c_can.c revision 9fac1d1ab8e66816c40a235a238357b1f1fc4dee
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* IFx arbitration */
118#define IF_ARB_MSGVAL		BIT(15)
119#define IF_ARB_MSGXTD		BIT(14)
120#define IF_ARB_TRANSMIT		BIT(13)
121
122/* IFx message control */
123#define IF_MCONT_NEWDAT		BIT(15)
124#define IF_MCONT_MSGLST		BIT(14)
125#define IF_MCONT_CLR_MSGLST	(0 << 14)
126#define IF_MCONT_INTPND		BIT(13)
127#define IF_MCONT_UMASK		BIT(12)
128#define IF_MCONT_TXIE		BIT(11)
129#define IF_MCONT_RXIE		BIT(10)
130#define IF_MCONT_RMTEN		BIT(9)
131#define IF_MCONT_TXRQST		BIT(8)
132#define IF_MCONT_EOB		BIT(7)
133#define IF_MCONT_DLC_MASK	0xf
134
135/*
136 * IFx register masks:
137 * allow easy operation on 16-bit registers when the
138 * argument is 32-bit instead
139 */
140#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
141#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
142
143/* message object split */
144#define C_CAN_NO_OF_OBJECTS	32
145#define C_CAN_MSG_OBJ_RX_NUM	16
146#define C_CAN_MSG_OBJ_TX_NUM	16
147
148#define C_CAN_MSG_OBJ_RX_FIRST	1
149#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
150				C_CAN_MSG_OBJ_RX_NUM - 1)
151
152#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
153#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
154				C_CAN_MSG_OBJ_TX_NUM - 1)
155
156#define C_CAN_MSG_OBJ_RX_SPLIT	9
157#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
158
159#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
160#define RECEIVE_OBJECT_BITS	0x0000ffff
161
162/* status interrupt */
163#define STATUS_INTERRUPT	0x8000
164
165/* global interrupt masks */
166#define ENABLE_ALL_INTERRUPTS	1
167#define DISABLE_ALL_INTERRUPTS	0
168
169/* minimum timeout for checking BUSY status */
170#define MIN_TIMEOUT_VALUE	6
171
172/* Wait for ~1 sec for INIT bit */
173#define INIT_WAIT_MS		1000
174
175/* napi related */
176#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
177
178/* c_can lec values */
179enum c_can_lec_type {
180	LEC_NO_ERROR = 0,
181	LEC_STUFF_ERROR,
182	LEC_FORM_ERROR,
183	LEC_ACK_ERROR,
184	LEC_BIT1_ERROR,
185	LEC_BIT0_ERROR,
186	LEC_CRC_ERROR,
187	LEC_UNUSED,
188};
189
190/*
191 * c_can error types:
192 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
193 */
194enum c_can_bus_error_types {
195	C_CAN_NO_ERROR = 0,
196	C_CAN_BUS_OFF,
197	C_CAN_ERROR_WARNING,
198	C_CAN_ERROR_PASSIVE,
199};
200
201static const struct can_bittiming_const c_can_bittiming_const = {
202	.name = KBUILD_MODNAME,
203	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
204	.tseg1_max = 16,
205	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
206	.tseg2_max = 8,
207	.sjw_max = 4,
208	.brp_min = 1,
209	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
210	.brp_inc = 1,
211};
212
213static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
214{
215	if (priv->device)
216		pm_runtime_enable(priv->device);
217}
218
219static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
220{
221	if (priv->device)
222		pm_runtime_disable(priv->device);
223}
224
225static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
226{
227	if (priv->device)
228		pm_runtime_get_sync(priv->device);
229}
230
231static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
232{
233	if (priv->device)
234		pm_runtime_put_sync(priv->device);
235}
236
237static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
238{
239	if (priv->raminit)
240		priv->raminit(priv, enable);
241}
242
243static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
244{
245	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
246			C_CAN_MSG_OBJ_TX_FIRST;
247}
248
249static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
250{
251	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
252			C_CAN_MSG_OBJ_TX_FIRST;
253}
254
255static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
256{
257	u32 val = priv->read_reg(priv, index);
258	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
259	return val;
260}
261
262static void c_can_enable_all_interrupts(struct c_can_priv *priv,
263						int enable)
264{
265	unsigned int cntrl_save = priv->read_reg(priv,
266						C_CAN_CTRL_REG);
267
268	if (enable)
269		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
270	else
271		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
272
273	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
274}
275
276static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
277{
278	int count = MIN_TIMEOUT_VALUE;
279
280	while (count && priv->read_reg(priv,
281				C_CAN_IFACE(COMREQ_REG, iface)) &
282				IF_COMR_BUSY) {
283		count--;
284		udelay(1);
285	}
286
287	if (!count)
288		return 1;
289
290	return 0;
291}
292
293static inline void c_can_object_get(struct net_device *dev,
294					int iface, int objno, int mask)
295{
296	struct c_can_priv *priv = netdev_priv(dev);
297
298	/*
299	 * As per specs, after writting the message object number in the
300	 * IF command request register the transfer b/w interface
301	 * register and message RAM must be complete in 6 CAN-CLK
302	 * period.
