c_can.c revision bed11db3d4095e5f818f5e8bf7f43ef2beb36d4e
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
42#include <linux/can/led.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_TEST		BIT(7)
55#define CONTROL_CCE		BIT(6)
56#define CONTROL_DISABLE_AR	BIT(5)
57#define CONTROL_ENABLE_AR	(0 << 5)
58#define CONTROL_EIE		BIT(3)
59#define CONTROL_SIE		BIT(2)
60#define CONTROL_IE		BIT(1)
61#define CONTROL_INIT		BIT(0)
62
63/* test register */
64#define TEST_RX			BIT(7)
65#define TEST_TX1		BIT(6)
66#define TEST_TX2		BIT(5)
67#define TEST_LBACK		BIT(4)
68#define TEST_SILENT		BIT(3)
69#define TEST_BASIC		BIT(2)
70
71/* status register */
72#define STATUS_PDA		BIT(10)
73#define STATUS_BOFF		BIT(7)
74#define STATUS_EWARN		BIT(6)
75#define STATUS_EPASS		BIT(5)
76#define STATUS_RXOK		BIT(4)
77#define STATUS_TXOK		BIT(3)
78
79/* error counter register */
80#define ERR_CNT_TEC_MASK	0xff
81#define ERR_CNT_TEC_SHIFT	0
82#define ERR_CNT_REC_SHIFT	8
83#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84#define ERR_CNT_RP_SHIFT	15
85#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86
87/* bit-timing register */
88#define BTR_BRP_MASK		0x3f
89#define BTR_BRP_SHIFT		0
90#define BTR_SJW_SHIFT		6
91#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92#define BTR_TSEG1_SHIFT		8
93#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94#define BTR_TSEG2_SHIFT		12
95#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96
97/* brp extension register */
98#define BRP_EXT_BRPE_MASK	0x0f
99#define BRP_EXT_BRPE_SHIFT	0
100
101/* IFx command request */
102#define IF_COMR_BUSY		BIT(15)
103
104/* IFx command mask */
105#define IF_COMM_WR		BIT(7)
106#define IF_COMM_MASK		BIT(6)
107#define IF_COMM_ARB		BIT(5)
108#define IF_COMM_CONTROL		BIT(4)
109#define IF_COMM_CLR_INT_PND	BIT(3)
110#define IF_COMM_TXRQST		BIT(2)
111#define IF_COMM_DATAA		BIT(1)
112#define IF_COMM_DATAB		BIT(0)
113#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115				IF_COMM_DATAA | IF_COMM_DATAB)
116
117/* For the low buffers we clear the interrupt bit, but keep newdat */
118#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
119				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
120				 IF_COMM_DATAA | IF_COMM_DATAB)
121
122/* For the high buffers we clear the interrupt bit and newdat */
123#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)
124
125/* IFx arbitration */
126#define IF_ARB_MSGVAL		BIT(15)
127#define IF_ARB_MSGXTD		BIT(14)
128#define IF_ARB_TRANSMIT		BIT(13)
129
130/* IFx message control */
131#define IF_MCONT_NEWDAT		BIT(15)
132#define IF_MCONT_MSGLST		BIT(14)
133#define IF_MCONT_INTPND		BIT(13)
134#define IF_MCONT_UMASK		BIT(12)
135#define IF_MCONT_TXIE		BIT(11)
136#define IF_MCONT_RXIE		BIT(10)
137#define IF_MCONT_RMTEN		BIT(9)
138#define IF_MCONT_TXRQST		BIT(8)
139#define IF_MCONT_EOB		BIT(7)
140#define IF_MCONT_DLC_MASK	0xf
141
142/*
143 * Use IF1 for RX and IF2 for TX
144 */
145#define IF_RX			0
146#define IF_TX			1
147
148/* status interrupt */
149#define STATUS_INTERRUPT	0x8000
150
151/* global interrupt masks */
152#define ENABLE_ALL_INTERRUPTS	1
153#define DISABLE_ALL_INTERRUPTS	0
154
155/* minimum timeout for checking BUSY status */
156#define MIN_TIMEOUT_VALUE	6
157
158/* Wait for ~1 sec for INIT bit */
159#define INIT_WAIT_MS		1000
160
161/* napi related */
162#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
163
164/* c_can lec values */
165enum c_can_lec_type {
166	LEC_NO_ERROR = 0,
167	LEC_STUFF_ERROR,
168	LEC_FORM_ERROR,
169	LEC_ACK_ERROR,
170	LEC_BIT1_ERROR,
171	LEC_BIT0_ERROR,
172	LEC_CRC_ERROR,
173	LEC_UNUSED,
174};
175
176/*
177 * c_can error types:
178 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
179 */
180enum c_can_bus_error_types {
181	C_CAN_NO_ERROR = 0,
182	C_CAN_BUS_OFF,
183	C_CAN_ERROR_WARNING,
184	C_CAN_ERROR_PASSIVE,
185};
186
187static const struct can_bittiming_const c_can_bittiming_const = {
188	.name = KBUILD_MODNAME,
189	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
190	.tseg1_max = 16,
191	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
192	.tseg2_max = 8,
193	.sjw_max = 4,
194	.brp_min = 1,
195	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
196	.brp_inc = 1,
197};
198
199static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
200{
201	if (priv->device)
202		pm_runtime_enable(priv->device);
203}
204
205static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
206{
207	if (priv->device)
208		pm_runtime_disable(priv->device);
209}
210
211static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
212{
213	if (priv->device)
214		pm_runtime_get_sync(priv->device);
215}
216
217static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
218{
219	if (priv->device)
220		pm_runtime_put_sync(priv->device);
221}
222
223static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
224{
225	if (priv->raminit)
226		priv->raminit(priv, enable);
227}
228
229static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
230{
231	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
232			C_CAN_MSG_OBJ_TX_FIRST;
233}
234
235static inline int get_tx_echo_msg_obj(int txecho)
236{
237	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
238}
239
240static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
