c_can.c revision 8ff2de0fb41560cfdf072eb41b5a5b4799d126ea
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
64
65/* test register */
66#define TEST_RX			BIT(7)
67#define TEST_TX1		BIT(6)
68#define TEST_TX2		BIT(5)
69#define TEST_LBACK		BIT(4)
70#define TEST_SILENT		BIT(3)
71#define TEST_BASIC		BIT(2)
72
73/* status register */
74#define STATUS_PDA		BIT(10)
75#define STATUS_BOFF		BIT(7)
76#define STATUS_EWARN		BIT(6)
77#define STATUS_EPASS		BIT(5)
78#define STATUS_RXOK		BIT(4)
79#define STATUS_TXOK		BIT(3)
80
81/* error counter register */
82#define ERR_CNT_TEC_MASK	0xff
83#define ERR_CNT_TEC_SHIFT	0
84#define ERR_CNT_REC_SHIFT	8
85#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
86#define ERR_CNT_RP_SHIFT	15
87#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
88
89/* bit-timing register */
90#define BTR_BRP_MASK		0x3f
91#define BTR_BRP_SHIFT		0
92#define BTR_SJW_SHIFT		6
93#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
94#define BTR_TSEG1_SHIFT		8
95#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
96#define BTR_TSEG2_SHIFT		12
97#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
98
99/* brp extension register */
100#define BRP_EXT_BRPE_MASK	0x0f
101#define BRP_EXT_BRPE_SHIFT	0
102
103/* IFx command request */
104#define IF_COMR_BUSY		BIT(15)
105
106/* IFx command mask */
107#define IF_COMM_WR		BIT(7)
108#define IF_COMM_MASK		BIT(6)
109#define IF_COMM_ARB		BIT(5)
110#define IF_COMM_CONTROL		BIT(4)
111#define IF_COMM_CLR_INT_PND	BIT(3)
112#define IF_COMM_TXRQST		BIT(2)
113#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114#define IF_COMM_DATAA		BIT(1)
115#define IF_COMM_DATAB		BIT(0)
116#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
117				IF_COMM_CONTROL | IF_COMM_TXRQST | \
118				IF_COMM_DATAA | IF_COMM_DATAB)
119
120/* For the low buffers we clear the interrupt bit, but keep newdat */
121#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
122				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
123				 IF_COMM_DATAA | IF_COMM_DATAB)
124
125/* For the high buffers we clear the interrupt bit and newdat */
126#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
127
128
129/* Receive setup of message objects */
130#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
131
132/* IFx arbitration */
133#define IF_ARB_MSGVAL		BIT(15)
134#define IF_ARB_MSGXTD		BIT(14)
135#define IF_ARB_TRANSMIT		BIT(13)
136
137/* IFx message control */
138#define IF_MCONT_NEWDAT		BIT(15)
139#define IF_MCONT_MSGLST		BIT(14)
140#define IF_MCONT_INTPND		BIT(13)
141#define IF_MCONT_UMASK		BIT(12)
142#define IF_MCONT_TXIE		BIT(11)
143#define IF_MCONT_RXIE		BIT(10)
144#define IF_MCONT_RMTEN		BIT(9)
145#define IF_MCONT_TXRQST		BIT(8)
146#define IF_MCONT_EOB		BIT(7)
147#define IF_MCONT_DLC_MASK	0xf
148
149#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
150#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
151
152/*
153 * Use IF1 for RX and IF2 for TX
154 */
155#define IF_RX			0
156#define IF_TX			1
157
158/* minimum timeout for checking BUSY status */
159#define MIN_TIMEOUT_VALUE	6
160
161/* Wait for ~1 sec for INIT bit */
162#define INIT_WAIT_MS		1000
163
164/* napi related */
165#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
166
167/* c_can lec values */
168enum c_can_lec_type {
169	LEC_NO_ERROR = 0,
170	LEC_STUFF_ERROR,
171	LEC_FORM_ERROR,
172	LEC_ACK_ERROR,
173	LEC_BIT1_ERROR,
174	LEC_BIT0_ERROR,
175	LEC_CRC_ERROR,
176	LEC_UNUSED,
177	LEC_MASK = LEC_UNUSED,
178};
179
180/*
181 * c_can error types:
182 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
183 */
184enum c_can_bus_error_types {
185	C_CAN_NO_ERROR = 0,
186	C_CAN_BUS_OFF,
187	C_CAN_ERROR_WARNING,
188	C_CAN_ERROR_PASSIVE,
189};
190
191static const struct can_bittiming_const c_can_bittiming_const = {
192	.name = KBUILD_MODNAME,
193	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
194	.tseg1_max = 16,
195	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
196	.tseg2_max = 8,
197	.sjw_max = 4,
198	.brp_min = 1,
199	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
200	.brp_inc = 1,
201};
202
203static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
204{
205	if (priv->device)
206		pm_runtime_enable(priv->device);
207}
208
209static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
210{
211	if (priv->device)
212		pm_runtime_disable(priv->device);
213}
214
215static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
216{
217	if (priv->device)
218		pm_runtime_get_sync(priv->device);
219}
220
221static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
222{
223	if (priv->device)
224		pm_runtime_put_sync(priv->device);
225}
226
227static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
228{
229	if (priv->raminit)
230		priv->raminit(priv, enable);
231}
232
233static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
234{
235	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
236			C_CAN_MSG_OBJ_TX_FIRST;
237}
238
239static inline int get_tx_echo_msg_obj(int txecho)