303	 */
304	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
305			IFX_WRITE_LOW_16BIT(mask));
306	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
307			IFX_WRITE_LOW_16BIT(objno));
308
309	if (c_can_msg_obj_is_busy(priv, iface))
310		netdev_err(dev, "timed out in object get\n");
311}
312
313static inline void c_can_object_put(struct net_device *dev,
314					int iface, int objno, int mask)
315{
316	struct c_can_priv *priv = netdev_priv(dev);
317
318	/*
319	 * As per specs, after writting the message object number in the
320	 * IF command request register the transfer b/w interface
321	 * register and message RAM must be complete in 6 CAN-CLK
322	 * period.
323	 */
324	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
325			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
326	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
327			IFX_WRITE_LOW_16BIT(objno));
328
329	if (c_can_msg_obj_is_busy(priv, iface))
330		netdev_err(dev, "timed out in object put\n");
331}
332
333static void c_can_write_msg_object(struct net_device *dev,
334			int iface, struct can_frame *frame, int objno)
335{
336	int i;
337	u16 flags = 0;
338	unsigned int id;
339	struct c_can_priv *priv = netdev_priv(dev);
340
341	if (!(frame->can_id & CAN_RTR_FLAG))
342		flags |= IF_ARB_TRANSMIT;
343
344	if (frame->can_id & CAN_EFF_FLAG) {
345		id = frame->can_id & CAN_EFF_MASK;
346		flags |= IF_ARB_MSGXTD;
347	} else
348		id = ((frame->can_id & CAN_SFF_MASK) << 18);
349
350	flags |= IF_ARB_MSGVAL;
351
352	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
353				IFX_WRITE_LOW_16BIT(id));
354	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
355				IFX_WRITE_HIGH_16BIT(id));
356
357	for (i = 0; i < frame->can_dlc; i += 2) {
358		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
359				frame->data[i] | (frame->data[i + 1] << 8));
360	}
361
362	/* enable interrupt for this message object */
363	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
364			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
365			frame->can_dlc);
366	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
367}
368
369static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
370						int iface, int ctrl_mask,
371						int obj)
372{
373	struct c_can_priv *priv = netdev_priv(dev);
374
375	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
376			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
377	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
378
379}
380
381static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
382						int iface,
383						int ctrl_mask)
384{
385	int i;
386	struct c_can_priv *priv = netdev_priv(dev);
387
388	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
389		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
390				ctrl_mask & ~(IF_MCONT_MSGLST |
391					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
392		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
393	}
394}
395
396static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
397						int iface, int ctrl_mask,
398						int obj)
399{
400	struct c_can_priv *priv = netdev_priv(dev);
401
402	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
403			ctrl_mask & ~(IF_MCONT_MSGLST |
404				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
405	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
406}
407
408static void c_can_handle_lost_msg_obj(struct net_device *dev,
409					int iface, int objno)
410{
411	struct c_can_priv *priv = netdev_priv(dev);
412	struct net_device_stats *stats = &dev->stats;
413	struct sk_buff *skb;
414	struct can_frame *frame;
415
416	netdev_err(dev, "msg lost in buffer %d\n", objno);
417
418	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
419
420	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
421			IF_MCONT_CLR_MSGLST);
422
423	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
424
425	/* create an error msg */
426	skb = alloc_can_err_skb(dev, &frame);
427	if (unlikely(!skb))
428		return;
429
430	frame->can_id |= CAN_ERR_CRTL;
431	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
432	stats->rx_errors++;
433	stats->rx_over_errors++;
434
435	netif_receive_skb(skb);
436}
437
438static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
439{
440	u16 flags, data;
441	int i;
442	unsigned int val;
443	struct c_can_priv *priv = netdev_priv(dev);
444	struct net_device_stats *stats = &dev->stats;
445	struct sk_buff *skb;
446	struct can_frame *frame;
447
448	skb = alloc_can_skb(dev, &frame);
449	if (!skb) {
450		stats->rx_dropped++;
451		return -ENOMEM;
452	}
453
454	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
455
456	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
457	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
458		(flags << 16);
459
460	if (flags & IF_ARB_MSGXTD)
461		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
462	else
463		frame->can_id = (val >> 18) & CAN_SFF_MASK;
464
465	if (flags & IF_ARB_TRANSMIT)
466		frame->can_id |= CAN_RTR_FLAG;
467	else {
468		for (i = 0; i < frame->can_dlc; i += 2) {
469			data = priv->read_reg(priv,