241{
242	u32 val = priv->read_reg(priv, index);
243	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
244	return val;
245}
246
247static void c_can_enable_all_interrupts(struct c_can_priv *priv,
248						int enable)
249{
250	unsigned int cntrl_save = priv->read_reg(priv,
251						C_CAN_CTRL_REG);
252
253	if (enable)
254		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
255	else
256		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
257
258	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
259}
260
261static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
262{
263	int count = MIN_TIMEOUT_VALUE;
264
265	while (count && priv->read_reg(priv,
266				C_CAN_IFACE(COMREQ_REG, iface)) &
267				IF_COMR_BUSY) {
268		count--;
269		udelay(1);
270	}
271
272	if (!count)
273		return 1;
274
275	return 0;
276}
277
278static inline void c_can_object_get(struct net_device *dev,
279					int iface, int objno, int mask)
280{
281	struct c_can_priv *priv = netdev_priv(dev);
282
283	/*
284	 * As per specs, after writting the message object number in the
285	 * IF command request register the transfer b/w interface
286	 * register and message RAM must be complete in 6 CAN-CLK
287	 * period.
288	 */
289	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
290			IFX_WRITE_LOW_16BIT(mask));
291	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
292			IFX_WRITE_LOW_16BIT(objno));
293
294	if (c_can_msg_obj_is_busy(priv, iface))
295		netdev_err(dev, "timed out in object get\n");
296}
297
298static inline void c_can_object_put(struct net_device *dev,
299					int iface, int objno, int mask)
300{
301	struct c_can_priv *priv = netdev_priv(dev);
302
303	/*
304	 * As per specs, after writting the message object number in the
305	 * IF command request register the transfer b/w interface
306	 * register and message RAM must be complete in 6 CAN-CLK
307	 * period.
308	 */
309	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
311	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312			IFX_WRITE_LOW_16BIT(objno));
313
314	if (c_can_msg_obj_is_busy(priv, iface))
315		netdev_err(dev, "timed out in object put\n");
316}
317
318static void c_can_write_msg_object(struct net_device *dev,
319			int iface, struct can_frame *frame, int objno)
320{
321	int i;
322	u16 flags = 0;
323	unsigned int id;
324	struct c_can_priv *priv = netdev_priv(dev);
325
326	if (!(frame->can_id & CAN_RTR_FLAG))
327		flags |= IF_ARB_TRANSMIT;
328
329	if (frame->can_id & CAN_EFF_FLAG) {
330		id = frame->can_id & CAN_EFF_MASK;
331		flags |= IF_ARB_MSGXTD;
332	} else
333		id = ((frame->can_id & CAN_SFF_MASK) << 18);
334
335	flags |= IF_ARB_MSGVAL;
336
337	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
338				IFX_WRITE_LOW_16BIT(id));
339	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
340				IFX_WRITE_HIGH_16BIT(id));
341
342	for (i = 0; i < frame->can_dlc; i += 2) {
343		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
344				frame->data[i] | (frame->data[i + 1] << 8));
345	}
346
347	/* enable interrupt for this message object */
348	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
349			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
350			frame->can_dlc);
351	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
352}
353
354static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
355						int iface,
356						int ctrl_mask)
357{
358	int i;
359	struct c_can_priv *priv = netdev_priv(dev);
360
361	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
362		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
363				ctrl_mask & ~IF_MCONT_NEWDAT);
364		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
365	}
366}
367
368static int c_can_handle_lost_msg_obj(struct net_device *dev,
369				     int iface, int objno, u32 ctrl)
370{
371	struct net_device_stats *stats = &dev->stats;
372	struct c_can_priv *priv = netdev_priv(dev);
373	struct can_frame *frame;
374	struct sk_buff *skb;
375
376	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
377	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
378	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
379
380	/* create an error msg */
381	skb = alloc_can_err_skb(dev, &frame);
382	if (unlikely(!skb))
383		return 0;
384
385	frame->can_id |= CAN_ERR_CRTL;
386	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
387	stats->rx_errors++;
388	stats->rx_over_errors++;
389
390	netif_receive_skb(skb);
391	return 1;
392}
393
394static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
395{
396	u16 flags, data;
397	int i;
398	unsigned int val;
399	struct c_can_priv *priv = netdev_priv(dev);
400	struct net_device_stats *stats = &dev->stats;
401	struct sk_buff *skb;
402	struct can_frame *frame;
403
404	skb = alloc_can_skb(dev, &frame);
405	if (!skb) {
406		stats->rx_dropped++;
407		return -ENOMEM;
408	}
409
410	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
411
412	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
413	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
414		(flags << 16);
415
416	if (flags & IF_ARB_MSGXTD)
417		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
418	else
419		frame->can_id = (val >> 18) & CAN_SFF_MASK;
420
421	if (flags & IF_ARB_TRANSMIT)
422		frame->can_id |= CAN_RTR_FLAG;