240{
241	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
242}
243
244static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
245{
246	u32 val = priv->read_reg(priv, index);
247	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
248	return val;
249}
250
251static void c_can_irq_control(struct c_can_priv *priv, bool enable)
252{
253	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
254
255	if (enable)
256		ctrl |= CONTROL_IRQMSK;
257
258	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
259}
260
261static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
262{
263	int count = MIN_TIMEOUT_VALUE;
264
265	while (count && priv->read_reg(priv,
266				C_CAN_IFACE(COMREQ_REG, iface)) &
267				IF_COMR_BUSY) {
268		count--;
269		udelay(1);
270	}
271
272	if (!count)
273		return 1;
274
275	return 0;
276}
277
278static inline void c_can_object_get(struct net_device *dev,
279					int iface, int objno, int mask)
280{
281	struct c_can_priv *priv = netdev_priv(dev);
282
283	/*
284	 * As per specs, after writting the message object number in the
285	 * IF command request register the transfer b/w interface
286	 * register and message RAM must be complete in 6 CAN-CLK
287	 * period.
288	 */
289	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
290			IFX_WRITE_LOW_16BIT(mask));
291	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
292			IFX_WRITE_LOW_16BIT(objno));
293
294	if (c_can_msg_obj_is_busy(priv, iface))
295		netdev_err(dev, "timed out in object get\n");
296}
297
298static inline void c_can_object_put(struct net_device *dev,
299					int iface, int objno, int mask)
300{
301	struct c_can_priv *priv = netdev_priv(dev);
302
303	/*
304	 * As per specs, after writting the message object number in the
305	 * IF command request register the transfer b/w interface
306	 * register and message RAM must be complete in 6 CAN-CLK
307	 * period.
308	 */
309	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
311	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312			IFX_WRITE_LOW_16BIT(objno));
313
314	if (c_can_msg_obj_is_busy(priv, iface))
315		netdev_err(dev, "timed out in object put\n");
316}
317
318static void c_can_write_msg_object(struct net_device *dev,
319			int iface, struct can_frame *frame, int objno)
320{
321	int i;
322	u16 flags = 0;
323	unsigned int id;
324	struct c_can_priv *priv = netdev_priv(dev);
325
326	if (!(frame->can_id & CAN_RTR_FLAG))
327		flags |= IF_ARB_TRANSMIT;
328
329	if (frame->can_id & CAN_EFF_FLAG) {
330		id = frame->can_id & CAN_EFF_MASK;
331		flags |= IF_ARB_MSGXTD;
332	} else
333		id = ((frame->can_id & CAN_SFF_MASK) << 18);
334
335	flags |= IF_ARB_MSGVAL;
336
337	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
338				IFX_WRITE_LOW_16BIT(id));
339	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
340				IFX_WRITE_HIGH_16BIT(id));
341
342	for (i = 0; i < frame->can_dlc; i += 2) {
343		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
344				frame->data[i] | (frame->data[i + 1] << 8));
345	}
346
347	/* enable interrupt for this message object */
348	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
349			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
350			frame->can_dlc);
351	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
352}
353
354static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
355						       int iface)
356{
357	int i;
358
359	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
360		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
361}
362
363static int c_can_handle_lost_msg_obj(struct net_device *dev,
364				     int iface, int objno, u32 ctrl)
365{
366	struct net_device_stats *stats = &dev->stats;
367	struct c_can_priv *priv = netdev_priv(dev);
368	struct can_frame *frame;
369	struct sk_buff *skb;
370
371	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
372	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
373	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
374
375	stats->rx_errors++;
376	stats->rx_over_errors++;
377
378	/* create an error msg */
379	skb = alloc_can_err_skb(dev, &frame);
380	if (unlikely(!skb))
381		return 0;
382
383	frame->can_id |= CAN_ERR_CRTL;
384	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
385
386	netif_receive_skb(skb);
387	return 1;
388}
389
390static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
391{
392	struct net_device_stats *stats = &dev->stats;
393	struct c_can_priv *priv = netdev_priv(dev);
394	struct can_frame *frame;
395	struct sk_buff *skb;
396	u32 arb, data;
397
398	skb = alloc_can_skb(dev, &frame);
399	if (!skb) {
400		stats->rx_dropped++;
401		return -ENOMEM;
402	}
403
404	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
405
406	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
407	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
408
409	if (arb & (IF_ARB_MSGXTD << 16))
410		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
411	else
412		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
