c_can.c revision 95cb3656c09fcf6577138337216c27744ebc91e2
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/delay.h>
37#include <linux/io.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42
43#include "c_can.h"
44
45/* control register */
46#define CONTROL_TEST		BIT(7)
47#define CONTROL_CCE		BIT(6)
48#define CONTROL_DISABLE_AR	BIT(5)
49#define CONTROL_ENABLE_AR	(0 << 5)
50#define CONTROL_EIE		BIT(3)
51#define CONTROL_SIE		BIT(2)
52#define CONTROL_IE		BIT(1)
53#define CONTROL_INIT		BIT(0)
54
55/* test register */
56#define TEST_RX			BIT(7)
57#define TEST_TX1		BIT(6)
58#define TEST_TX2		BIT(5)
59#define TEST_LBACK		BIT(4)
60#define TEST_SILENT		BIT(3)
61#define TEST_BASIC		BIT(2)
62
63/* status register */
64#define STATUS_BOFF		BIT(7)
65#define STATUS_EWARN		BIT(6)
66#define STATUS_EPASS		BIT(5)
67#define STATUS_RXOK		BIT(4)
68#define STATUS_TXOK		BIT(3)
69
70/* error counter register */
71#define ERR_CNT_TEC_MASK	0xff
72#define ERR_CNT_TEC_SHIFT	0
73#define ERR_CNT_REC_SHIFT	8
74#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
75#define ERR_CNT_RP_SHIFT	15
76#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
77
78/* bit-timing register */
79#define BTR_BRP_MASK		0x3f
80#define BTR_BRP_SHIFT		0
81#define BTR_SJW_SHIFT		6
82#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
83#define BTR_TSEG1_SHIFT		8
84#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
85#define BTR_TSEG2_SHIFT		12
86#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
87
88/* brp extension register */
89#define BRP_EXT_BRPE_MASK	0x0f
90#define BRP_EXT_BRPE_SHIFT	0
91
92/* IFx command request */
93#define IF_COMR_BUSY		BIT(15)
94
95/* IFx command mask */
96#define IF_COMM_WR		BIT(7)
97#define IF_COMM_MASK		BIT(6)
98#define IF_COMM_ARB		BIT(5)
99#define IF_COMM_CONTROL		BIT(4)
100#define IF_COMM_CLR_INT_PND	BIT(3)
101#define IF_COMM_TXRQST		BIT(2)
102#define IF_COMM_DATAA		BIT(1)
103#define IF_COMM_DATAB		BIT(0)
104#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
105				IF_COMM_CONTROL | IF_COMM_TXRQST | \
106				IF_COMM_DATAA | IF_COMM_DATAB)
107
108/* IFx arbitration */
109#define IF_ARB_MSGVAL		BIT(15)
110#define IF_ARB_MSGXTD		BIT(14)
111#define IF_ARB_TRANSMIT		BIT(13)
112
113/* IFx message control */
114#define IF_MCONT_NEWDAT		BIT(15)
115#define IF_MCONT_MSGLST		BIT(14)
116#define IF_MCONT_CLR_MSGLST	(0 << 14)
117#define IF_MCONT_INTPND		BIT(13)
118#define IF_MCONT_UMASK		BIT(12)
119#define IF_MCONT_TXIE		BIT(11)
120#define IF_MCONT_RXIE		BIT(10)
121#define IF_MCONT_RMTEN		BIT(9)
122#define IF_MCONT_TXRQST		BIT(8)
123#define IF_MCONT_EOB		BIT(7)
124#define IF_MCONT_DLC_MASK	0xf
125
126/*
127 * IFx register masks:
128 * allow easy operation on 16-bit registers when the
129 * argument is 32-bit instead
130 */
131#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
132#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
133
134/* message object split */
135#define C_CAN_NO_OF_OBJECTS	32
136#define C_CAN_MSG_OBJ_RX_NUM	16
137#define C_CAN_MSG_OBJ_TX_NUM	16
138
139#define C_CAN_MSG_OBJ_RX_FIRST	1
140#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
141				C_CAN_MSG_OBJ_RX_NUM - 1)
142
143#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
144#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
145				C_CAN_MSG_OBJ_TX_NUM - 1)
146
147#define C_CAN_MSG_OBJ_RX_SPLIT	9
148#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
149
150#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