423	else {
424		for (i = 0; i < frame->can_dlc; i += 2) {
425			data = priv->read_reg(priv,
426				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
427			frame->data[i] = data;
428			frame->data[i + 1] = data >> 8;
429		}
430	}
431
432	netif_receive_skb(skb);
433
434	stats->rx_packets++;
435	stats->rx_bytes += frame->can_dlc;
436	return 0;
437}
438
439static void c_can_setup_receive_object(struct net_device *dev, int iface,
440					int objno, unsigned int mask,
441					unsigned int id, unsigned int mcont)
442{
443	struct c_can_priv *priv = netdev_priv(dev);
444
445	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
446			IFX_WRITE_LOW_16BIT(mask));
447
448	/* According to C_CAN documentation, the reserved bit
449	 * in IFx_MASK2 register is fixed 1
450	 */
451	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
452			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
453
454	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
455			IFX_WRITE_LOW_16BIT(id));
456	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
457			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
458
459	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
460	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
461
462	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
463			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
464}
465
466static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
467{
468	struct c_can_priv *priv = netdev_priv(dev);
469
470	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
471	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
472	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
473
474	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
475
476	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
477			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
478}
479
480static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
481{
482	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
483
484	/*
485	 * as transmission request register's bit n-1 corresponds to
486	 * message object n, we need to handle the same properly.
487	 */
488	if (val & (1 << (objno - 1)))
489		return 1;
490
491	return 0;
492}
493
494static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
495					struct net_device *dev)
496{
497	u32 msg_obj_no;
498	struct c_can_priv *priv = netdev_priv(dev);
499	struct can_frame *frame = (struct can_frame *)skb->data;
500
501	if (can_dropped_invalid_skb(dev, skb))
502		return NETDEV_TX_OK;
503
504	spin_lock_bh(&priv->xmit_lock);
505	msg_obj_no = get_tx_next_msg_obj(priv);
506
507	/* prepare message object for transmission */
508	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
509	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
510	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
511
512	/*
513	 * we have to stop the queue in case of a wrap around or
514	 * if the next TX message object is still in use
515	 */
516	priv->tx_next++;
517	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
518			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
519		netif_stop_queue(dev);
520	spin_unlock_bh(&priv->xmit_lock);
521
522	return NETDEV_TX_OK;
523}
524
525static int c_can_wait_for_ctrl_init(struct net_device *dev,
526				    struct c_can_priv *priv, u32 init)
527{
528	int retry = 0;
529
530	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
531		udelay(10);
532		if (retry++ > 1000) {
533			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
534			return -EIO;
535		}
536	}
537	return 0;
538}
539
540static int c_can_set_bittiming(struct net_device *dev)
541{
542	unsigned int reg_btr, reg_brpe, ctrl_save;
543	u8 brp, brpe, sjw, tseg1, tseg2;
544	u32 ten_bit_brp;
545	struct c_can_priv *priv = netdev_priv(dev);
546	const struct can_bittiming *bt = &priv->can.bittiming;
547	int res;
548
549	/* c_can provides a 6-bit brp and 4-bit brpe fields */
550	ten_bit_brp = bt->brp - 1;
551	brp = ten_bit_brp & BTR_BRP_MASK;
552	brpe = ten_bit_brp >> 6;
553
554	sjw = bt->sjw - 1;
555	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
556	tseg2 = bt->phase_seg2 - 1;
557	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
558			(tseg2 << BTR_TSEG2_SHIFT);
559	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
560
561	netdev_info(dev,
562		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
563
564	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
565	ctrl_save &= ~CONTROL_INIT;
566	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
567	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
568	if (res)
569		return res;
570
571	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
572	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
573	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
574
575	return c_can_wait_for_ctrl_init(dev, priv, 0);
576}
577
578/*
579 * Configure C_CAN message objects for Tx and Rx purposes:
580 * C_CAN provides a total of 32 message objects that can be configured
581 * either for Tx or Rx purposes. Here the first 16 message objects are used as
582 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
583 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
584 * See user guide document for further details on configuring message
585 * objects.