413
414	if (arb & (IF_ARB_TRANSMIT << 16)) {
415		frame->can_id |= CAN_RTR_FLAG;
416	} else {
417		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
418
419		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
420			data = priv->read_reg(priv, dreg);
421			frame->data[i] = data;
422			frame->data[i + 1] = data >> 8;
423		}
424	}
425
426	stats->rx_packets++;
427	stats->rx_bytes += frame->can_dlc;
428
429	netif_receive_skb(skb);
430	return 0;
431}
432
433static void c_can_setup_receive_object(struct net_device *dev, int iface,
434				       u32 obj, u32 mask, u32 id, u32 mcont)
435{
436	struct c_can_priv *priv = netdev_priv(dev);
437
438	mask |= BIT(29);
439	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
440	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
441
442	id |= IF_ARB_MSGVAL << 16;
443	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
444	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
445
446	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
447	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
448}
449
450static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
451{
452	struct c_can_priv *priv = netdev_priv(dev);
453
454	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
455	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
456	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
457
458	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
459
460	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
461			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
462}
463
464static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
465{
466	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
467
468	/*
469	 * as transmission request register's bit n-1 corresponds to
470	 * message object n, we need to handle the same properly.
471	 */
472	if (val & (1 << (objno - 1)))
473		return 1;
474
475	return 0;
476}
477
478static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
479					struct net_device *dev)
480{
481	u32 msg_obj_no;
482	struct c_can_priv *priv = netdev_priv(dev);
483	struct can_frame *frame = (struct can_frame *)skb->data;
484
485	if (can_dropped_invalid_skb(dev, skb))
486		return NETDEV_TX_OK;
487
488	spin_lock_bh(&priv->xmit_lock);
489	msg_obj_no = get_tx_next_msg_obj(priv);
490
491	/* prepare message object for transmission */
492	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
493	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
494	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
495
496	/*
497	 * we have to stop the queue in case of a wrap around or
498	 * if the next TX message object is still in use
499	 */
500	priv->tx_next++;
501	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
502			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
503		netif_stop_queue(dev);
504	spin_unlock_bh(&priv->xmit_lock);
505
506	return NETDEV_TX_OK;
507}
508
509static int c_can_wait_for_ctrl_init(struct net_device *dev,
510				    struct c_can_priv *priv, u32 init)
511{
512	int retry = 0;
513
514	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
515		udelay(10);
516		if (retry++ > 1000) {
517			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
518			return -EIO;
519		}
520	}
521	return 0;
522}
523
524static int c_can_set_bittiming(struct net_device *dev)
525{
526	unsigned int reg_btr, reg_brpe, ctrl_save;
527	u8 brp, brpe, sjw, tseg1, tseg2;
528	u32 ten_bit_brp;
529	struct c_can_priv *priv = netdev_priv(dev);
530	const struct can_bittiming *bt = &priv->can.bittiming;
531	int res;
532
533	/* c_can provides a 6-bit brp and 4-bit brpe fields */
534	ten_bit_brp = bt->brp - 1;
535	brp = ten_bit_brp & BTR_BRP_MASK;
536	brpe = ten_bit_brp >> 6;
537
538	sjw = bt->sjw - 1;
539	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
540	tseg2 = bt->phase_seg2 - 1;
541	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
542			(tseg2 << BTR_TSEG2_SHIFT);
543	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
544
545	netdev_info(dev,
546		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
547
548	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
549	ctrl_save &= ~CONTROL_INIT;
550	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
551	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
552	if (res)
553		return res;
554
555	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
556	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
557	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
558
559	return c_can_wait_for_ctrl_init(dev, priv, 0);
560}
561
562/*
563 * Configure C_CAN message objects for Tx and Rx purposes:
564 * C_CAN provides a total of 32 message objects that can be configured
565 * either for Tx or Rx purposes. Here the first 16 message objects are used as
566 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
567 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
568 * See user guide document for further details on configuring message
569 * objects.