151#define RECEIVE_OBJECT_BITS	0x0000ffff
152
153/* status interrupt */
154#define STATUS_INTERRUPT	0x8000
155
156/* global interrupt masks */
157#define ENABLE_ALL_INTERRUPTS	1
158#define DISABLE_ALL_INTERRUPTS	0
159
160/* minimum timeout for checking BUSY status */
161#define MIN_TIMEOUT_VALUE	6
162
163/* napi related */
164#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
165
166/* c_can lec values */
167enum c_can_lec_type {
168	LEC_NO_ERROR = 0,
169	LEC_STUFF_ERROR,
170	LEC_FORM_ERROR,
171	LEC_ACK_ERROR,
172	LEC_BIT1_ERROR,
173	LEC_BIT0_ERROR,
174	LEC_CRC_ERROR,
175	LEC_UNUSED,
176};
177
178/*
179 * c_can error types:
180 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
181 */
182enum c_can_bus_error_types {
183	C_CAN_NO_ERROR = 0,
184	C_CAN_BUS_OFF,
185	C_CAN_ERROR_WARNING,
186	C_CAN_ERROR_PASSIVE,
187};
188
189static struct can_bittiming_const c_can_bittiming_const = {
190	.name = KBUILD_MODNAME,
191	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
192	.tseg1_max = 16,
193	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
194	.tseg2_max = 8,
195	.sjw_max = 4,
196	.brp_min = 1,
197	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
198	.brp_inc = 1,
199};
200
201static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
202{
203	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
204			C_CAN_MSG_OBJ_TX_FIRST;
205}
206
207static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
208{
209	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
210			C_CAN_MSG_OBJ_TX_FIRST;
211}
212
213static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
214{
215	u32 val = priv->read_reg(priv, reg);
216	val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
217	return val;
218}
219
220static void c_can_enable_all_interrupts(struct c_can_priv *priv,
221						int enable)
222{
223	unsigned int cntrl_save = priv->read_reg(priv,
224						&priv->regs->control);
225
226	if (enable)
227		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
228	else
229		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
230
231	priv->write_reg(priv, &priv->regs->control, cntrl_save);
232}
233
234static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
235{
236	int count = MIN_TIMEOUT_VALUE;
237
238	while (count && priv->read_reg(priv,
239				&priv->regs->ifregs[iface].com_req) &
240				IF_COMR_BUSY) {
241		count--;
242		udelay(1);
243	}
244
245	if (!count)
246		return 1;
247
248	return 0;
249}
250
251static inline void c_can_object_get(struct net_device *dev,
252					int iface, int objno, int mask)
253{
254	struct c_can_priv *priv = netdev_priv(dev);
255
256	/*
257	 * As per specs, after writting the message object number in the
258	 * IF command request register the transfer b/w interface
259	 * register and message RAM must be complete in 6 CAN-CLK
260	 * period.
261	 */
262	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
263			IFX_WRITE_LOW_16BIT(mask));
264	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
265			IFX_WRITE_LOW_16BIT(objno));
266
267	if (c_can_msg_obj_is_busy(priv, iface))
268		netdev_err(dev, "timed out in object get\n");
269}
270
271static inline void c_can_object_put(struct net_device *dev,
272					int iface, int objno, int mask)
273{
274	struct c_can_priv *priv = netdev_priv(dev);
275
276	/*
277	 * As per specs, after writting the message object number in the
278	 * IF command request register the transfer b/w interface
279	 * register and message RAM must be complete in 6 CAN-CLK
280	 * period.