586 */
587static void c_can_configure_msg_objects(struct net_device *dev)
588{
589	int i;
590
591	/* first invalidate all message objects */
592	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
593		c_can_inval_msg_object(dev, IF_RX, i);
594
595	/* setup receive message objects */
596	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
597		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
598			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
599
600	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
601			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
602}
603
604/*
605 * Configure C_CAN chip:
606 * - enable/disable auto-retransmission
607 * - set operating mode
608 * - configure message objects
609 */
610static int c_can_chip_config(struct net_device *dev)
611{
612	struct c_can_priv *priv = netdev_priv(dev);
613
614	/* enable automatic retransmission */
615	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
616
617	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
618	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
619		/* loopback + silent mode : useful for hot self-test */
620		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
621		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
622	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
623		/* loopback mode : useful for self-test function */
624		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
625		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
626	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
627		/* silent mode : bus-monitoring mode */
628		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
629		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
630	}
631
632	/* configure message objects */
633	c_can_configure_msg_objects(dev);
634
635	/* set a `lec` value so that we can check for updates later */
636	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
637
638	/* set bittiming params */
639	return c_can_set_bittiming(dev);
640}
641
642static int c_can_start(struct net_device *dev)
643{
644	struct c_can_priv *priv = netdev_priv(dev);
645	int err;
646
647	/* basic c_can configuration */
648	err = c_can_chip_config(dev);
649	if (err)
650		return err;
651
652	priv->can.state = CAN_STATE_ERROR_ACTIVE;
653
654	/* reset tx helper pointers */
655	priv->tx_next = priv->tx_echo = 0;
656
657	return 0;
658}
659
660static void c_can_stop(struct net_device *dev)
661{
662	struct c_can_priv *priv = netdev_priv(dev);
663
664	/* disable all interrupts */
665	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
666
667	/* set the state as STOPPED */
668	priv->can.state = CAN_STATE_STOPPED;
669}
670
671static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
672{
673	struct c_can_priv *priv = netdev_priv(dev);
674	int err;
675
676	switch (mode) {
677	case CAN_MODE_START:
678		err = c_can_start(dev);
679		if (err)
680			return err;
681		netif_wake_queue(dev);
682		/* enable status change, error and module interrupts */
683		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
684		break;
685	default:
686		return -EOPNOTSUPP;
687	}
688
689	return 0;
690}
691
692static int __c_can_get_berr_counter(const struct net_device *dev,
693				    struct can_berr_counter *bec)
694{
695	unsigned int reg_err_counter;
696	struct c_can_priv *priv = netdev_priv(dev);
697
698	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
699	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
700				ERR_CNT_REC_SHIFT;
701	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
702
703	return 0;
704}
705
706static int c_can_get_berr_counter(const struct net_device *dev,
707				  struct can_berr_counter *bec)
708{
709	struct c_can_priv *priv = netdev_priv(dev);
710	int err;
711
712	c_can_pm_runtime_get_sync(priv);
713	err = __c_can_get_berr_counter(dev, bec);
714	c_can_pm_runtime_put_sync(priv);
715
716	return err;
717}
718
719/*
720 * priv->tx_echo holds the number of the oldest can_frame put for
721 * transmission into the hardware, but not yet ACKed by the CAN tx
722 * complete IRQ.
723 *
724 * We iterate from priv->tx_echo to priv->tx_next and check if the
725 * packet has been transmitted, echo it back to the CAN framework.
726 * If we discover a not yet transmitted packet, stop looking for more.