470				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
471			frame->data[i] = data;
472			frame->data[i + 1] = data >> 8;
473		}
474	}
475
476	netif_receive_skb(skb);
477
478	stats->rx_packets++;
479	stats->rx_bytes += frame->can_dlc;
480
481	can_led_event(dev, CAN_LED_EVENT_RX);
482
483	return 0;
484}
485
486static void c_can_setup_receive_object(struct net_device *dev, int iface,
487					int objno, unsigned int mask,
488					unsigned int id, unsigned int mcont)
489{
490	struct c_can_priv *priv = netdev_priv(dev);
491
492	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
493			IFX_WRITE_LOW_16BIT(mask));
494
495	/* According to C_CAN documentation, the reserved bit
496	 * in IFx_MASK2 register is fixed 1
497	 */
498	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
499			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
500
501	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
502			IFX_WRITE_LOW_16BIT(id));
503	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
504			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
505
506	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
507	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
508
509	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
510			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
511}
512
513static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
514{
515	struct c_can_priv *priv = netdev_priv(dev);
516
517	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
518	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
519	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
520
521	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
522
523	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
524			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
525}
526
527static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
528{
529	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
530
531	/*
532	 * as transmission request register's bit n-1 corresponds to
533	 * message object n, we need to handle the same properly.
534	 */
535	if (val & (1 << (objno - 1)))
536		return 1;
537
538	return 0;
539}
540
541static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
542					struct net_device *dev)
543{
544	u32 msg_obj_no;
545	struct c_can_priv *priv = netdev_priv(dev);
546	struct can_frame *frame = (struct can_frame *)skb->data;
547
548	if (can_dropped_invalid_skb(dev, skb))
549		return NETDEV_TX_OK;
550
551	msg_obj_no = get_tx_next_msg_obj(priv);
552
553	/* prepare message object for transmission */
554	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
555	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
556
557	/*
558	 * we have to stop the queue in case of a wrap around or
559	 * if the next TX message object is still in use
560	 */
561	priv->tx_next++;
562	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
563			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
564		netif_stop_queue(dev);
565
566	return NETDEV_TX_OK;
567}
568
569static int c_can_wait_for_ctrl_init(struct net_device *dev,
570				    struct c_can_priv *priv, u32 init)
571{
572	int retry = 0;
573
574	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
575		udelay(10);
576		if (retry++ > 1000) {
577			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
578			return -EIO;
579		}
580	}
581	return 0;
582}
583
584static int c_can_set_bittiming(struct net_device *dev)
585{
586	unsigned int reg_btr, reg_brpe, ctrl_save;
587	u8 brp, brpe, sjw, tseg1, tseg2;
588	u32 ten_bit_brp;
589	struct c_can_priv *priv = netdev_priv(dev);
590	const struct can_bittiming *bt = &priv->can.bittiming;
591	int res;
592
593	/* c_can provides a 6-bit brp and 4-bit brpe fields */
594	ten_bit_brp = bt->brp - 1;
595	brp = ten_bit_brp & BTR_BRP_MASK;
596	brpe = ten_bit_brp >> 6;
597
598	sjw = bt->sjw - 1;
599	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
600	tseg2 = bt->phase_seg2 - 1;
601	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
602			(tseg2 << BTR_TSEG2_SHIFT);
603	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
604
605	netdev_info(dev,
606		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
607
608	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
609	ctrl_save &= ~CONTROL_INIT;
610	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
611	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
612	if (res)
613		return res;
614
615	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
616	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
617	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
618
619	return c_can_wait_for_ctrl_init(dev, priv, 0);
620}
621
622/*
623 * Configure C_CAN message objects for Tx and Rx purposes:
624 * C_CAN provides a total of 32 message objects that can be configured
625 * either for Tx or Rx purposes. Here the first 16 message objects are used as
626 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
627 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
628 * See user guide document for further details on configuring message
629 * objects.