570 */
571static void c_can_configure_msg_objects(struct net_device *dev)
572{
573	int i;
574
575	/* first invalidate all message objects */
576	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
577		c_can_inval_msg_object(dev, IF_RX, i);
578
579	/* setup receive message objects */
580	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
581		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
582
583	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
584				   IF_MCONT_RCV_EOB);
585}
586
587/*
588 * Configure C_CAN chip:
589 * - enable/disable auto-retransmission
590 * - set operating mode
591 * - configure message objects
592 */
593static int c_can_chip_config(struct net_device *dev)
594{
595	struct c_can_priv *priv = netdev_priv(dev);
596
597	/* enable automatic retransmission */
598	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
599
600	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
601	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
602		/* loopback + silent mode : useful for hot self-test */
603		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
604		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
605	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
606		/* loopback mode : useful for self-test function */
607		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
608		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
609	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
610		/* silent mode : bus-monitoring mode */
611		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
612		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
613	}
614
615	/* configure message objects */
616	c_can_configure_msg_objects(dev);
617
618	/* set a `lec` value so that we can check for updates later */
619	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
620
621	/* set bittiming params */
622	return c_can_set_bittiming(dev);
623}
624
625static int c_can_start(struct net_device *dev)
626{
627	struct c_can_priv *priv = netdev_priv(dev);
628	int err;
629
630	/* basic c_can configuration */
631	err = c_can_chip_config(dev);
632	if (err)
633		return err;
634
635	/* Setup the command for new messages */
636	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
637		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
638
639	priv->can.state = CAN_STATE_ERROR_ACTIVE;
640
641	/* reset tx helper pointers and the rx mask */
642	priv->tx_next = priv->tx_echo = 0;
643	priv->rxmasked = 0;
644
645	return 0;
646}
647
648static void c_can_stop(struct net_device *dev)
649{
650	struct c_can_priv *priv = netdev_priv(dev);
651
652	c_can_irq_control(priv, false);
653	priv->can.state = CAN_STATE_STOPPED;
654}
655
656static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
657{
658	struct c_can_priv *priv = netdev_priv(dev);
659	int err;
660
661	switch (mode) {
662	case CAN_MODE_START:
663		err = c_can_start(dev);
664		if (err)
665			return err;
666		netif_wake_queue(dev);
667		c_can_irq_control(priv, true);
668		break;
669	default:
670		return -EOPNOTSUPP;
671	}
672
673	return 0;
674}
675
676static int __c_can_get_berr_counter(const struct net_device *dev,
677				    struct can_berr_counter *bec)
678{
679	unsigned int reg_err_counter;
680	struct c_can_priv *priv = netdev_priv(dev);
681
682	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
683	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
684				ERR_CNT_REC_SHIFT;
685	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
686
687	return 0;
688}
689
690static int c_can_get_berr_counter(const struct net_device *dev,
691				  struct can_berr_counter *bec)
692{
693	struct c_can_priv *priv = netdev_priv(dev);
694	int err;
695
696	c_can_pm_runtime_get_sync(priv);
697	err = __c_can_get_berr_counter(dev, bec);
698	c_can_pm_runtime_put_sync(priv);
699
700	return err;
701}
702
703/*
704 * priv->tx_echo holds the number of the oldest can_frame put for
705 * transmission into the hardware, but not yet ACKed by the CAN tx
706 * complete IRQ.
707 *
708 * We iterate from priv->tx_echo to priv->tx_next and check if the
709 * packet has been transmitted, echo it back to the CAN framework.
710 * If we discover a not yet transmitted packet, stop looking for more.
711 */
712static void c_can_do_tx(struct net_device *dev)
713{
714	struct c_can_priv *priv = netdev_priv(dev);
715	struct net_device_stats *stats = &dev->stats;
716	u32 val, obj, pkts = 0, bytes = 0;
717
718	spin_lock_bh(&priv->xmit_lock);
719
720	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
721		obj = get_tx_echo_msg_obj(priv->tx_echo);
722		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
723
724		if (val & (1 << (obj - 1)))
725			break;
726
727		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
728		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
729		pkts++;
730		c_can_inval_msg_object(dev, IF_TX, obj);
731	}
732
733	/* restart queue if wrap-up or if queue stalled on last pkt */
734	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
735			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
736		netif_wake_queue(dev);
737
738	spin_unlock_bh(&priv->xmit_lock);
739
740	if (pkts) {
741		stats->tx_bytes += bytes;
742		stats->tx_packets += pkts;
743		can_led_event(dev, CAN_LED_EVENT_TX);
744	}
745}
746
747/*
748 * If we have a gap in the pending bits, that means we either
749 * raced with the hardware or failed to readout all upper
750 * objects in the last run due to quota limit.