727 */
728static void c_can_do_tx(struct net_device *dev)
729{
730	struct c_can_priv *priv = netdev_priv(dev);
731	struct net_device_stats *stats = &dev->stats;
732	u32 val, obj, pkts = 0, bytes = 0;
733
734	spin_lock_bh(&priv->xmit_lock);
735
736	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
737		obj = get_tx_echo_msg_obj(priv->tx_echo);
738		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
739
740		if (val & (1 << (obj - 1)))
741			break;
742
743		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
744		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
745		pkts++;
746		c_can_inval_msg_object(dev, IF_TX, obj);
747	}
748
749	/* restart queue if wrap-up or if queue stalled on last pkt */
750	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
751			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
752		netif_wake_queue(dev);
753
754	spin_unlock_bh(&priv->xmit_lock);
755
756	if (pkts) {
757		stats->tx_bytes += bytes;
758		stats->tx_packets += pkts;
759		can_led_event(dev, CAN_LED_EVENT_TX);
760	}
761}
762
763/*
764 * If we have a gap in the pending bits, that means we either
765 * raced with the hardware or failed to readout all upper
766 * objects in the last run due to quota limit.
767 */
768static u32 c_can_adjust_pending(u32 pend)
769{
770	u32 weight, lasts;
771
772	if (pend == RECEIVE_OBJECT_BITS)
773		return pend;
774
775	/*
776	 * If the last set bit is larger than the number of pending
777	 * bits we have a gap.
778	 */
779	weight = hweight32(pend);
780	lasts = fls(pend);
781
782	/* If the bits are linear, nothing to do */
783	if (lasts == weight)
784		return pend;
785
786	/*
787	 * Find the first set bit after the gap. We walk backwards
788	 * from the last set bit.
789	 */
790	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
791
792	return pend & ~((1 << lasts) - 1);
793}
794
795static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
796			      u32 pend, int quota)
797{
798	u32 pkts = 0, ctrl, obj, mcmd;
799
800	while ((obj = ffs(pend)) && quota > 0) {
801		pend &= ~BIT(obj - 1);
802
803		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
804			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
805
806		c_can_object_get(dev, IF_RX, obj, mcmd);
807		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
808
809		if (ctrl & IF_MCONT_MSGLST) {
810			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
811
812			pkts += n;
813			quota -= n;
814			continue;
815		}
816
817		/*
818		 * This really should not happen, but this covers some
819		 * odd HW behaviour. Do not remove that unless you
820		 * want to brick your machine.
821		 */
822		if (!(ctrl & IF_MCONT_NEWDAT))
823			continue;
824
825		/* read the data from the message object */
826		c_can_read_msg_object(dev, IF_RX, ctrl);
827
828		if (obj == C_CAN_MSG_RX_LOW_LAST)
829			/* activate all lower message objects */
830			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);
831
832		pkts++;
833		quota--;
834	}
835
836	return pkts;
837}
838
839/*
840 * theory of operation:
841 *
842 * c_can core saves a received CAN message into the first free message
843 * object it finds free (starting with the lowest). Bits NEWDAT and
844 * INTPND are set for this message object indicating that a new message
845 * has arrived. To work-around this issue, we keep two groups of message
846 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
847 *
848 * To ensure in-order frame reception we use the following
849 * approach while re-activating a message object to receive further
850 * frames:
851 * - if the current message object number is lower than
852 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
853 *   the INTPND bit.
854 * - if the current message object number is equal to
855 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
856 *   receive message objects.
857 * - if the current message object number is greater than
858 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
859 *   only this message object.
860 */
861static int c_can_do_rx_poll(struct net_device *dev, int quota)
862{
863	struct c_can_priv *priv = netdev_priv(dev);
864	u32 pkts = 0, pend = 0, toread, n;
865
866	/*
867	 * It is faster to read only one 16bit register. This is only possible
868	 * for a maximum number of 16 objects.
869	 */
870	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
871			"Implementation does not support more message objects than 16");
872
873	while (quota > 0) {
874		if (!pend) {
875			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
876			if (!pend)
877				break;
878			/*
879			 * If the pending field has a gap, handle the
880			 * bits above the gap first.
881			 */
882			toread = c_can_adjust_pending(pend);
883		} else {
884			toread = pend;
885		}
886		/* Remove the bits from pend */
887		pend &= ~toread;
888		/* Read the objects */
889		n = c_can_read_objects(dev, priv, toread, quota);
890		pkts += n;
891		quota -= n;
892	}
893
894	if (pkts)
895		can_led_event(dev, CAN_LED_EVENT_RX);
896
897	return pkts;
898}
899
900static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
901{
902	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
903		(priv->current_status & LEC_UNUSED);
904}
905
906static int c_can_handle_state_change(struct net_device *dev,
907				enum c_can_bus_error_types error_type)
908{
909	unsigned int reg_err_counter;
910	unsigned int rx_err_passive;
911	struct c_can_priv *priv = netdev_priv(dev);
912	struct net_device_stats *stats = &dev->stats;
913	struct can_frame *cf;
914	struct sk_buff *skb;
915	struct can_berr_counter bec;
916
917	/* propagate the error condition to the CAN stack */
918	skb = alloc_can_err_skb(dev, &cf);
919	if (unlikely(!skb))
920		return 0;
921
922	__c_can_get_berr_counter(dev, &bec);
923	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
924	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
925				ERR_CNT_RP_SHIFT;
926
927	switch (error_type) {
928	case C_CAN_ERROR_WARNING:
929		/* error warning state */
930		priv->can.can_stats.error_warning++;
931		priv->can.state = CAN_STATE_ERROR_WARNING;
932		cf->can_id |= CAN_ERR_CRTL;
933		cf->data[1] = (bec.txerr > bec.rxerr) ?