630 */
631static void c_can_configure_msg_objects(struct net_device *dev)
632{
633	int i;
634
635	/* first invalidate all message objects */
636	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
637		c_can_inval_msg_object(dev, 0, i);
638
639	/* setup receive message objects */
640	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
641		c_can_setup_receive_object(dev, 0, i, 0, 0,
642			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
643
644	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
645			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
646}
647
648/*
649 * Configure C_CAN chip:
650 * - enable/disable auto-retransmission
651 * - set operating mode
652 * - configure message objects
653 */
654static int c_can_chip_config(struct net_device *dev)
655{
656	struct c_can_priv *priv = netdev_priv(dev);
657
658	/* enable automatic retransmission */
659	priv->write_reg(priv, C_CAN_CTRL_REG,
660			CONTROL_ENABLE_AR);
661
662	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
663	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
664		/* loopback + silent mode : useful for hot self-test */
665		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
666				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
667		priv->write_reg(priv, C_CAN_TEST_REG,
668				TEST_LBACK | TEST_SILENT);
669	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
670		/* loopback mode : useful for self-test function */
671		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
672				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
673		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
674	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
675		/* silent mode : bus-monitoring mode */
676		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
677				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
678		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
679	} else
680		/* normal mode*/
681		priv->write_reg(priv, C_CAN_CTRL_REG,
682				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
683
684	/* configure message objects */
685	c_can_configure_msg_objects(dev);
686
687	/* set a `lec` value so that we can check for updates later */
688	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
689
690	/* set bittiming params */
691	return c_can_set_bittiming(dev);
692}
693
694static int c_can_start(struct net_device *dev)
695{
696	struct c_can_priv *priv = netdev_priv(dev);
697	int err;
698
699	/* basic c_can configuration */
700	err = c_can_chip_config(dev);
701	if (err)
702		return err;
703
704	priv->can.state = CAN_STATE_ERROR_ACTIVE;
705
706	/* reset tx helper pointers */
707	priv->tx_next = priv->tx_echo = 0;
708
709	/* enable status change, error and module interrupts */
710	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
711
712	return 0;
713}
714
715static void c_can_stop(struct net_device *dev)
716{
717	struct c_can_priv *priv = netdev_priv(dev);
718
719	/* disable all interrupts */
720	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
721
722	/* set the state as STOPPED */
723	priv->can.state = CAN_STATE_STOPPED;
724}
725
726static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
727{
728	int err;
729
730	switch (mode) {
731	case CAN_MODE_START:
732		err = c_can_start(dev);
733		if (err)
734			return err;
735		netif_wake_queue(dev);
736		break;
737	default:
738		return -EOPNOTSUPP;
739	}
740
741	return 0;
742}
743
744static int __c_can_get_berr_counter(const struct net_device *dev,
745				    struct can_berr_counter *bec)
746{
747	unsigned int reg_err_counter;
748	struct c_can_priv *priv = netdev_priv(dev);
749
750	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
751	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
752				ERR_CNT_REC_SHIFT;
753	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
754
755	return 0;
756}
757
758static int c_can_get_berr_counter(const struct net_device *dev,
759				  struct can_berr_counter *bec)
760{
761	struct c_can_priv *priv = netdev_priv(dev);
762	int err;
763
764	c_can_pm_runtime_get_sync(priv);
765	err = __c_can_get_berr_counter(dev, bec);
766	c_can_pm_runtime_put_sync(priv);
767
768	return err;
769}
770
771/*
772 * theory of operation:
773 *
774 * priv->tx_echo holds the number of the oldest can_frame put for
775 * transmission into the hardware, but not yet ACKed by the CAN tx
776 * complete IRQ.
777 *
778 * We iterate from priv->tx_echo to priv->tx_next and check if the
779 * packet has been transmitted, echo it back to the CAN framework.
780 * If we discover a not yet transmitted packet, stop looking for more.