281	 */
282	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
283			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
284	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
285			IFX_WRITE_LOW_16BIT(objno));
286
287	if (c_can_msg_obj_is_busy(priv, iface))
288		netdev_err(dev, "timed out in object put\n");
289}
290
291static void c_can_write_msg_object(struct net_device *dev,
292			int iface, struct can_frame *frame, int objno)
293{
294	int i;
295	u16 flags = 0;
296	unsigned int id;
297	struct c_can_priv *priv = netdev_priv(dev);
298
299	if (!(frame->can_id & CAN_RTR_FLAG))
300		flags |= IF_ARB_TRANSMIT;
301
302	if (frame->can_id & CAN_EFF_FLAG) {
303		id = frame->can_id & CAN_EFF_MASK;
304		flags |= IF_ARB_MSGXTD;
305	} else
306		id = ((frame->can_id & CAN_SFF_MASK) << 18);
307
308	flags |= IF_ARB_MSGVAL;
309
310	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
311				IFX_WRITE_LOW_16BIT(id));
312	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
313				IFX_WRITE_HIGH_16BIT(id));
314
315	for (i = 0; i < frame->can_dlc; i += 2) {
316		priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
317				frame->data[i] | (frame->data[i + 1] << 8));
318	}
319
320	/* enable interrupt for this message object */
321	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
322			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
323			frame->can_dlc);
324	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
325}
326
327static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
328						int iface, int ctrl_mask,
329						int obj)
330{
331	struct c_can_priv *priv = netdev_priv(dev);
332
333	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
334			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
335	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
336
337}
338
339static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
340						int iface,
341						int ctrl_mask)
342{
343	int i;
344	struct c_can_priv *priv = netdev_priv(dev);
345
346	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
347		priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
348				ctrl_mask & ~(IF_MCONT_MSGLST |
349					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
350		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
351	}
352}
353
354static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
355						int iface, int ctrl_mask,
356						int obj)
357{
358	struct c_can_priv *priv = netdev_priv(dev);
359
360	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
361			ctrl_mask & ~(IF_MCONT_MSGLST |
362				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
363	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
364}
365
366static void c_can_handle_lost_msg_obj(struct net_device *dev,
367					int iface, int objno)
368{
369	struct c_can_priv *priv = netdev_priv(dev);
370	struct net_device_stats *stats = &dev->stats;
371	struct sk_buff *skb;
372	struct can_frame *frame;
373
374	netdev_err(dev, "msg lost in buffer %d\n", objno);
375
376	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
377
378	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
379			IF_MCONT_CLR_MSGLST);
380
381	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
382
383	/* create an error msg */
384	skb = alloc_can_err_skb(dev, &frame);
385	if (unlikely(!skb))
386		return;
387
388	frame->can_id |= CAN_ERR_CRTL;
389	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
390	stats->rx_errors++;
391	stats->rx_over_errors++;
392
393	netif_receive_skb(skb);
394}
395
396static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
397{
398	u16 flags, data;
399	int i;
400	unsigned int val;
401	struct c_can_priv *priv = netdev_priv(dev);
402	struct net_device_stats *stats = &dev->stats;
403	struct sk_buff *skb;
404	struct can_frame *frame;
405
406	skb = alloc_can_skb(dev, &frame);
407	if (!skb) {
408		stats->rx_dropped++;
409		return -ENOMEM;
410	}
411
412	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
413
414	flags =	priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
415	val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
416		(flags << 16);
417
418	if (flags & IF_ARB_MSGXTD)
419		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
420	else
421		frame->can_id = (val >> 18) & CAN_SFF_MASK;
422
423	if (flags & IF_ARB_TRANSMIT)
424		frame->can_id |= CAN_RTR_FLAG;
425	else {
426		for (i = 0; i < frame->can_dlc; i += 2) {
427			data = priv->read_reg(priv,
428				&priv->regs->ifregs[iface].data[i / 2]);
429			frame->data[i] = data;
430			frame->data[i + 1] = data >> 8;
431		}
432	}
433
434	netif_receive_skb(skb);
435
436	stats->rx_packets++;
437	stats->rx_bytes += frame->can_dlc;
438
439	return 0;
440}
441
442static void c_can_setup_receive_object(struct net_device *dev, int iface,
443					int objno, unsigned int mask,
444					unsigned int id, unsigned int mcont)
445{
446	struct c_can_priv *priv = netdev_priv(dev);
447
448	priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
449			IFX_WRITE_LOW_16BIT(mask));
450	priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
451			IFX_WRITE_HIGH_16BIT(mask));
452
453	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
454			IFX_WRITE_LOW_16BIT(id));
455	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
456			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
457
458	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
459	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
460
461	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
462			c_can_read_reg32(priv, &priv->regs->msgval1));
463}
464
465static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
466{
467	struct c_can_priv *priv = netdev_priv(dev);
468
469	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
470	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
471	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
472
473	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
474
475	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
476			c_can_read_reg32(priv, &priv->regs->msgval1));
477}
478
479static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
480{
481	int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
482
483	/*
484	 * as transmission request register's bit n-1 corresponds to
485	 * message object n, we need to handle the same properly.
