPASS))) {
1028			netdev_dbg(dev, "entered error passive state\n");
1029			work_done += c_can_handle_state_change(dev,
1030						C_CAN_ERROR_PASSIVE);
1031		}
1032		if ((priv->current_status & STATUS_BOFF) &&
1033				(!(priv->last_status & STATUS_BOFF))) {
1034			netdev_dbg(dev, "entered bus off state\n");
1035			work_done += c_can_handle_state_change(dev,
1036						C_CAN_BUS_OFF);
1037		}
1038
1039		/* handle bus recovery events */
1040		if ((!(priv->current_status & STATUS_BOFF)) &&
1041				(priv->last_status & STATUS_BOFF)) {
1042			netdev_dbg(dev, "left bus off state\n");
1043			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1044		}
1045		if ((!(priv->current_status & STATUS_EPASS)) &&
1046				(priv->last_status & STATUS_EPASS)) {
1047			netdev_dbg(dev, "left error passive state\n");
1048			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1049		}
1050
1051		priv->last_status = priv->current_status;
1052
1053		/* handle lec errors on the bus */
1054		lec_type = c_can_has_and_handle_berr(priv);
1055		if (lec_type)
1056			work_done += c_can_handle_bus_err(dev, lec_type);
1057	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1058			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1059		/* handle events corresponding to receive message objects */
1060		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1061	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1062			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1063		/* handle events corresponding to transmit message objects */
1064		c_can_do_tx(dev);
1065	}
1066
1067end:
1068	if (work_done < quota) {
1069		napi_complete(napi);
1070		/* enable all IRQs */
1071		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1072	}
1073
1074	return work_done;
1075}
1076
1077static irqreturn_t c_can_isr(int irq, void *dev_id)
1078{
1079	struct net_device *dev = (struct net_device *)dev_id;
1080	struct c_can_priv *priv = netdev_priv(dev);
1081
1082	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1083	if (!priv->irqstatus)
1084		return IRQ_NONE;
1085
1086	/* disable all interrupts and schedule the NAPI */
1087	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1088	napi_schedule(&priv->napi);
1089
1090	return IRQ_HANDLED;
1091}
1092
1093static int c_can_open(struct net_device *dev)
1094{
1095	int err;
1096	struct c_can_priv *priv = netdev_priv(dev);
1097
1098	c_can_pm_runtime_get_sync(priv);
1099	c_can_reset_ram(priv, true);
1100
1101	/* open the can device */
1102	err = open_candev(dev);
1103	if (err) {
1104		netdev_err(dev, "failed to open can device\n");
1105		goto exit_open_fail;
1106	}
1107
1108	/* register interrupt handler */
1109	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1110				dev);
1111	if (err < 0) {
1112		netdev_err(dev, "failed to request interrupt\n");
1113		goto exit_irq_fail;
1114	}
1115
1116	napi_enable(&priv->napi);
1117
1118	/* start the c_can controller */
1119	c_can_start(dev);
1120
1121	netif_start_queue(dev);
1122
1123	return 0;
1124
1125exit_irq_fail:
1126	close_candev(dev);
1127exit_open_fail:
1128	c_can_reset_ram(priv, false);
1129	c_can_pm_runtime_put_sync(priv);
1130	return err;
1131}
1132
1133static int c_can_close(struct net_device *dev)
1134{
1135	struct c_can_priv *priv = netdev_priv(dev);
1136
1137	netif_stop_queue(dev);
1138	napi_disable(&priv->napi);
1139	c_can_stop(dev);
1140	free_irq(dev->irq, dev);
1141	close_candev(dev);
1142
1143	c_can_reset_ram(priv, false);
1144	c_can_pm_runtime_put_sync(priv);
1145
1146	return 0;
1147}
1148
1149struct net_device *alloc_c_can_dev(void)
1150{
1151	struct net_device *dev;
1152	struct c_can_priv *priv;
1153
1154	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1155	if (!dev)