781 */
782static void c_can_do_tx(struct net_device *dev)
783{
784	u32 val;
785	u32 msg_obj_no;
786	struct c_can_priv *priv = netdev_priv(dev);
787	struct net_device_stats *stats = &dev->stats;
788
789	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
790		msg_obj_no = get_tx_echo_msg_obj(priv);
791		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
792		if (!(val & (1 << (msg_obj_no - 1)))) {
793			can_get_echo_skb(dev,
794					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
795			c_can_object_get(dev, 0, msg_obj_no, IF_COMM_ALL);
796			stats->tx_bytes += priv->read_reg(priv,
797					C_CAN_IFACE(MSGCTRL_REG, 0))
798					& IF_MCONT_DLC_MASK;
799			stats->tx_packets++;
800			can_led_event(dev, CAN_LED_EVENT_TX);
801			c_can_inval_msg_object(dev, 0, msg_obj_no);
802		} else {
803			break;
804		}
805	}
806
807	/* restart queue if wrap-up or if queue stalled on last pkt */
808	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
809			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
810		netif_wake_queue(dev);
811}
812
813/*
814 * theory of operation:
815 *
816 * c_can core saves a received CAN message into the first free message
817 * object it finds free (starting with the lowest). Bits NEWDAT and
818 * INTPND are set for this message object indicating that a new message
819 * has arrived. To work-around this issue, we keep two groups of message
820 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
821 *
822 * To ensure in-order frame reception we use the following
823 * approach while re-activating a message object to receive further
824 * frames:
825 * - if the current message object number is lower than
826 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
827 *   the INTPND bit.
828 * - if the current message object number is equal to
829 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
830 *   receive message objects.
831 * - if the current message object number is greater than
832 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
833 *   only this message object.
834 */
835static int c_can_do_rx_poll(struct net_device *dev, int quota)
836{
837	u32 num_rx_pkts = 0;
838	unsigned int msg_obj, msg_ctrl_save;
839	struct c_can_priv *priv = netdev_priv(dev);
840	u16 val;
841
842	/*
843	 * It is faster to read only one 16bit register. This is only possible
844	 * for a maximum number of 16 objects.
845	 */
846	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
847			"Implementation does not support more message objects than 16");
848
849	while (quota > 0 && (val = priv->read_reg(priv, C_CAN_INTPND1_REG))) {
850		while ((msg_obj = ffs(val)) && quota > 0) {
851			val &= ~BIT(msg_obj - 1);
852
853			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
854					~IF_COMM_TXRQST);
855			msg_ctrl_save = priv->read_reg(priv,
856					C_CAN_IFACE(MSGCTRL_REG, 0));
857
858			if (msg_ctrl_save & IF_MCONT_MSGLST) {
859				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
860				num_rx_pkts++;
861				quota--;
862				continue;
863			}
864
865			if (msg_ctrl_save & IF_MCONT_EOB)
866				return num_rx_pkts;
867
868			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
869				continue;
870
871			/* read the data from the message object */
872			c_can_read_msg_object(dev, 0, msg_ctrl_save);
873
874			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
875				c_can_mark_rx_msg_obj(dev, 0,
876						msg_ctrl_save, msg_obj);
877			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
878				/* activate this msg obj */
879				c_can_activate_rx_msg_obj(dev, 0,
880						msg_ctrl_save, msg_obj);
881			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
882				/* activate all lower message objects */
883				c_can_activate_all_lower_rx_msg_obj(dev,
884						0, msg_ctrl_save);
885
886			num_rx_pkts++;
887			quota--;
888		}
889	}
890
891	return num_rx_pkts;
892}
893
894static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
895{
896	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
897		(priv->current_status & LEC_UNUSED);
898}
899
900static int c_can_handle_state_change(struct net_device *dev,
901				enum c_can_bus_error_types error_type)
902{
903	unsigned int reg_err_counter;
904	unsigned int rx_err_passive;
905	struct c_can_priv *priv = netdev_priv(dev);
906	struct net_device_stats *stats = &dev->stats;
907	struct can_frame *cf;
908	struct sk_buff *skb;
909	struct can_berr_counter bec;
910
911	/* propagate the error condition to the CAN stack */
912	skb = alloc_can_err_skb(dev, &cf);
913	if (unlikely(!skb))
914		return 0;
915
916	__c_can_get_berr_counter(dev, &bec);
917	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
918	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
919				ERR_CNT_RP_SHIFT;
920
921	switch (error_type) {
922	case C_CAN_ERROR_WARNING:
923		/* error warning state */
924		priv->can.can_stats.error_warning++;
925		priv->can.state = CAN_STATE_ERROR_WARNING;
926		cf->can_id |= CAN_ERR_CRTL;
927		cf->data[1] = (bec.txerr > bec.rxerr) ?