486	 */
487	if (val & (1 << (objno - 1)))
488		return 1;
489
490	return 0;
491}
492
493static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
494					struct net_device *dev)
495{
496	u32 msg_obj_no;
497	struct c_can_priv *priv = netdev_priv(dev);
498	struct can_frame *frame = (struct can_frame *)skb->data;
499
500	if (can_dropped_invalid_skb(dev, skb))
501		return NETDEV_TX_OK;
502
503	msg_obj_no = get_tx_next_msg_obj(priv);
504
505	/* prepare message object for transmission */
506	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
507	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
508
509	/*
510	 * we have to stop the queue in case of a wrap around or
511	 * if the next TX message object is still in use
512	 */
513	priv->tx_next++;
514	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
515			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
516		netif_stop_queue(dev);
517
518	return NETDEV_TX_OK;
519}
520
521static int c_can_set_bittiming(struct net_device *dev)
522{
523	unsigned int reg_btr, reg_brpe, ctrl_save;
524	u8 brp, brpe, sjw, tseg1, tseg2;
525	u32 ten_bit_brp;
526	struct c_can_priv *priv = netdev_priv(dev);
527	const struct can_bittiming *bt = &priv->can.bittiming;
528
529	/* c_can provides a 6-bit brp and 4-bit brpe fields */
530	ten_bit_brp = bt->brp - 1;
531	brp = ten_bit_brp & BTR_BRP_MASK;
532	brpe = ten_bit_brp >> 6;
533
534	sjw = bt->sjw - 1;
535	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
536	tseg2 = bt->phase_seg2 - 1;
537	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
538			(tseg2 << BTR_TSEG2_SHIFT);
539	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
540
541	netdev_info(dev,
542		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
543
544	ctrl_save = priv->read_reg(priv, &priv->regs->control);
545	priv->write_reg(priv, &priv->regs->control,
546			ctrl_save | CONTROL_CCE | CONTROL_INIT);
547	priv->write_reg(priv, &priv->regs->btr, reg_btr);
548	priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
549	priv->write_reg(priv, &priv->regs->control, ctrl_save);
550
551	return 0;
552}
553
554/*
555 * Configure C_CAN message objects for Tx and Rx purposes:
556 * C_CAN provides a total of 32 message objects that can be configured
557 * either for Tx or Rx purposes. Here the first 16 message objects are used as
558 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
559 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
560 * See user guide document for further details on configuring message
561 * objects.
562 */
563static void c_can_configure_msg_objects(struct net_device *dev)
564{
565	int i;
566
567	/* first invalidate all message objects */
568	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
569		c_can_inval_msg_object(dev, 0, i);
570
571	/* setup receive message objects */
572	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
573		c_can_setup_receive_object(dev, 0, i, 0, 0,
574			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
575
576	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
577			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
578}
579
580/*
581 * Configure C_CAN chip:
582 * - enable/disable auto-retransmission
583 * - set operating mode
584 * - configure message objects
585 */
586static void c_can_chip_config(struct net_device *dev)
587{
588	struct c_can_priv *priv = netdev_priv(dev);
589
590	/* enable automatic retransmission */
591	priv->write_reg(priv, &priv->regs->control,
592			CONTROL_ENABLE_AR);
593
594	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
595					CAN_CTRLMODE_LOOPBACK)) {
596		/* loopback + silent mode : useful for hot self-test */
597		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
598				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
599		priv->write_reg(priv, &priv->regs->test,
600				TEST_LBACK | TEST_SILENT);
601	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
602		/* loopback mode : useful for self-test function */
603		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
604				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
605		priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
606	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
607		/* silent mode : bus-monitoring mode */
608		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
609				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
610		priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
611	} else
612		/* normal mode*/
613		priv->write_reg(priv, &priv->regs->control,
614				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
615