934			CAN_ERR_CRTL_TX_WARNING :
935			CAN_ERR_CRTL_RX_WARNING;
936		cf->data[6] = bec.txerr;
937		cf->data[7] = bec.rxerr;
938
939		break;
940	case C_CAN_ERROR_PASSIVE:
941		/* error passive state */
942		priv->can.can_stats.error_passive++;
943		priv->can.state = CAN_STATE_ERROR_PASSIVE;
944		cf->can_id |= CAN_ERR_CRTL;
945		if (rx_err_passive)
946			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
947		if (bec.txerr > 127)
948			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
949
950		cf->data[6] = bec.txerr;
951		cf->data[7] = bec.rxerr;
952		break;
953	case C_CAN_BUS_OFF:
954		/* bus-off state */
955		priv->can.state = CAN_STATE_BUS_OFF;
956		cf->can_id |= CAN_ERR_BUSOFF;
957		/*
958		 * disable all interrupts in bus-off mode to ensure that
959		 * the CPU is not hogged down
960		 */
961		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
962		can_bus_off(dev);
963		break;
964	default:
965		break;
966	}
967
968	netif_receive_skb(skb);
969	stats->rx_packets++;
970	stats->rx_bytes += cf->can_dlc;
971
972	return 1;
973}
974
975static int c_can_handle_bus_err(struct net_device *dev,
976				enum c_can_lec_type lec_type)
977{
978	struct c_can_priv *priv = netdev_priv(dev);
979	struct net_device_stats *stats = &dev->stats;
980	struct can_frame *cf;
981	struct sk_buff *skb;
982
983	/*
984	 * early exit if no lec update or no error.
985	 * no lec update means that no CAN bus event has been detected
986	 * since CPU wrote 0x7 value to status reg.
987	 */
988	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
989		return 0;
990
991	/* propagate the error condition to the CAN stack */
992	skb = alloc_can_err_skb(dev, &cf);
993	if (unlikely(!skb))
994		return 0;
995
996	/*
997	 * check for 'last error code' which tells us the
998	 * type of the last error to occur on the CAN bus
999	 */
1000
1001	/* common for all type of bus errors */
1002	priv->can.can_stats.bus_error++;
1003	stats->rx_errors++;
1004	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1005	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1006
1007	switch (lec_type) {
1008	case LEC_STUFF_ERROR:
1009		netdev_dbg(dev, "stuff error\n");
1010		cf->data[2] |= CAN_ERR_PROT_STUFF;
1011		break;
1012	case LEC_FORM_ERROR:
1013		netdev_dbg(dev, "form error\n");
1014		cf->data[2] |= CAN_ERR_PROT_FORM;
1015		break;
1016	case LEC_ACK_ERROR:
1017		netdev_dbg(dev, "ack error\n");
1018		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1019				CAN_ERR_PROT_LOC_ACK_DEL);
1020		break;
1021	case LEC_BIT1_ERROR:
1022		netdev_dbg(dev, "bit1 error\n");
1023		cf->data[2] |= CAN_ERR_PROT_BIT1;
1024		break;
1025	case LEC_BIT0_ERROR:
1026		netdev_dbg(dev, "bit0 error\n");
1027		cf->data[2] |= CAN_ERR_PROT_BIT0;
1028		break;
1029	case LEC_CRC_ERROR:
1030		netdev_dbg(dev, "CRC error\n");
1031		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1032				CAN_ERR_PROT_LOC_CRC_DEL);
1033		break;
1034	default:
1035		break;
1036	}
1037
1038	/* set a `lec` value so that we can check for updates later */
1039	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1040
1041	netif_receive_skb(skb);
1042	stats->rx_packets++;
1043	stats->rx_bytes += cf->can_dlc;
1044
1045	return 1;
1046}
1047
1048static int c_can_poll(struct napi_struct *napi, int quota)
1049{
1050	u16 irqstatus;
1051	int lec_type = 0;
1052	int work_done = 0;
1053	struct net_device *dev = napi->dev;
1054	struct c_can_priv *priv = netdev_priv(dev);
1055
1056	irqstatus = priv->irqstatus;
1057	if (!irqstatus)
1058		goto end;
1059
1060	/* status events have the highest priority */
1061	if (irqstatus == STATUS_INTERRUPT) {
1062		priv->current_status = priv->read_reg(priv,
1063					C_CAN_STS_REG);
1064
1065		/* handle Tx/Rx events */
1066		if (priv->current_status & STATUS_TXOK)
1067			priv->write_reg(priv, C_CAN_STS_REG,
1068					priv->current_status & ~STATUS_TXOK);
1069
1070		if (priv->current_status & STATUS_RXOK)
1071			priv->write_reg(priv, C_CAN_STS_REG,
1072					priv->current_status & ~STATUS_RXOK);
1073
1074		/* handle state changes */
1075		if ((priv->current_status & STATUS_EWARN) &&
1076				(!(priv->last_status & STATUS_EWARN))) {