928			CAN_ERR_CRTL_TX_WARNING :
929			CAN_ERR_CRTL_RX_WARNING;
930		cf->data[6] = bec.txerr;
931		cf->data[7] = bec.rxerr;
932
933		break;
934	case C_CAN_ERROR_PASSIVE:
935		/* error passive state */
936		priv->can.can_stats.error_passive++;
937		priv->can.state = CAN_STATE_ERROR_PASSIVE;
938		cf->can_id |= CAN_ERR_CRTL;
939		if (rx_err_passive)
940			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
941		if (bec.txerr > 127)
942			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
943
944		cf->data[6] = bec.txerr;
945		cf->data[7] = bec.rxerr;
946		break;
947	case C_CAN_BUS_OFF:
948		/* bus-off state */
949		priv->can.state = CAN_STATE_BUS_OFF;
950		cf->can_id |= CAN_ERR_BUSOFF;
951		/*
952		 * disable all interrupts in bus-off mode to ensure that
953		 * the CPU is not hogged down
954		 */
955		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
956		can_bus_off(dev);
957		break;
958	default:
959		break;
960	}
961
962	netif_receive_skb(skb);
963	stats->rx_packets++;
964	stats->rx_bytes += cf->can_dlc;
965
966	return 1;
967}
968
969static int c_can_handle_bus_err(struct net_device *dev,
970				enum c_can_lec_type lec_type)
971{
972	struct c_can_priv *priv = netdev_priv(dev);
973	struct net_device_stats *stats = &dev->stats;
974	struct can_frame *cf;
975	struct sk_buff *skb;
976
977	/*
978	 * early exit if no lec update or no error.
979	 * no lec update means that no CAN bus event has been detected
980	 * since CPU wrote 0x7 value to status reg.
981	 */
982	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
983		return 0;
984
985	/* propagate the error condition to the CAN stack */
986	skb = alloc_can_err_skb(dev, &cf);
987	if (unlikely(!skb))
988		return 0;
989
990	/*
991	 * check for 'last error code' which tells us the
992	 * type of the last error to occur on the CAN bus
993	 */
994
995	/* common for all type of bus errors */
996	priv->can.can_stats.bus_error++;
997	stats->rx_errors++;
998	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
999	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1000
1001	switch (lec_type) {
1002	case LEC_STUFF_ERROR:
1003		netdev_dbg(dev, "stuff error\n");
1004		cf->data[2] |= CAN_ERR_PROT_STUFF;
1005		break;
1006	case LEC_FORM_ERROR:
1007		netdev_dbg(dev, "form error\n");
1008		cf->data[2] |= CAN_ERR_PROT_FORM;
1009		break;
1010	case LEC_ACK_ERROR:
1011		netdev_dbg(dev, "ack error\n");
1012		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1013				CAN_ERR_PROT_LOC_ACK_DEL);
1014		break;
1015	case LEC_BIT1_ERROR:
1016		netdev_dbg(dev, "bit1 error\n");
1017		cf->data[2] |= CAN_ERR_PROT_BIT1;
1018		break;
1019	case LEC_BIT0_ERROR:
1020		netdev_dbg(dev, "bit0 error\n");
1021		cf->data[2] |= CAN_ERR_PROT_BIT0;
1022		break;
1023	case LEC_CRC_ERROR:
1024		netdev_dbg(dev, "CRC error\n");
1025		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1026				CAN_ERR_PROT_LOC_CRC_DEL);
1027		break;
1028	default:
1029		break;
1030	}
1031
1032	/* set a `lec` value so that we can check for updates later */
1033	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1034
1035	netif_receive_skb(skb);
1036	stats->rx_packets++;
1037	stats->rx_bytes += cf->can_dlc;
1038
1039	return 1;
1040}
1041
1042static int c_can_poll(struct napi_struct *napi, int quota)
1043{
1044	u16 irqstatus;
1045	int lec_type = 0;
1046	int work_done = 0;
1047	struct net_device *dev = napi->dev;
1048	struct c_can_priv *priv = netdev_priv(dev);
1049
1050	irqstatus = priv->irqstatus;
1051	if (!irqstatus)
1052		goto end;
1053
1054	/* status events have the highest priority */
1055	if (irqstatus == STATUS_INTERRUPT) {
1056		priv->current_status = priv->read_reg(priv,
1057					C_CAN_STS_REG);
1058
1059		/* handle Tx/Rx events */
1060		if (priv->current_status & STATUS_TXOK)
1061			priv->write_reg(priv, C_CAN_STS_REG,
1062					priv->current_status & ~STATUS_TXOK);
1063
1064		if (priv->current_status & STATUS_RXOK)
1065			priv->write_reg(priv, C_CAN_STS_REG,
1066					priv->current_status & ~STATUS_RXOK);
1067
1068		/* handle state changes */