616	/* configure message objects */
617	c_can_configure_msg_objects(dev);
618
619	/* set a `lec` value so that we can check for updates later */
620	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
621
622	/* set bittiming params */
623	c_can_set_bittiming(dev);
624}
625
626static void c_can_start(struct net_device *dev)
627{
628	struct c_can_priv *priv = netdev_priv(dev);
629
630	/* basic c_can configuration */
631	c_can_chip_config(dev);
632
633	priv->can.state = CAN_STATE_ERROR_ACTIVE;
634
635	/* reset tx helper pointers */
636	priv->tx_next = priv->tx_echo = 0;
637
638	/* enable status change, error and module interrupts */
639	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
640}
641
642static void c_can_stop(struct net_device *dev)
643{
644	struct c_can_priv *priv = netdev_priv(dev);
645
646	/* disable all interrupts */
647	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
648
649	/* set the state as STOPPED */
650	priv->can.state = CAN_STATE_STOPPED;
651}
652
653static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
654{
655	switch (mode) {
656	case CAN_MODE_START:
657		c_can_start(dev);
658		netif_wake_queue(dev);
659		break;
660	default:
661		return -EOPNOTSUPP;
662	}
663
664	return 0;
665}
666
667static int c_can_get_berr_counter(const struct net_device *dev,
668					struct can_berr_counter *bec)
669{
670	unsigned int reg_err_counter;
671	struct c_can_priv *priv = netdev_priv(dev);
672
673	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
674	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
675				ERR_CNT_REC_SHIFT;
676	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
677
678	return 0;
679}
680
681/*
682 * theory of operation:
683 *
684 * priv->tx_echo holds the number of the oldest can_frame put for
685 * transmission into the hardware, but not yet ACKed by the CAN tx
686 * complete IRQ.
687 *
688 * We iterate from priv->tx_echo to priv->tx_next and check if the
689 * packet has been transmitted, echo it back to the CAN framework.
690 * If we discover a not yet transmitted package, stop looking for more.
691 */
692static void c_can_do_tx(struct net_device *dev)
693{
694	u32 val;
695	u32 msg_obj_no;
696	struct c_can_priv *priv = netdev_priv(dev);
697	struct net_device_stats *stats = &dev->stats;
698
699	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
700		msg_obj_no = get_tx_echo_msg_obj(priv);
701		val = c_can_read_reg32(priv, &priv->regs->txrqst1);
702		if (!(val & (1 << msg_obj_no))) {
703			can_get_echo_skb(dev,
704					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
705			stats->tx_bytes += priv->read_reg(priv,
706					&priv->regs->ifregs[0].msg_cntrl)
707					& IF_MCONT_DLC_MASK;
708			stats->tx_packets++;
709			c_can_inval_msg_object(dev, 0, msg_obj_no);
710		}
711	}
712
713	/* restart queue if wrap-up or if queue stalled on last pkt */
714	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
715			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
716		netif_wake_queue(dev);
717}
718
719/*
720 * theory of operation:
721 *
722 * c_can core saves a received CAN message into the first free message
723 * object it finds free (starting with the lowest). Bits NEWDAT and
724 * INTPND are set for this message object indicating that a new message
725 * has arrived. To work-around this issue, we keep two groups of message
726 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
727 *
728 * To ensure in-order frame reception we use the following
729 * approach while re-activating a message object to receive further
730 * frames:
731 * - if the current message object number is lower than
732 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
733 *   the INTPND bit.
734 * - if the current message object number is equal to
735 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
736 *   receive message objects.
737 * - if the current message object number is greater than
738 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
739 *   only this message object.
740 */
741static int c_can_do_rx_poll(struct net_device *dev, int quota)
742{
743	u32 num_rx_pkts = 0;
744	unsigned int msg_obj, msg_ctrl_save;
745	struct c_can_priv *priv = netdev_priv(dev);
746	u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
747
748	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
749			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
750			val = c_can_read_reg32(priv, &priv->regs->intpnd1),
751			msg_obj++) {
752		/*
753		 * as interrupt pending register's bit n-1 corresponds to
754		 * message object n, we need to handle the same properly.