1077			netdev_dbg(dev, "entered error warning state\n");
1078			work_done += c_can_handle_state_change(dev,
1079						C_CAN_ERROR_WARNING);
1080		}
1081		if ((priv->current_status & STATUS_EPASS) &&
1082				(!(priv->last_status & STATUS_EPASS))) {
1083			netdev_dbg(dev, "entered error passive state\n");
1084			work_done += c_can_handle_state_change(dev,
1085						C_CAN_ERROR_PASSIVE);
1086		}
1087		if ((priv->current_status & STATUS_BOFF) &&
1088				(!(priv->last_status & STATUS_BOFF))) {
1089			netdev_dbg(dev, "entered bus off state\n");
1090			work_done += c_can_handle_state_change(dev,
1091						C_CAN_BUS_OFF);
1092		}
1093
1094		/* handle bus recovery events */
1095		if ((!(priv->current_status & STATUS_BOFF)) &&
1096				(priv->last_status & STATUS_BOFF)) {
1097			netdev_dbg(dev, "left bus off state\n");
1098			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1099		}
1100		if ((!(priv->current_status & STATUS_EPASS)) &&
1101				(priv->last_status & STATUS_EPASS)) {
1102			netdev_dbg(dev, "left error passive state\n");
1103			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1104		}
1105
1106		priv->last_status = priv->current_status;
1107
1108		/* handle lec errors on the bus */
1109		lec_type = c_can_has_and_handle_berr(priv);
1110		if (lec_type)
1111			work_done += c_can_handle_bus_err(dev, lec_type);
1112	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1113			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1114		/* handle events corresponding to receive message objects */
1115		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1116	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1117			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1118		/* handle events corresponding to transmit message objects */
1119		c_can_do_tx(dev);
1120	}
1121
1122end:
1123	if (work_done < quota) {
1124		napi_complete(napi);
1125		/* enable all IRQs */
1126		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1127	}
1128
1129	return work_done;
1130}
1131
1132static irqreturn_t c_can_isr(int irq, void *dev_id)
1133{
1134	struct net_device *dev = (struct net_device *)dev_id;
1135	struct c_can_priv *priv = netdev_priv(dev);
1136
1137	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1138	if (!priv->irqstatus)
1139		return IRQ_NONE;
1140
1141	/* disable all interrupts and schedule the NAPI */
1142	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1143	napi_schedule(&priv->napi);
1144
1145	return IRQ_HANDLED;
1146}
1147
1148static int c_can_open(struct net_device *dev)
1149{
1150	int err;
1151	struct c_can_priv *priv = netdev_priv(dev);
1152
1153	c_can_pm_runtime_get_sync(priv);
1154	c_can_reset_ram(priv, true);
1155
1156	/* open the can device */
1157	err = open_candev(dev);
1158	if (err) {
1159		netdev_err(dev, "failed to open can device\n");
1160		goto exit_open_fail;
1161	}
1162
1163	/* register interrupt handler */
1164	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1165				dev);
1166	if (err < 0) {
1167		netdev_err(dev, "failed to request interrupt\n");
1168		goto exit_irq_fail;
1169	}
1170
1171	/* start the c_can controller */
1172	err = c_can_start(dev);
1173	if (err)
1174		goto exit_start_fail;
1175
1176	can_led_event(dev, CAN_LED_EVENT_OPEN);
1177
1178	napi_enable(&priv->napi);
1179	/* enable status change, error and module interrupts */
1180	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1181	netif_start_queue(dev);
1182
1183	return 0;
1184
1185exit_start_fail:
1186	free_irq(dev->irq, dev);
1187exit_irq_fail:
1188	close_candev(dev);
1189exit_open_fail:
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192	return err;
1193}
1194
1195static int c_can_close(struct net_device *dev)
1196{
1197	struct c_can_priv *priv = netdev_priv(dev);
1198
1199	netif_stop_queue(dev);
1200	napi_disable(&priv->napi);
1201	c_can_stop(dev);
1202	free_irq(dev->irq, dev);
1203	close_candev(dev);
1204
1205	c_can_reset_ram(priv, false);
1206	c_can_pm_runtime_put_sync(priv);
1207
1208	can_led_event(dev, CAN_LED_EVENT_STOP);
1209
1210	return 0;
1211}
1212
1213struct net_device *alloc_c_can_dev(void)
1214{