751 */
752static u32 c_can_adjust_pending(u32 pend)
753{
754	u32 weight, lasts;
755
756	if (pend == RECEIVE_OBJECT_BITS)
757		return pend;
758
759	/*
760	 * If the last set bit is larger than the number of pending
761	 * bits we have a gap.
762	 */
763	weight = hweight32(pend);
764	lasts = fls(pend);
765
766	/* If the bits are linear, nothing to do */
767	if (lasts == weight)
768		return pend;
769
770	/*
771	 * Find the first set bit after the gap. We walk backwards
772	 * from the last set bit.
773	 */
774	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
775
776	return pend & ~((1 << lasts) - 1);
777}
778
779static inline void c_can_rx_object_get(struct net_device *dev,
780				       struct c_can_priv *priv, u32 obj)
781{
782#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
783	if (obj < C_CAN_MSG_RX_LOW_LAST)
784		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
785	else
786#endif
787		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
788}
789
790static inline void c_can_rx_finalize(struct net_device *dev,
791				     struct c_can_priv *priv, u32 obj)
792{
793#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
794	if (obj < C_CAN_MSG_RX_LOW_LAST)
795		priv->rxmasked |= BIT(obj - 1);
796	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
797		priv->rxmasked = 0;
798		/* activate all lower message objects */
799		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
800	}
801#endif
802	if (priv->type != BOSCH_D_CAN)
803		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
804}
805
806static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
807			      u32 pend, int quota)
808{
809	u32 pkts = 0, ctrl, obj;
810
811	while ((obj = ffs(pend)) && quota > 0) {
812		pend &= ~BIT(obj - 1);
813
814		c_can_rx_object_get(dev, priv, obj);
815		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
816
817		if (ctrl & IF_MCONT_MSGLST) {
818			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
819
820			pkts += n;
821			quota -= n;
822			continue;
823		}
824
825		/*
826		 * This really should not happen, but this covers some
827		 * odd HW behaviour. Do not remove that unless you
828		 * want to brick your machine.
829		 */
830		if (!(ctrl & IF_MCONT_NEWDAT))
831			continue;
832
833		/* read the data from the message object */
834		c_can_read_msg_object(dev, IF_RX, ctrl);
835
836		c_can_rx_finalize(dev, priv, obj);
837
838		pkts++;
839		quota--;
840	}
841
842	return pkts;
843}
844
845static inline u32 c_can_get_pending(struct c_can_priv *priv)
846{
847	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
848
849#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
850	pend &= ~priv->rxmasked;
851#endif
852	return pend;
853}
854
855/*
856 * theory of operation:
857 *
858 * c_can core saves a received CAN message into the first free message
859 * object it finds free (starting with the lowest). Bits NEWDAT and
860 * INTPND are set for this message object indicating that a new message
861 * has arrived. To work-around this issue, we keep two groups of message
862 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
863 *
864 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
865 *
866 * To ensure in-order frame reception we use the following
867 * approach while re-activating a message object to receive further
868 * frames:
869 * - if the current message object number is lower than
870 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
871 *   the INTPND bit.
872 * - if the current message object number is equal to
873 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
874 *   receive message objects.
875 * - if the current message object number is greater than
876 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
877 *   only this message object.
878 *
879 * This can cause packet loss!
880 *
881 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
882 *
883 * We clear the newdat bit right away.
884 *
885 * This can result in packet reordering when the readout is slow.
886 */
887static int c_can_do_rx_poll(struct net_device *dev, int quota)
888{
889	struct c_can_priv *priv = netdev_priv(dev);
890	u32 pkts = 0, pend = 0, toread, n;
891
892	/*
893	 * It is faster to read only one 16bit register. This is only possible
894	 * for a maximum number of 16 objects.
895	 */
896	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
897			"Implementation does not support more message objects than 16");
898
899	while (quota > 0) {
900		if (!pend) {
901			pend = c_can_get_pending(priv);
902			if (!pend)
903				break;
904			/*
905			 * If the pending field has a gap, handle the
906			 * bits above the gap first.