755		 */
756		if (val & (1 << (msg_obj - 1))) {
757			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
758					~IF_COMM_TXRQST);
759			msg_ctrl_save = priv->read_reg(priv,
760					&priv->regs->ifregs[0].msg_cntrl);
761
762			if (msg_ctrl_save & IF_MCONT_EOB)
763				return num_rx_pkts;
764
765			if (msg_ctrl_save & IF_MCONT_MSGLST) {
766				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
767				num_rx_pkts++;
768				quota--;
769				continue;
770			}
771
772			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
773				continue;
774
775			/* read the data from the message object */
776			c_can_read_msg_object(dev, 0, msg_ctrl_save);
777
778			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
779				c_can_mark_rx_msg_obj(dev, 0,
780						msg_ctrl_save, msg_obj);
781			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
782				/* activate this msg obj */
783				c_can_activate_rx_msg_obj(dev, 0,
784						msg_ctrl_save, msg_obj);
785			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
786				/* activate all lower message objects */
787				c_can_activate_all_lower_rx_msg_obj(dev,
788						0, msg_ctrl_save);
789
790			num_rx_pkts++;
791			quota--;
792		}
793	}
794
795	return num_rx_pkts;
796}
797
798static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
799{
800	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
801		(priv->current_status & LEC_UNUSED);
802}
803
804static int c_can_handle_state_change(struct net_device *dev,
805				enum c_can_bus_error_types error_type)
806{
807	unsigned int reg_err_counter;
808	unsigned int rx_err_passive;
809	struct c_can_priv *priv = netdev_priv(dev);
810	struct net_device_stats *stats = &dev->stats;
811	struct can_frame *cf;
812	struct sk_buff *skb;
813	struct can_berr_counter bec;
814
815	/* propagate the error condition to the CAN stack */
816	skb = alloc_can_err_skb(dev, &cf);
817	if (unlikely(!skb))
818		return 0;
819
820	c_can_get_berr_counter(dev, &bec);
821	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
822	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
823				ERR_CNT_RP_SHIFT;
824
825	switch (error_type) {
826	case C_CAN_ERROR_WARNING:
827		/* error warning state */
828		priv->can.can_stats.error_warning++;
829		priv->can.state = CAN_STATE_ERROR_WARNING;
830		cf->can_id |= CAN_ERR_CRTL;
831		cf->data[1] = (bec.txerr > bec.rxerr) ?
832			CAN_ERR_CRTL_TX_WARNING :
833			CAN_ERR_CRTL_RX_WARNING;
834		cf->data[6] = bec.txerr;
835		cf->data[7] = bec.rxerr;
836
837		break;
838	case C_CAN_ERROR_PASSIVE:
839		/* error passive state */
840		priv->can.can_stats.error_passive++;
841		priv->can.state = CAN_STATE_ERROR_PASSIVE;
842		cf->can_id |= CAN_ERR_CRTL;
843		if (rx_err_passive)
844			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
845		if (bec.txerr > 127)
846			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
847
848		cf->data[6] = bec.txerr;
849		cf->data[7] = bec.rxerr;
850		break;
851	case C_CAN_BUS_OFF:
852		/* bus-off state */
853		priv->can.state = CAN_STATE_BUS_OFF;
854		cf->can_id |= CAN_ERR_BUSOFF;
855		/*
856		 * disable all interrupts in bus-off mode to ensure that
857		 * the CPU is not hogged down
858		 */
859		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
860		can_bus_off(dev);
861		break;
862	default:
863		break;
864	}
865
866	netif_receive_skb(skb);
867	stats->rx_packets++;
868	stats->rx_bytes += cf->can_dlc;
869
870	return 1;
871}
872
873static int c_can_handle_bus_err(struct net_device *dev,
874				enum c_can_lec_type lec_type)
875{
876	struct c_can_priv *priv = netdev_priv(dev);
877	struct net_device_stats *stats = &dev->stats;
878	struct can_frame *cf;
879	struct sk_buff *skb;
880
881	/*
882	 * early exit if no lec update or no error.
883	 * no lec update means that no CAN bus event has been detected
884	 * since CPU wrote 0x7 value to status reg.