1069		if ((priv->current_status & STATUS_EWARN) &&
1070				(!(priv->last_status & STATUS_EWARN))) {
1071			netdev_dbg(dev, "entered error warning state\n");
1072			work_done += c_can_handle_state_change(dev,
1073						C_CAN_ERROR_WARNING);
1074		}
1075		if ((priv->current_status & STATUS_EPASS) &&
1076				(!(priv->last_status & STATUS_EPASS))) {
1077			netdev_dbg(dev, "entered error passive state\n");
1078			work_done += c_can_handle_state_change(dev,
1079						C_CAN_ERROR_PASSIVE);
1080		}
1081		if ((priv->current_status & STATUS_BOFF) &&
1082				(!(priv->last_status & STATUS_BOFF))) {
1083			netdev_dbg(dev, "entered bus off state\n");
1084			work_done += c_can_handle_state_change(dev,
1085						C_CAN_BUS_OFF);
1086		}
1087
1088		/* handle bus recovery events */
1089		if ((!(priv->current_status & STATUS_BOFF)) &&
1090				(priv->last_status & STATUS_BOFF)) {
1091			netdev_dbg(dev, "left bus off state\n");
1092			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1093		}
1094		if ((!(priv->current_status & STATUS_EPASS)) &&
1095				(priv->last_status & STATUS_EPASS)) {
1096			netdev_dbg(dev, "left error passive state\n");
1097			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1098		}
1099
1100		priv->last_status = priv->current_status;
1101
1102		/* handle lec errors on the bus */
1103		lec_type = c_can_has_and_handle_berr(priv);
1104		if (lec_type)
1105			work_done += c_can_handle_bus_err(dev, lec_type);
1106	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1107			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1108		/* handle events corresponding to receive message objects */
1109		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1110	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1111			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1112		/* handle events corresponding to transmit message objects */
1113		c_can_do_tx(dev);
1114	}
1115
1116end:
1117	if (work_done < quota) {
1118		napi_complete(napi);
1119		/* enable all IRQs */
1120		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1121	}
1122
1123	return work_done;
1124}
1125
1126static irqreturn_t c_can_isr(int irq, void *dev_id)
1127{
1128	struct net_device *dev = (struct net_device *)dev_id;
1129	struct c_can_priv *priv = netdev_priv(dev);
1130
1131	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1132	if (!priv->irqstatus)
1133		return IRQ_NONE;
1134
1135	/* disable all interrupts and schedule the NAPI */
1136	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1137	napi_schedule(&priv->napi);
1138
1139	return IRQ_HANDLED;
1140}
1141
1142static int c_can_open(struct net_device *dev)
1143{
1144	int err;
1145	struct c_can_priv *priv = netdev_priv(dev);
1146
1147	c_can_pm_runtime_get_sync(priv);
1148	c_can_reset_ram(priv, true);
1149
1150	/* open the can device */
1151	err = open_candev(dev);
1152	if (err) {
1153		netdev_err(dev, "failed to open can device\n");
1154		goto exit_open_fail;
1155	}
1156
1157	/* register interrupt handler */
1158	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1159				dev);
1160	if (err < 0) {
1161		netdev_err(dev, "failed to request interrupt\n");
1162		goto exit_irq_fail;
1163	}
1164
1165	/* start the c_can controller */
1166	err = c_can_start(dev);
1167	if (err)
1168		goto exit_start_fail;
1169
1170	can_led_event(dev, CAN_LED_EVENT_OPEN);
1171
1172	napi_enable(&priv->napi);
1173	netif_start_queue(dev);
1174
1175	return 0;
1176
1177exit_start_fail:
1178	free_irq(dev->irq, dev);
1179exit_irq_fail:
1180	close_candev(dev);
1181exit_open_fail:
1182	c_can_reset_ram(priv, false);
1183	c_can_pm_runtime_put_sync(priv);
1184	return err;
1185}
1186
1187static int c_can_close(struct net_device *dev)
1188{
1189	struct c_can_priv *priv = netdev_priv(dev);
1190
1191	netif_stop_queue(dev);
1192	napi_disable(&priv->napi);
1193	c_can_stop(dev);
1194	free_irq(dev->irq, dev);
1195	close_candev(dev);
1196
1197	c_can_reset_ram(priv, false);
1198	c_can_pm_runtime_put_sync(priv);
1199
1200	can_led_event(dev, CAN_LED_EVENT_STOP);