907			 */
908			toread = c_can_adjust_pending(pend);
909		} else {
910			toread = pend;
911		}
912		/* Remove the bits from pend */
913		pend &= ~toread;
914		/* Read the objects */
915		n = c_can_read_objects(dev, priv, toread, quota);
916		pkts += n;
917		quota -= n;
918	}
919
920	if (pkts)
921		can_led_event(dev, CAN_LED_EVENT_RX);
922
923	return pkts;
924}
925
926static int c_can_handle_state_change(struct net_device *dev,
927				enum c_can_bus_error_types error_type)
928{
929	unsigned int reg_err_counter;
930	unsigned int rx_err_passive;
931	struct c_can_priv *priv = netdev_priv(dev);
932	struct net_device_stats *stats = &dev->stats;
933	struct can_frame *cf;
934	struct sk_buff *skb;
935	struct can_berr_counter bec;
936
937	switch (error_type) {
938	case C_CAN_ERROR_WARNING:
939		/* error warning state */
940		priv->can.can_stats.error_warning++;
941		priv->can.state = CAN_STATE_ERROR_WARNING;
942		break;
943	case C_CAN_ERROR_PASSIVE:
944		/* error passive state */
945		priv->can.can_stats.error_passive++;
946		priv->can.state = CAN_STATE_ERROR_PASSIVE;
947		break;
948	case C_CAN_BUS_OFF:
949		/* bus-off state */
950		priv->can.state = CAN_STATE_BUS_OFF;
951		can_bus_off(dev);
952		break;
953	default:
954		break;
955	}
956
957	/* propagate the error condition to the CAN stack */
958	skb = alloc_can_err_skb(dev, &cf);
959	if (unlikely(!skb))
960		return 0;
961
962	__c_can_get_berr_counter(dev, &bec);
963	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
964	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
965				ERR_CNT_RP_SHIFT;
966
967	switch (error_type) {
968	case C_CAN_ERROR_WARNING:
969		/* error warning state */
970		cf->can_id |= CAN_ERR_CRTL;
971		cf->data[1] = (bec.txerr > bec.rxerr) ?
972			CAN_ERR_CRTL_TX_WARNING :
973			CAN_ERR_CRTL_RX_WARNING;
974		cf->data[6] = bec.txerr;
975		cf->data[7] = bec.rxerr;
976
977		break;
978	case C_CAN_ERROR_PASSIVE:
979		/* error passive state */
980		cf->can_id |= CAN_ERR_CRTL;
981		if (rx_err_passive)
982			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
983		if (bec.txerr > 127)
984			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
985
986		cf->data[6] = bec.txerr;
987		cf->data[7] = bec.rxerr;
988		break;
989	case C_CAN_BUS_OFF:
990		/* bus-off state */
991		cf->can_id |= CAN_ERR_BUSOFF;
992		can_bus_off(dev);
993		break;
994	default:
995		break;
996	}
997
998	stats->rx_packets++;
999	stats->rx_bytes += cf->can_dlc;
1000	netif_receive_skb(skb);
1001
1002	return 1;
1003}
1004
1005static int c_can_handle_bus_err(struct net_device *dev,
1006				enum c_can_lec_type lec_type)
1007{
1008	struct c_can_priv *priv = netdev_priv(dev);
1009	struct net_device_stats *stats = &dev->stats;
1010	struct can_frame *cf;
1011	struct sk_buff *skb;
1012
1013	/*
1014	 * early exit if no lec update or no error.
1015	 * no lec update means that no CAN bus event has been detected
1016	 * since CPU wrote 0x7 value to status reg.