885	 */
886	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
887		return 0;
888
889	/* propagate the error condition to the CAN stack */
890	skb = alloc_can_err_skb(dev, &cf);
891	if (unlikely(!skb))
892		return 0;
893
894	/*
895	 * check for 'last error code' which tells us the
896	 * type of the last error to occur on the CAN bus
897	 */
898
899	/* common for all type of bus errors */
900	priv->can.can_stats.bus_error++;
901	stats->rx_errors++;
902	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
903	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
904
905	switch (lec_type) {
906	case LEC_STUFF_ERROR:
907		netdev_dbg(dev, "stuff error\n");
908		cf->data[2] |= CAN_ERR_PROT_STUFF;
909		break;
910	case LEC_FORM_ERROR:
911		netdev_dbg(dev, "form error\n");
912		cf->data[2] |= CAN_ERR_PROT_FORM;
913		break;
914	case LEC_ACK_ERROR:
915		netdev_dbg(dev, "ack error\n");
916		cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
917				CAN_ERR_PROT_LOC_ACK_DEL);
918		break;
919	case LEC_BIT1_ERROR:
920		netdev_dbg(dev, "bit1 error\n");
921		cf->data[2] |= CAN_ERR_PROT_BIT1;
922		break;
923	case LEC_BIT0_ERROR:
924		netdev_dbg(dev, "bit0 error\n");
925		cf->data[2] |= CAN_ERR_PROT_BIT0;
926		break;
927	case LEC_CRC_ERROR:
928		netdev_dbg(dev, "CRC error\n");
929		cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
930				CAN_ERR_PROT_LOC_CRC_DEL);
931		break;
932	default:
933		break;
934	}
935
936	/* set a `lec` value so that we can check for updates later */
937	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
938
939	netif_receive_skb(skb);
940	stats->rx_packets++;
941	stats->rx_bytes += cf->can_dlc;
942
943	return 1;
944}
945
946static int c_can_poll(struct napi_struct *napi, int quota)
947{
948	u16 irqstatus;
949	int lec_type = 0;
950	int work_done = 0;
951	struct net_device *dev = napi->dev;
952	struct c_can_priv *priv = netdev_priv(dev);
953
954	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
955	if (!irqstatus)
956		goto end;
957
958	/* status events have the highest priority */
959	if (irqstatus == STATUS_INTERRUPT) {
960		priv->current_status = priv->read_reg(priv,
961					&priv->regs->status);
962
963		/* handle Tx/Rx events */
964		if (priv->current_status & STATUS_TXOK)
965			priv->write_reg(priv, &priv->regs->status,
966					priv->current_status & ~STATUS_TXOK);
967
968		if (priv->current_status & STATUS_RXOK)
969			priv->write_reg(priv, &priv->regs->status,
970					priv->current_status & ~STATUS_RXOK);
971
972		/* handle state changes */
973		if ((priv->current_status & STATUS_EWARN) &&
974				(!(priv->last_status & STATUS_EWARN))) {
975			netdev_dbg(dev, "entered error warning state\n");
976			work_done += c_can_handle_state_change(dev,
977						C_CAN_ERROR_WARNING);
978		}
979		if ((priv->current_status & STATUS_EPASS) &&
980				(!(priv->last_status & STATUS_EPASS))) {
981			netdev_dbg(dev, "entered error passive state\n");
982			work_done += c_can_handle_state_change(dev,
983						C_CAN_ERROR_PASSIVE);
984		}
985		if ((priv->current_status & STATUS_BOFF) &&
986				(!(priv->last_status & STATUS_BOFF))) {
987			netdev_dbg(dev, "entered bus off state\n");
988			work_done += c_can_handle_state_change(dev,
989						C_CAN_BUS_OFF);
990		}
991
992		/* handle bus recovery events */
993		if ((!(priv->current_status & STATUS_BOFF)) &&
994				(priv->last_status & STATUS_BOFF)) {
995			netdev_dbg(dev, "left bus off state\n");
996			priv->can.state = CAN_STATE_ERROR_ACTIVE;
997		}
998		if ((!(priv->current_status & STATUS_EPASS)) &&
999				(priv->last_status & STATUS_EPASS)) {
1000			netdev_dbg(dev, "left error passive state\n");
1001			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1002		}
1003
1004		priv->last_status = priv->current_status;
1005
1006		/* handle lec errors on the bus */
1007		lec_type = c_can_has_and_handle_berr(priv);
1008		if (lec_type)
1009			work_done += c_can_handle_bus_err(dev, lec_type);