1201
1202	return 0;
1203}
1204
1205struct net_device *alloc_c_can_dev(void)
1206{
1207	struct net_device *dev;
1208	struct c_can_priv *priv;
1209
1210	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1211	if (!dev)
1212		return NULL;
1213
1214	priv = netdev_priv(dev);
1215	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1216
1217	priv->dev = dev;
1218	priv->can.bittiming_const = &c_can_bittiming_const;
1219	priv->can.do_set_mode = c_can_set_mode;
1220	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1221	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1222					CAN_CTRLMODE_LISTENONLY |
1223					CAN_CTRLMODE_BERR_REPORTING;
1224
1225	return dev;
1226}
1227EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1228
1229#ifdef CONFIG_PM
1230int c_can_power_down(struct net_device *dev)
1231{
1232	u32 val;
1233	unsigned long time_out;
1234	struct c_can_priv *priv = netdev_priv(dev);
1235
1236	if (!(dev->flags & IFF_UP))
1237		return 0;
1238
1239	WARN_ON(priv->type != BOSCH_D_CAN);
1240
1241	/* set PDR value so the device goes to power down mode */
1242	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1243	val |= CONTROL_EX_PDR;
1244	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1245
1246	/* Wait for the PDA bit to get set */
1247	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1248	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1249				time_after(time_out, jiffies))
1250		cpu_relax();
1251
1252	if (time_after(jiffies, time_out))
1253		return -ETIMEDOUT;
1254
1255	c_can_stop(dev);
1256
1257	c_can_reset_ram(priv, false);
1258	c_can_pm_runtime_put_sync(priv);
1259
1260	return 0;
1261}
1262EXPORT_SYMBOL_GPL(c_can_power_down);
1263
1264int c_can_power_up(struct net_device *dev)
1265{
1266	u32 val;
1267	unsigned long time_out;
1268	struct c_can_priv *priv = netdev_priv(dev);
1269
1270	if (!(dev->flags & IFF_UP))
1271		return 0;
1272
1273	WARN_ON(priv->type != BOSCH_D_CAN);
1274
1275	c_can_pm_runtime_get_sync(priv);
1276	c_can_reset_ram(priv, true);
1277
1278	/* Clear PDR and INIT bits */
1279	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1280	val &= ~CONTROL_EX_PDR;
1281	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1282	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1283	val &= ~CONTROL_INIT;
1284	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1285
1286	/* Wait for the PDA bit to get clear */
1287	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1288	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1289				time_after(time_out, jiffies))
1290		cpu_relax();
1291
1292	if (time_after(jiffies, time_out))
1293		return -ETIMEDOUT;
1294
1295	return c_can_start(dev);
1296}
1297EXPORT_SYMBOL_GPL(c_can_power_up);
1298#endif
1299
1300void free_c_can_dev(struct net_device *dev)
1301{
1302	struct c_can_priv *priv = netdev_priv(dev);
1303
1304	netif_napi_del(&priv->napi);
1305	free_candev(dev);
1306}
1307EXPORT_SYMBOL_GPL(free_c_can_dev);
1308
1309static const struct net_device_ops c_can_netdev_ops = {
1310	.ndo_open = c_can_open,
1311	.ndo_stop = c_can_close,
1312	.ndo_start_xmit = c_can_start_xmit,
1313};
1314
1315int register_c_can_dev(struct net_device *dev)
1316{
1317	struct c_can_priv *priv = netdev_priv(dev);
1318	int err;
1319
1320	c_can_pm_runtime_enable(priv);
1321
1322	dev->flags |= IFF_ECHO;	/* we support local echo */
1323	dev->netdev_ops = &c_can_netdev_ops;
1324
1325	err = register_candev(dev);
1326	if (err)
1327		c_can_pm_runtime_disable(priv);
1328	else
1329		devm_can_led_init(dev);
1330
1331	return err;
1332}
1333EXPORT_SYMBOL_GPL(register_c_can_dev);
1334
1335void unregister_c_can_dev(struct net_device *dev)
1336{
1337	struct c_can_priv *priv = netdev_priv(dev);
1338
1339	unregister_candev(dev);
1340
1341	c_can_pm_runtime_disable(priv);
1342}
1343EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1344
1345MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1346MODULE_LICENSE("GPL v2");
1347MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1348