1017	 */
1018	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1019		return 0;
1020
1021	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1022		return 0;
1023
1024	/* common for all type of bus errors */
1025	priv->can.can_stats.bus_error++;
1026	stats->rx_errors++;
1027
1028	/* propagate the error condition to the CAN stack */
1029	skb = alloc_can_err_skb(dev, &cf);
1030	if (unlikely(!skb))
1031		return 0;
1032
1033	/*
1034	 * check for 'last error code' which tells us the
1035	 * type of the last error to occur on the CAN bus
1036	 */
1037	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1038	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1039
1040	switch (lec_type) {
1041	case LEC_STUFF_ERROR:
1042		netdev_dbg(dev, "stuff error\n");
1043		cf->data[2] |= CAN_ERR_PROT_STUFF;
1044		break;
1045	case LEC_FORM_ERROR:
1046		netdev_dbg(dev, "form error\n");
1047		cf->data[2] |= CAN_ERR_PROT_FORM;
1048		break;
1049	case LEC_ACK_ERROR:
1050		netdev_dbg(dev, "ack error\n");
1051		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1052				CAN_ERR_PROT_LOC_ACK_DEL);
1053		break;
1054	case LEC_BIT1_ERROR:
1055		netdev_dbg(dev, "bit1 error\n");
1056		cf->data[2] |= CAN_ERR_PROT_BIT1;
1057		break;
1058	case LEC_BIT0_ERROR:
1059		netdev_dbg(dev, "bit0 error\n");
1060		cf->data[2] |= CAN_ERR_PROT_BIT0;
1061		break;
1062	case LEC_CRC_ERROR:
1063		netdev_dbg(dev, "CRC error\n");
1064		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1065				CAN_ERR_PROT_LOC_CRC_DEL);
1066		break;
1067	default:
1068		break;
1069	}
1070
1071	stats->rx_packets++;
1072	stats->rx_bytes += cf->can_dlc;
1073	netif_receive_skb(skb);
1074	return 1;
1075}
1076
1077static int c_can_poll(struct napi_struct *napi, int quota)
1078{
1079	struct net_device *dev = napi->dev;
1080	struct c_can_priv *priv = netdev_priv(dev);
1081	u16 curr, last = priv->last_status;
1082	int work_done = 0;
1083
1084	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1085	/* Ack status on C_CAN. D_CAN is self clearing */
1086	if (priv->type != BOSCH_D_CAN)
1087		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1088
1089	/* handle state changes */
1090	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1091		netdev_dbg(dev, "entered error warning state\n");
1092		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1093	}
1094
1095	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1096		netdev_dbg(dev, "entered error passive state\n");
1097		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1098	}
1099
1100	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1101		netdev_dbg(dev, "entered bus off state\n");
1102		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1103		goto end;
1104	}
1105
1106	/* handle bus recovery events */
1107	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1108		netdev_dbg(dev, "left bus off state\n");
1109		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1110	}
1111	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1112		netdev_dbg(dev, "left error passive state\n");
1113		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1114	}
1115
1116	/* handle lec errors on the bus */
1117	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1118
1119	/* Handle Tx/Rx events. We do this unconditionally */
1120	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1121	c_can_do_tx(dev);
1122
1123end:
1124	if (work_done < quota) {
1125		napi_complete(napi);
1126		/* enable all IRQs if we are not in bus off state */
1127		if (priv->can.state != CAN_STATE_BUS_OFF)
1128			c_can_irq_control(priv, true);
1129	}
1130
1131	return work_done;
1132}
1133
1134static irqreturn_t c_can_isr(int irq, void *dev_id)
1135{
1136	struct net_device *dev = (struct net_device *)dev_id;
1137	struct c_can_priv *priv = netdev_priv(dev);
1138
1139	if (!priv->read_reg(priv, C_CAN_INT_REG))
1140		return IRQ_NONE;
1141
1142	/* disable all interrupts and schedule the NAPI */
1143	c_can_irq_control(priv, false);
1144	napi_schedule(&priv->napi);
1145
1146	return IRQ_HANDLED;
1147}
1148
1149static int c_can_open(struct net_device *dev)
1150{
1151	int err;
1152	struct c_can_priv *priv = netdev_priv(dev);
1153
1154	c_can_pm_runtime_get_sync(priv);
1155	c_can_reset_ram(priv, true);
1156
1157	/* open the can device */
1158	err = open_candev(dev);
1159	if (err) {
1160		netdev_err(dev, "failed to open can device\n");
1161		goto exit_open_fail;
1162	}
1163
1164	/* register interrupt handler */
1165	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1166				dev);
1167	if (err < 0) {
1168		netdev_err(dev, "failed to request interrupt\n");
1169		goto exit_irq_fail;
1170	}
1171
1172	/* start the c_can controller */
1173	err = c_can_start(dev);
1174	if (err)
1175		goto exit_start_fail;
1176
1177	can_led_event(dev, CAN_LED_EVENT_OPEN);
1178
1179	napi_enable(&priv->napi);
1180	/* enable status change, error and module interrupts */