1010	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1011			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1012		/* handle events corresponding to receive message objects */
1013		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1014	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1015			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1016		/* handle events corresponding to transmit message objects */
1017		c_can_do_tx(dev);
1018	}
1019
1020end:
1021	if (work_done < quota) {
1022		napi_complete(napi);
1023		/* enable all IRQs */
1024		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1025	}
1026
1027	return work_done;
1028}
1029
1030static irqreturn_t c_can_isr(int irq, void *dev_id)
1031{
1032	u16 irqstatus;
1033	struct net_device *dev = (struct net_device *)dev_id;
1034	struct c_can_priv *priv = netdev_priv(dev);
1035
1036	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1037	if (!irqstatus)
1038		return IRQ_NONE;
1039
1040	/* disable all interrupts and schedule the NAPI */
1041	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1042	napi_schedule(&priv->napi);
1043
1044	return IRQ_HANDLED;
1045}
1046
1047static int c_can_open(struct net_device *dev)
1048{
1049	int err;
1050	struct c_can_priv *priv = netdev_priv(dev);
1051
1052	/* open the can device */
1053	err = open_candev(dev);
1054	if (err) {
1055		netdev_err(dev, "failed to open can device\n");
1056		return err;
1057	}
1058
1059	/* register interrupt handler */
1060	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1061				dev);
1062	if (err < 0) {
1063		netdev_err(dev, "failed to request interrupt\n");
1064		goto exit_irq_fail;
1065	}
1066
1067	/* start the c_can controller */
1068	c_can_start(dev);
1069
1070	napi_enable(&priv->napi);
1071	netif_start_queue(dev);
1072
1073	return 0;
1074
1075exit_irq_fail:
1076	close_candev(dev);
1077	return err;
1078}
1079
1080static int c_can_close(struct net_device *dev)
1081{
1082	struct c_can_priv *priv = netdev_priv(dev);
1083
1084	netif_stop_queue(dev);
1085	napi_disable(&priv->napi);
1086	c_can_stop(dev);
1087	free_irq(dev->irq, dev);
1088	close_candev(dev);
1089
1090	return 0;
1091}
1092
1093struct net_device *alloc_c_can_dev(void)
1094{
1095	struct net_device *dev;
1096	struct c_can_priv *priv;
1097
1098	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1099	if (!dev)
1100		return NULL;
1101
1102	priv = netdev_priv(dev);
1103	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1104
1105	priv->dev = dev;
1106	priv->can.bittiming_const = &c_can_bittiming_const;
1107	priv->can.do_set_mode = c_can_set_mode;
1108	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1109	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1110					CAN_CTRLMODE_LISTENONLY |
1111					CAN_CTRLMODE_BERR_REPORTING;
1112
1113	return dev;
1114}
1115EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1116
1117void free_c_can_dev(struct net_device *dev)
1118{
1119	free_candev(dev);
1120}
1121EXPORT_SYMBOL_GPL(free_c_can_dev);
1122
1123static const struct net_device_ops c_can_netdev_ops = {
1124	.ndo_open = c_can_open,
1125	.ndo_stop = c_can_close,
1126	.ndo_start_xmit = c_can_start_xmit,
1127};
1128
1129int register_c_can_dev(struct net_device *dev)
1130{
1131	dev->flags |= IFF_ECHO;	/* we support local echo */
1132	dev->netdev_ops = &c_can_netdev_ops;
1133
1134	return register_candev(dev);
1135}
1136EXPORT_SYMBOL_GPL(register_c_can_dev);
1137
1138void unregister_c_can_dev(struct net_device *dev)
1139{
1140	struct c_can_priv *priv = netdev_priv(dev);
1141
1142	/* disable all interrupts */
1143	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1144
1145	unregister_candev(dev);
1146}
1147EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1148
1149MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1150MODULE_LICENSE("GPL v2");
1151MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1152