1156		return NULL;
1157
1158	priv = netdev_priv(dev);
1159	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1160
1161	priv->dev = dev;
1162	priv->can.bittiming_const = &c_can_bittiming_const;
1163	priv->can.do_set_mode = c_can_set_mode;
1164	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1165	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1166					CAN_CTRLMODE_LISTENONLY |
1167					CAN_CTRLMODE_BERR_REPORTING;
1168
1169	return dev;
1170}
1171EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1172
1173#ifdef CONFIG_PM
1174int c_can_power_down(struct net_device *dev)
1175{
1176	u32 val;
1177	unsigned long time_out;
1178	struct c_can_priv *priv = netdev_priv(dev);
1179
1180	if (!(dev->flags & IFF_UP))
1181		return 0;
1182
1183	WARN_ON(priv->type != BOSCH_D_CAN);
1184
1185	/* set PDR value so the device goes to power down mode */
1186	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1187	val |= CONTROL_EX_PDR;
1188	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1189
1190	/* Wait for the PDA bit to get set */
1191	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1192	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1193				time_after(time_out, jiffies))
1194		cpu_relax();
1195
1196	if (time_after(jiffies, time_out))
1197		return -ETIMEDOUT;
1198
1199	c_can_stop(dev);
1200
1201	c_can_reset_ram(priv, false);
1202	c_can_pm_runtime_put_sync(priv);
1203
1204	return 0;
1205}
1206EXPORT_SYMBOL_GPL(c_can_power_down);
1207
1208int c_can_power_up(struct net_device *dev)
1209{
1210	u32 val;
1211	unsigned long time_out;
1212	struct c_can_priv *priv = netdev_priv(dev);
1213
1214	if (!(dev->flags & IFF_UP))
1215		return 0;
1216
1217	WARN_ON(priv->type != BOSCH_D_CAN);
1218
1219	c_can_pm_runtime_get_sync(priv);
1220	c_can_reset_ram(priv, true);
1221
1222	/* Clear PDR and INIT bits */
1223	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1224	val &= ~CONTROL_EX_PDR;
1225	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1226	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1227	val &= ~CONTROL_INIT;
1228	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1229
1230	/* Wait for the PDA bit to get clear */
1231	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1232	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1233				time_after(time_out, jiffies))
1234		cpu_relax();
1235
1236	if (time_after(jiffies, time_out))
1237		return -ETIMEDOUT;
1238
1239	c_can_start(dev);
1240
1241	return 0;
1242}
1243EXPORT_SYMBOL_GPL(c_can_power_up);
1244#endif
1245
1246void free_c_can_dev(struct net_device *dev)
1247{
1248	free_candev(dev);
1249}
1250EXPORT_SYMBOL_GPL(free_c_can_dev);
1251
1252static const struct net_device_ops c_can_netdev_ops = {
1253	.ndo_open = c_can_open,
1254	.ndo_stop = c_can_close,
1255	.ndo_start_xmit = c_can_start_xmit,
1256};
1257
1258int register_c_can_dev(struct net_device *dev)
1259{
1260	struct c_can_priv *priv = netdev_priv(dev);
1261	int err;
1262
1263	c_can_pm_runtime_enable(priv);
1264
1265	dev->flags |= IFF_ECHO;	/* we support local echo */
1266	dev->netdev_ops = &c_can_netdev_ops;
1267
1268	err = register_candev(dev);
1269	if (err)
1270		c_can_pm_runtime_disable(priv);
1271
1272	return err;
1273}
1274EXPORT_SYMBOL_GPL(register_c_can_dev);
1275
1276void unregister_c_can_dev(struct net_device *dev)
1277{
1278	struct c_can_priv *priv = netdev_priv(dev);
1279
1280	unregister_candev(dev);
1281
1282	c_can_pm_runtime_disable(priv);
1283}
1284EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1285
1286MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1287MODULE_LICENSE("GPL v2");
1288MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1289