1215	struct net_device *dev;
1216	struct c_can_priv *priv;
1217
1218	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1219	if (!dev)
1220		return NULL;
1221
1222	priv = netdev_priv(dev);
1223	spin_lock_init(&priv->xmit_lock);
1224	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1225
1226	priv->dev = dev;
1227	priv->can.bittiming_const = &c_can_bittiming_const;
1228	priv->can.do_set_mode = c_can_set_mode;
1229	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1230	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1231					CAN_CTRLMODE_LISTENONLY |
1232					CAN_CTRLMODE_BERR_REPORTING;
1233
1234	return dev;
1235}
1236EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1237
1238#ifdef CONFIG_PM
1239int c_can_power_down(struct net_device *dev)
1240{
1241	u32 val;
1242	unsigned long time_out;
1243	struct c_can_priv *priv = netdev_priv(dev);
1244
1245	if (!(dev->flags & IFF_UP))
1246		return 0;
1247
1248	WARN_ON(priv->type != BOSCH_D_CAN);
1249
1250	/* set PDR value so the device goes to power down mode */
1251	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1252	val |= CONTROL_EX_PDR;
1253	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1254
1255	/* Wait for the PDA bit to get set */
1256	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1257	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1258				time_after(time_out, jiffies))
1259		cpu_relax();
1260
1261	if (time_after(jiffies, time_out))
1262		return -ETIMEDOUT;
1263
1264	c_can_stop(dev);
1265
1266	c_can_reset_ram(priv, false);
1267	c_can_pm_runtime_put_sync(priv);
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(c_can_power_down);
1272
1273int c_can_power_up(struct net_device *dev)
1274{
1275	u32 val;
1276	unsigned long time_out;
1277	struct c_can_priv *priv = netdev_priv(dev);
1278	int ret;
1279
1280	if (!(dev->flags & IFF_UP))
1281		return 0;
1282
1283	WARN_ON(priv->type != BOSCH_D_CAN);
1284
1285	c_can_pm_runtime_get_sync(priv);
1286	c_can_reset_ram(priv, true);
1287
1288	/* Clear PDR and INIT bits */
1289	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1290	val &= ~CONTROL_EX_PDR;
1291	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1292	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1293	val &= ~CONTROL_INIT;
1294	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1295
1296	/* Wait for the PDA bit to get clear */
1297	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1298	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1299				time_after(time_out, jiffies))
1300		cpu_relax();
1301
1302	if (time_after(jiffies, time_out))
1303		return -ETIMEDOUT;
1304
1305	ret = c_can_start(dev);
1306	if (!ret)
1307		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1308
1309	return ret;
1310}
1311EXPORT_SYMBOL_GPL(c_can_power_up);
1312#endif
1313
1314void free_c_can_dev(struct net_device *dev)
1315{
1316	struct c_can_priv *priv = netdev_priv(dev);
1317
1318	netif_napi_del(&priv->napi);
1319	free_candev(dev);
1320}
1321EXPORT_SYMBOL_GPL(free_c_can_dev);
1322
1323static const struct net_device_ops c_can_netdev_ops = {
1324	.ndo_open = c_can_open,
1325	.ndo_stop = c_can_close,
1326	.ndo_start_xmit = c_can_start_xmit,
1327	.ndo_change_mtu = can_change_mtu,
1328};
1329
1330int register_c_can_dev(struct net_device *dev)
1331{
1332	struct c_can_priv *priv = netdev_priv(dev);
1333	int err;
1334
1335	c_can_pm_runtime_enable(priv);
1336
1337	dev->flags |= IFF_ECHO;	/* we support local echo */
1338	dev->netdev_ops = &c_can_netdev_ops;
1339
1340	err = register_candev(dev);
1341	if (err)
1342		c_can_pm_runtime_disable(priv);
1343	else
1344		devm_can_led_init(dev);
1345
1346	return err;
1347}
1348EXPORT_SYMBOL_GPL(register_c_can_dev);
1349
1350void unregister_c_can_dev(struct net_device *dev)
1351{
1352	struct c_can_priv *priv = netdev_priv(dev);
1353
1354	unregister_candev(dev);
1355
1356	c_can_pm_runtime_disable(priv);
1357}
1358EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1359
1360MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1361MODULE_LICENSE("GPL v2");
1362MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1363