1181	c_can_irq_control(priv, true);
1182	netif_start_queue(dev);
1183
1184	return 0;
1185
1186exit_start_fail:
1187	free_irq(dev->irq, dev);
1188exit_irq_fail:
1189	close_candev(dev);
1190exit_open_fail:
1191	c_can_reset_ram(priv, false);
1192	c_can_pm_runtime_put_sync(priv);
1193	return err;
1194}
1195
1196static int c_can_close(struct net_device *dev)
1197{
1198	struct c_can_priv *priv = netdev_priv(dev);
1199
1200	netif_stop_queue(dev);
1201	napi_disable(&priv->napi);
1202	c_can_stop(dev);
1203	free_irq(dev->irq, dev);
1204	close_candev(dev);
1205
1206	c_can_reset_ram(priv, false);
1207	c_can_pm_runtime_put_sync(priv);
1208
1209	can_led_event(dev, CAN_LED_EVENT_STOP);
1210
1211	return 0;
1212}
1213
1214struct net_device *alloc_c_can_dev(void)
1215{
1216	struct net_device *dev;
1217	struct c_can_priv *priv;
1218
1219	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1220	if (!dev)
1221		return NULL;
1222
1223	priv = netdev_priv(dev);
1224	spin_lock_init(&priv->xmit_lock);
1225	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1226
1227	priv->dev = dev;
1228	priv->can.bittiming_const = &c_can_bittiming_const;
1229	priv->can.do_set_mode = c_can_set_mode;
1230	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1231	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1232					CAN_CTRLMODE_LISTENONLY |
1233					CAN_CTRLMODE_BERR_REPORTING;
1234
1235	return dev;
1236}
1237EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1238
1239#ifdef CONFIG_PM
1240int c_can_power_down(struct net_device *dev)
1241{
1242	u32 val;
1243	unsigned long time_out;
1244	struct c_can_priv *priv = netdev_priv(dev);
1245
1246	if (!(dev->flags & IFF_UP))
1247		return 0;
1248
1249	WARN_ON(priv->type != BOSCH_D_CAN);
1250
1251	/* set PDR value so the device goes to power down mode */
1252	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1253	val |= CONTROL_EX_PDR;
1254	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1255
1256	/* Wait for the PDA bit to get set */
1257	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1258	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1259				time_after(time_out, jiffies))
1260		cpu_relax();
1261
1262	if (time_after(jiffies, time_out))
1263		return -ETIMEDOUT;
1264
1265	c_can_stop(dev);
1266
1267	c_can_reset_ram(priv, false);
1268	c_can_pm_runtime_put_sync(priv);
1269
1270	return 0;
1271}
1272EXPORT_SYMBOL_GPL(c_can_power_down);
1273
1274int c_can_power_up(struct net_device *dev)
1275{
1276	u32 val;
1277	unsigned long time_out;
1278	struct c_can_priv *priv = netdev_priv(dev);
1279	int ret;
1280
1281	if (!(dev->flags & IFF_UP))
1282		return 0;
1283
1284	WARN_ON(priv->type != BOSCH_D_CAN);
1285
1286	c_can_pm_runtime_get_sync(priv);
1287	c_can_reset_ram(priv, true);
1288
1289	/* Clear PDR and INIT bits */
1290	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1291	val &= ~CONTROL_EX_PDR;
1292	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1293	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1294	val &= ~CONTROL_INIT;
1295	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1296
1297	/* Wait for the PDA bit to get clear */
1298	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1299	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1300				time_after(time_out, jiffies))
1301		cpu_relax();
1302
1303	if (time_after(jiffies, time_out))
1304		return -ETIMEDOUT;
1305
1306	ret = c_can_start(dev);
1307	if (!ret)
1308		c_can_irq_control(priv, true);
1309
1310	return ret;
1311}
1312EXPORT_SYMBOL_GPL(c_can_power_up);
1313#endif
1314
1315void free_c_can_dev(struct net_device *dev)
1316{
1317	struct c_can_priv *priv = netdev_priv(dev);
1318
1319	netif_napi_del(&priv->napi);
1320	free_candev(dev);
1321}
1322EXPORT_SYMBOL_GPL(free_c_can_dev);
1323
1324static const struct net_device_ops c_can_netdev_ops = {
1325	.ndo_open = c_can_open,
1326	.ndo_stop = c_can_close,
1327	.ndo_start_xmit = c_can_start_xmit,
1328	.ndo_change_mtu = can_change_mtu,
1329};
1330
1331int register_c_can_dev(struct net_device *dev)
1332{
1333	struct c_can_priv *priv = netdev_priv(dev);
1334	int err;
1335
1336	c_can_pm_runtime_enable(priv);
1337
1338	dev->flags |= IFF_ECHO;	/* we support local echo */
1339	dev->netdev_ops = &c_can_netdev_ops;
1340
1341	err = register_candev(dev);
1342	if (err)
1343		c_can_pm_runtime_disable(priv);
1344	else
1345		devm_can_led_init(dev);
1346
1347	return err;
1348}
1349EXPORT_SYMBOL_GPL(register_c_can_dev);
1350
1351void unregister_c_can_dev(struct net_device *dev)
1352{
1353	struct c_can_priv *priv = netdev_priv(dev);
1354
1355	unregister_candev(dev);
1356
1357	c_can_pm_runtime_disable(priv);
1358}
1359EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1360
1361MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1362MODULE_LICENSE("GPL v2");
1363MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1364